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Malaria parasites adopt a remarkable variety of morphological life stages as they transition 

through multiple mammalian host and mosquito vector environments. We profiled the single-cell 

transcriptomes of thousands of individual parasites, deriving the first high-resolution 

transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to 

precisely define developmental stages of single cells from three different human malaria parasite 

species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas 

provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access 

reference dataset for the study of malaria parasites.

Single-cell RNA sequencing (scRNA-seq) is revolutionizing our understanding of 

heterogeneous cell populations, revealing rare cell types, unraveling developmental 

processes, and enabling greater resolution of gene expression patterns than has previously 

been possible (1). The ambition of cataloging the complete cellular composition of an 

animal is already becoming reality (2, 3), but thus far, atlasing efforts have focused on 

multicellular organisms. Here, we present the first comprehensive cell atlas of a unicellular 

eukaryote, the malaria parasite, across the entirety of its life cycle.

Although malaria parasites are unicellular, they display remarkable cellular plasticity during 

their complex life cycle, with stages ranging from 1.2 to 50 μm and spanning vastly different 

human and mosquito environments. Clinical symptoms of malaria result from asexual 

replication within red blood cells, whereas transmission to new hosts relies on replication in 

the mosquito. Both disease development and transmission are therefore underpinned by the 

parasite’s ability to serially differentiate into morphologically distinct forms, including 

invasive, replicative, and sexual stages (Fig. 1A). This versatility is orchestrated by tight 

regulation of a compact genome, where the function of ~40% of genes remains unknown 

(4). Better understanding of gene use and gene function throughout the parasite’s life cycle 

is needed to inform the development of much-needed new drugs, vaccines, and transmission-

blocking strategies.

Single-cell resolution transcriptional variation provides insights into gene 

usage

To begin to build the Malaria Cell Atlas, we profiled 1787 single-cell transcriptomes across 

the entire life cycle of Plasmodium berghei using a modified Smart-seq2 approach (5). 

Purification methods were adapted to isolate each stage of the life cycle, including 

challenging samples such as rings, which have low levels of RNA, and ookinetes, which are 

difficult to sort (fig. S1). Ninety percent of sequenced cells passed quality control 

(1787/1982 cells) and poor-quality cells were identified in each stage according to the 

distribution of the number of genes per cell (fig. S2). After quality control, we detected a 

mean of 1527 genes per cell across the entire dataset; however, the number of genes detected 

was highly dependent on parasite stage (P < 0.001; fig. S2). Transcriptomes were 

normalized with TMM (trimmed mean of M-values) in groups of related stages for further 

analysis. For samples expected to be overlapping or heterogeneous (e.g., the blood stages), 

we used k-means clustering to delineate stages and confirm their classification based on 

known marker genes and correlations with bulk reference datasets (figs. S3 and S4). This 
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allowed for differentiation of male, female, and asexual stages in the blood, as well as 

between ookinetes and oocysts in the heterogeneous population of parasites taken from the 

mosquito midgut during ookinete invasion.

All cell transcriptomes were visualized using uniform manifold approximation and 

projection (UMAP) (6) (Fig. 1B) and the first three components of a principal components 

analysis (PCA) (Fig. 1C). The results showed orientation of cells along a developmental path 

and also, to some extent, the formation of groups according to cellular strategy and host 

environment [e.g., actively replicative stages such as trophozoites and oocysts are near each 

other in UMAP and the first two principal components, whereas the third principal 

component separates the cells by host; Fig. 1,B and C]. All stages displayed marker genes 

concordant with known expression patterns (fig. S5). Merozoites, rings, trophozoites, and 

schizonts formed a circle, capturing the cyclical nature of the asexual intraerythrocytic 

developmental cycle (IDC) (Fig. 1B and fig. S3). A portion of this developmental trajectory 

was closely paralleled by the 44-hour liver schizonts. For these cells, we also captured the 

host’s transcriptome, confirming at a single-cell level that the parasite’s developmental 

progression is independent of the host cell’s cell cycle state (7) (fig. S6). In the mosquito 

stages, we observed a clear and abrupt transition from ookinetes to oocysts 48 hours after an 

infectious blood meal as the parasite crossed the mosquito midgut (fig. S4), and we were 

able to identify genes that are differentially expressed along this understudied developmental 

trajectory (data S1). In the two sporozoite collections (direct from salivary glands versus 

injected by infected mosquitoes into a mock host), we detected that upon release from the 

glands into the host, sporozoites express twice as many genes and up-regulate genes 

necessary for host invasion (data S1). This increase in the number of detected genes might 

indicate an activation of sporozoites in the mammalian host prior to liver cell invasion.

Our survey of the P. berghei life cycle enables a global view of gene expression and “guilt-

by-association” prediction of function based on coexpression patterns. We constructed a 

force-directed k–nearest neighbor (k-NN) graph, where each node represents one of 5156 

genes detected in the dataset (data S1). Graph spectral clustering (8) was used to assign each 

gene to one of 20 modules based on the graph distance matrix (Fig. 2A and data S1). 

Clusters were enriched for genes involved in specific biological processes and displayed 

distinct patterns of expression throughout the life cycle (Fig. 2B, fig. S7, and data S1). Some 

gene clusters (1 and 2) consisted mainly of housekeeping genes and ribosomal RNA 

components highly expressed across the full life cycle. At the other extreme, several clusters 

(clusters 18 to 20) showed low mean expression across cells and were primarily composed 

of genes from rapidly evolving multigene families (pirs and fams), which have no 1:1 

orthologs with P. falciparum (Fig. 2B and fig. S8). Ten gene clusters (clusters 7 to 16) were 

highly expressed in a single stage. We corroborated these stage-specific gene modules using 

two additional methods. First, we identified marker genes based on level of expression 

relative to all other stages (data S1). Additionally, for each stage we defined a core 

transcriptome of genes where transcripts were detected in >50% of cells (data S1 and S2). 

The number of genes unique to the core transcriptome for each canonical stage ranged from 

0 in merozoites to 237 in oocysts (data S1). Core genes for each stage were over-represented 

in clusters that coincided with expression at that stage and contained genes involved in the 
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cellular strategy of that stage (e.g., DNA replication, invasion, sexual development; fig. S9), 

confirming our module assignment to specific stages.

The majority of gene clusters showed pre-dominant expression in specific stages (Fig. 2B 

and fig. S7), offering new guidance as to where and how these genes might function. For 

example, genes encoding CelTOS and circumsporozoite protein (CSP), both important for 

invasion (9, 10), were found in cluster 16, which contains 79 genes most highly expressed in 

the invasive ookinete and sporozoite stages. Among these 79 genes are 34 annotated only as 

“conserved Plasmodium protein with no known function.” Their highly correlated 

expression with known invasion genes and their high expression in invasive stages will help 

to inform future functional studies. We also overlaid asexual growth rate data from a 

genome-scale knockout screen (11). Genes expressed primarily in transmission stages 

(clusters 11 to 16) tended to show normal growth rates in asexual blood stages (Fig. 2C), 

offering further support for the idea that genes in these clusters are primarily important in 

transmission stages. For genes in each cluster, we also identified motifs enriched in their 

upstream regulatory region [–1000 base pairs (bp)], which could be binding sites for 

apetala-2 (AP2) transcription factors that play critical roles in parasite progression through 

the life cycle (fig. S10 and data S1). Several of these motifs are conserved with P. falciparum 
in asexual stages (12) and transmission stages (13) (fig. S10). This categorization will help 

to functionally annotate genes with no known function, thereby enabling informed studies 

on gene regulation and supporting efforts to identify good candidates for transmission-

blocking drug and vaccine development.

Development is the primary driver of differences in gene expression across the life cycle. 

However, variation between individual parasites within developmental stages is important 

for adaptation to the host environment (14). The principal mechanism for intrastage variation 

is thought to be driven by variation in expression among members of large multigene 

families whose functions are poorly defined (15). Nearly all life cycle stages showed highly 

variable expression in at least one of such multigene families (fig. S11). The largest of these 

families, pir, has a role in establishing chronic blood-stage infections (16). Subsets of pir 
genes showed variable expression in different stages, coupled with distinctive upstream 

sequences (fig. S12). Such putative promoter architectures could define stage-specific 

expression, with epigenetic control defining which subset is expressed. Interestingly, we 

found five coexpressed pairs of pir genes in merozoites and rings (fig. S12). Pir genes within 

each pair were split across different chromosomes but shared similar promoter architectures, 

with different pairs having different promoters (fig. S12). Although the function of these 

coexpression patterns is as yet unknown, such coexpression in a single cell can only be 

detected using scRNA-seq, highlighting another use of scRNA-seq toward identifying novel 

expression patterns.

Expanding the Malaria Cell Atlas across technologies and species

Droplet-based approaches to generate single-cell transcriptomes are less than 10% as costly 

as Smart-seq2 per cell, enabling the exploration of many more cells. To more deeply sample 

parasites along the entire IDC, we used 10x Genomics’ droplet-based Chromium platform to 

simultaneously capture P. berghei and another parasite species, P. knowlesi, in a single inlet 
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(17). We found that 6.34% of cells were dual-species doublets, confirming a doublet rate as 

expected for mammalian cells (fig. S13). After removal of doublets and additional quality 

control, we captured 4884 P. berghei cells and 4237 P. knowlesi cells.

We used canonical correlation analysis (CCA) and scmap (Fig. 3A and fig. S13) (18, 19) to 

map P. berghei life stages between the 10x and Smart-seq2 technologies. CCA clustering 

showed good representation of all stages in both Smart-seq2 and 10x datasets within the IDC 

(fig. S13). Using scmap-cell, 94% of cells in the 10x data were assigned to a Smart-seq2 cell 

with high confidence, allowing us to align datasets (Fig. 3A). The additional P. berghei 10x 

data increased the coverage of cells in our atlas and confirmed our ability to evaluate single 

cells characterized by different methodologies. To account for the continuous cyclical nature 

of the data, we ordered the 10x cells in pseudotime by fitting an ellipse to the first two 

principal components and calculating the angle around the center of this ellipse for each cell 

relative to a start cell (Fig. 3B and methods). To annotate the orientation of the cycle with 

real time, we correlated each single-cell transcriptome with published bulk reference 

datasets and observed a high correspondence between bulk time point and pseudotime order 

(Fig. 3B and fig. S14).

Additionally, we generated a 10x dataset comprising 6737 cells from the IDC stages of the 

human parasite P. falciparum. We used scmap-cell to assign each P. falciparum and P. 
knowlesi cell to the P. berghei 10x reference index built with 1:1 orthologs (data S3), thus 

enabling us to align the developmental trajectories of these three species (Fig. 3C and fig. 

S15). We used this alignment to examine patterns of transcription in all three species in a 

time-resolved manner across the IDC. We calculated RNA velocity (20), which measures the 

rate of change of mRNA molecule abundances, across this deeply sampled set of 

Plasmodium parasites. We found that the rate of change varies markedly over the IDC in P. 
berghei, with peak velocity occurring in late rings, consistent with bulk studies of nascent 

RNA transcription (Fig. 3C and fig. S16) (21). We compared patterns of transcription as 

measured by RNA velocity at key transitions across species (Fig. 3C and fig. S16). Overall, 

the alignment of developmental trajectories across species revealed generally similar 

patterns of RNA velocity in the IDC of different malaria species; however, some life cycle 

stages and genes showed more similarity than others (fig. S17, table S2, and data S4). These 

parasite species naturally infect vastly different hosts and have different IDC lengths (24 

hours for P. berghei, 27 hours for P. knowlesi, and 48 hours for P. falciparum). RNA velocity 

analyses highlight that the pace of transcription varies to support development to the next 

life stage in the IDC, with some similarity across these three species (Fig. 3C and fig. S16).

Transcriptomic studies of both in vivo and in vitro malaria parasites are often confounded by 

multiple life stages within a single sample. The Malaria Cell Atlas can be used to 

deconvolve bulk transcriptomic data and identify the specific life stages that were present in 

a bulk RNA-seq sample. We demonstrated this with the use of published bulk RNA-seq 

datasets from P. berghei (22, 23) and P. falciparum (24) (fig. S18). Future bulk RNA-seq 

studies can use the atlas to identify differences in cell type composition, potentially 

regressing these out to calculate more accurate differential expression between conditions or 

samples. Furthermore, scRNA-seq data generated by other groups (25) using a different 

droplet-based technology (Drop-seq) are also easily classified using scmap and the atlas data 
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provided here (fig. S19). Together these findings confirm our ability to evaluate single cells 

characterized by different methodologies across parasite species that diverged more than 

12.5 million years ago (26).

The Malaria Cell Atlas as a reference for clinical samples

In vitro systems, although critical for experimental studies of Plasmodium parasites, are 

unlikely to fully capture the breadth of expression variation of parasites circulating in 

naturally infected carriers. Moreover, there are six phylogenetically distinct human-infecting 

species (Fig. 4A), several of which do not have any existing expression data and cannot be 

cultured in vitro. We therefore explored whether scRNA-seq data from wild parasites taken 

straight from infected people could be used to place wild parasites in developmental time 

using our atlas. We developed a methanol-based preservation protocol that produced Smart-

seq2 transcriptomes with equivalent quality to unpreserved cells in the lab (fig. S20). Next, 

we used the protocol to preserve samples from three naturally infected asymptomatic 

carriers in Mbita, Kenya, which we then sorted and sequenced in the UK. We recovered 

single-cell transcriptomes from all three volunteers, and these field-collected samples 

displayed quality similar to that of laboratory samples (fig. S20). P. falciparum cells mapped 

to our atlas revealed male, female, and early asexual parasites (Fig. 4B), which are the 

expected circulating stages for this species (Fig. 4A). Cells clustered by stage and not by 

donor, indicating that comparisons both within and between hosts are possible; this indicates 

that scRNA-seq on field parasites will enable transcriptional characterization of natural 

infections. One of the volunteers was also infected with P. malariae, leading to the 

acquisition of transcriptomic data for this underexplored species. Notably, we observed late 

developmental stages; this was expected because, unlike P. falciparum, P. malariae late 

stages do not sequester in deep tissue (Fig. 4, A and B). As a proof of concept, we have 

shown that parasite species that have previously been inaccessible for expression analysis 

can now be characterized by combining scRNA-seq with the atlas.

The Malaria Cell Atlas reference dataset comprises 15,858 parasite transcriptomes covering 

every life stage along the parasite’s life cycle at single-cell resolution, and spans different 

technologies and different parasite species. The data are freely accessible as a processed 

dataset and through a user-friendly web interface (27, 28). As such, this will be a key 

resource for the malaria community in the study of transcriptional regulation and control of 

developmental progression at the highest resolution. Because the Malaria Cell Atlas 

provides a foundation for studying the biology of individual parasites directly from their 

natural environment, it represents an important endeavor toward characterizing phenotypes 

critical for malaria control, including those related to pathogenicity, drug resistance, and 

transmission biology.

Methods

Parasite culturing in vivo and in vitro

P. berghei parasites came from drug selection marker-free reporter line RMgm-928 that 

expressed mCherry, under the control of the hsp70 promoter, throughout the life cycle (29). 

Parasites were propagated in female 6- to 8-week-old Theiler’s Original outbred mice 
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supplied by Envigo UK. Mosquito infections were performed in 2- to 5-day-old Anopheles 
stephensi mosquitoes.

P. falciparum (3D7) was maintained in O+ blood using RPMI 1640 culture medium (Gibco) 

supplemented with 25 mM HEPES (Sigma), 10 mM D-glucose (Sigma), hypoxanthine (50 

mg/liter, Sigma), and 10% human serum (obtained locally in accordance with ethically 

approved protocols) in a mix containing 5% O2, 5% CO2, and 90% N2.

P. knowlesi (strain A1-H.1) was maintained in continuous culture (30) in O+ blood, using 

RPMI 1640 culture medium (Gibco) supplemented with 25 mM HEPES (Sigma), 22.2 mM 

D-glucose (Sigma), hypoxanthine (50 mg/liter, Sigma), 0.5% (wt/vol) Albumax II, and 10% 

horse serum, in a mix containing 5% O2, 5% CO2, and 90% N2. Cultures were maintained 

for >6 weeks without synchronization to ensure good representation of all stages in the IDC.

Human O+ erythrocytes were supplied by NHS Blood and Transplant, Cambridge, UK. All 

samples were anonymized. Use of erythrocytes from human donors for Plasmodium culture 

was approved by the NHS Cambridgeshire 4 Research Ethics Committee (REC reference 

15/EE/0253) and the Wellcome Sanger Institute Human Materials and Data Management 

Committee.

Parasite isolation, cell sorting, and library preparation for Smart-seq2 scRNA-seq

Isolation of extraerythrocytic forms from HeLa cells—HeLa cells were cultured in 

DMEM supplemented with 10% FCS. P. berghei sporozoites were produced by 

homogenization of 50 dissected sets of salivary glands from female An. stephensi 
mosquitoes 22 days after an infectious blood meal. Sporozoites were counted on a 

hemocytometer, resuspended in DMEM, and added to an 80% confluent monolayer of HeLa 

cells at multiplicity of infection of 1. The plate was spun at 300g for 3 min and incubated at 

37°C for 2 hours; cells were then washed twice with PBS and placed back in complete 

medium. After 24 hours, cells were split back at 70% confluency. Cells were harvested by 

trypsinization 44 hours after infection, washed once in PBS, and sorted immediately.

Isolation of blood-stage merozoites— P. berghei parasites were purified from an 

overnight (24 hours) 50-ml culture with 1 ml of infected blood using a 55% Histodenz 

cushion (Sigma) as detailed in (31). Purified schizont stages were stained with Hoechst 

33342 (ThermoFisher) at a final concentration of 2.5 μg/ml for 10 min on ice, pelleted at 

450g for 3 min, resuspended in 1 ml of medium, and passed through a 1.2-μm filter (Pall 

Life Sciences). Merozoites in the filtered fraction were sorted immediately.

Isolation of ring-stage parasites—A mouse infected with RMgm-928 was terminally 

bled by cardiac puncture using a syringe containing heparin. The ~1-ml blood sample was 

immediately transferred onto ice and stained with Hoechst 33342 (2.5 μg/ml) in PBS for 15 

min (along with unstained controls for cell sorting). Cells were washed in RPMI and spun at 

800g for 3 min and washed once more with PBS. Parasites were then incubated in 0.02% 

saponin in PBS for 3 min and then spun down at 1100g at 4°C. Parasites were washed once 

in PBS, pelleted at 1100g for 3 min, and then resuspended in 1 ml of PBS prior to sorting.
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Isolation of ookinetes from the blood bolus—Ookinetes were isolated from the 

blood bolus of An. stephensi midguts at 18 and 24 hours after blood feeding from an 

RMgm-928–infected mouse at approximately 5% parasitemia. A lateral incision was made 

along the dissected mosquito midgut tissue to release the blood bolus and remaining blood 

was rinsed out using a syringe with PBS. Boluses from five midguts were pooled, diluted in 

500 μl of PBS, and stained with SYBR green. To discriminate ookinetes from other stages in 

the blood bolus, a control feed was performed using a HAP2–-mCherry–infected mouse. 

HAP2 is essential for fertilization, so the bolus contained parasites but no ookinetes (32). 

This allowed us to enrich our sample for ookinetes by gating on the level of mCherry and 

SYBR green fluorescence (fig. S1, A to C).

Isolation of invading ookinetes and oocysts from the midgut—At 48 hours and 4 

days post–blood meal, invading ookinetes and oocysts were isolated from 10 pooled infected 

midguts. Dissected midguts were disassociated in 200 μl of an enzymatic cocktail of 

collagenase IV (1 mg/ml) and elastase (1 mg/ml). The dissociation mixture was incubated at 

30°C for 30 min with shaking at 300 rpm. Every 15 min, tissue was mechanically disrupted 

by pipetting up and down 40 times. To capture only invading ookinetes at 48 hours, the 

remaining blood bolus was removed as described above. As a control, midguts from 

mosquitoes that had fed on a HAP2–-mCherry mouse were disassociated to confirm that no 

remnants of the blood meal and noninvading parasites remained in the gut.

Isolation of salivary gland and injected sporozoites—Salivary glands from 20 An. 
stephensi infected with RMgm-928 were dissected on day 26 post–blood meal. Sporozoites 

were released from the glands by homogenizing the samples manually with a pestle in PBS. 

Samples were filtered with a 20-μm filter prior to sorting to remove large fragments of 

mosquito tissue. Simultaneously, female An. stephensi mosquitoes from the same infectious 

feed were fed using a membrane feeding assay containing approximately 600 μl of fructose 

solution (80 g/liter) with 10% human serum (filter-sterilized and heat-inactivated). 

Mosquitoes were exposed to the feeder for 12 min. After this, the remaining fructose/serum 

solution was removed from the feeder, and the presence of sporozoites in this solution was 

microscopically confirmed. Samples were then taken directly to cell sorting.

Preservation and isolation of cells from fresh peripheral blood samples—
Samples were procured in the district of Mbita (Kenya) from asymptomatic volunteers in 

accordance with a study protocol reviewed and approved by the KEMRI Scientific and 

Ethics Review unit (KEMRI/RES/7/3/1). After screening with a rapid diagnostic test [SD 

BIOLINE Malaria Ag P.f/Pan (HRP-II/pLDH)], venous blood samples from infected 

volunteers were collected in EDTA-vacutainers. For each sample, two different purification 

methods were applied on 1 ml of the sample each to recover the later IDC and sexual stages 

on the one hand and the early IDC stages on the other. For the former, 1 ml of blood was 

resuspended in 5 ml of suspended animation buffer (10 mM Tris, 150 mM NaCl, 10 mM 

glucose, pH 7.37) (33) and placed on a magnetic column (MACs, Miltenyi). Late-stage 

parasites were eluted, washed once in suspended animation buffer, and resuspended in 200 

μl of PBS. These were then fixed with 800 μl of methanol (Sigma) and preserved at –20°C. 

For the early IDC sample, another 1 ml was leucodepleted with a Plasmodipur filter 
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(EuroProxima), washed twice in PBS, lysed twice with 0.15% saponin in PBS (Sigma), 

washed twice in PBS, and resuspended in 200 μl of PBS. Samples were then also fixed with 

800 μl of methanol (Sigma) and preserved at –20°C. Both sample types were rehydrated 

with PBS, stained with Hoechst (2.5 μg/ml) in PBS for 15 min, and washed once in PBS 

prior to sorting.

Cell sorting—All parasite cell sorting was conducted on an Influx cell sorter (BD 

Biosciences) with a 70-μm nozzle. The HeLa samples were sorted on a Sony SH800 with a 

100-μm nozzle chip. Parasites were sorted by gating on single-cell events and mCherry 

fluorescence (all stages) or Hoechst fluorescence (merozoites, field parasites). All parasites 

were sorted into nuclease-free 96- or 384-well plates (ThermoFisher) containing lysis buffer 

as described (5). Sorted plates were spun at 1000g for 10 s and immediately placed on dry 

ice.

Library preparation and sequencing—Reverse transcription, PCR, and library 

preparation were performed as detailed (5). All libraries were prepared in 96-well plates 

except a single 384-well plate of late blood stages. In the latter case, the lysis buffer volume 

was reduced to 2 μl, and the elongation temperature of the PCR was reduced to 68°C. Cells 

were multiplexed up to 384 and sequenced on a single lane of HiSeq 2500 v4 with 75-bp 

paired-end reads.

Parasite preparation and loading of 10x scRNA-seq

Parasite preparation—For P. berghei samples, blood was obtained by terminal bleed and 

passed through a prewetted Plasmodipur syringe filter (Europroxima) to filter out white 

blood cells prior to culturing. Three cultures were generated: cultured for 30 min, 10 hours, 

and 20 hours at 36.5°C with shaking at 65 RPM. Cultures were smeared prior to harvesting 

in order to ascertain parasitemia. After harvesting, the total number of red blood cells in 

each sample was counted using a disposable hemocytometer. This count was corroborated 

using a Countess cell counter. The number of infected red blood cells in each culture was 

used as a cell count, and cells were pooled 1:1:1 from the three time points and kept on ice. 

For P. knowlesi, the parasitemia of the cultured desynchronized parasites was measured and 

then cells were harvested by centrifugation at 450g for 3 min at 4°C. Supernatant was 

removed and parasites were washed twice in PBS before resuspension in PBS. The 

concentration of red blood cells was then calculated by manual hemocytometer, before 

calculating the final infected red blood cell concentration using the parasitemia. Cells were 

then pooled 1:1 with the P. berghei cell mixture described above in order to run a dual-

species 10x analysis to evaluate doublet rates. P. falciparum parasites were prepared in the 

same manner as P. knowlesi but were run on their own 10x inlet.

10x loading—Cells were loaded according to manufacturer’s instructions to recover 

10,000 cells per inlet. 10x Chromium Single Cell 3′ Library v2 chemistry was used and 

libraries were prepared according to manufacturer’s instructions. Each 10x input library was 

sequenced across two Hiseq 2500 Rapid Run lanes using 75-bp paired-end sequencing.
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Bulk transcriptomics

Three P. berghei samples were prepared for bulk RNA-seq including early asexuals, late 

asexuals, and ookinetes. Mice infected with hsp70p:mCherry P. berghei were terminally bled 

by cardiac puncture using a syringe containing heparin. For the two asexual samples, the 

blood was treated with ammonium chloride to remove uninfected erythrocytes (34) either 

straight after the bleed (early) or after 24 hours of ex vivo culture (late). For the ookinete 

sample, the blood was cultured for 24 hours as described (35). RNA was extracted with 

TriZol according to the manufacturer’s recommendations and assayed with an Agilent RNA 

6000 Nano assay, and transcriptomes were generated as described. A modified RNA-seq 

protocol was used. PolyA+ RNA (mRNA) was selected using magnetic oligo-d(T) beads. 

Reverse transcription using Superscript III (Life) was primed using oligo d(T) primers; 

second-strand cDNA synthesis included dUTP. The resulting cDNA was fragmented using a 

Covaris AFA sonicator. A “with-bead” protocol was used for dA-tailing, end repair, and 

adapter ligation using “PCR-free” barcoded sequencing adaptors (NEB) (36). After two 

rounds of SPRI cleanup (Agencourt), the libraries were eluted in EB buffer and USER 

enzyme mix (NEB) was used to digest the second-strand cDNA, generating directional 

libraries. The libraries were quantified by qPCR and sequenced on an Illumina HiSeq 2500.

Mapping and generation of expression matrices for scRNA-seq transcriptomes

Smart-seq2 mapping—Single-cell Plasmodium transcriptomes were mapped as reported 

previously (5). Briefly, trimmed reads were mapped using HISAT2 (v 2.0.0-beta) (37) to the 

P. berghei v3 genome (October 2016), and using STAR (v 2.5.0a) to the P. falciparum v3 

(January 2016) and P. malariae v1 (March 2018) genomes using default parameters (38). 

Reads were summed against genes using HTseq (v 0.6.0) (39). For the coexpression of HeLa 

cells and liver-stage parasite analysis, both HeLa cells and parasites were mapped to 

respective genomes with STAR (v 2.5.1b) using default parameters (38).

10x data alignment, cell barcode assignment, and UMI counting—Cell Ranger 

single-cell software (version 2.1.0) was used to process sequencing reads, assigning each 

read to a cell barcode and UMI using standard parameters (17). After barcode assignment, 

the cDNA insert read was aligned using Cell Ranger (v 2.1.0) to a combined reference 

genome of P. knowlesi (March 2014) and P. berghei (July 2015), and the P. falciparum run 

was aligned to the 3D7 genome v3 (January 2016). These reference genomes were all 

obtained from www.sanger.ac.uk/resources/downloads/protozoa/.

Filtering and normalization of scRNA-seq data

Smart-seq2 filtering and normalization—Poor-quality cells were identified on a per-

stage basis according to the distribution of the number of genes per cell, given the high 

variability of genes detected between stages (fig. S2, A and B). Cells with fewer than 1000 

genes per cell and 2500 reads per cell were removed from the liver-stage parasites, 

trophozoites, male and female gametocytes, ookinetes, ookinetes/oocysts, and oocyst stages. 

Cells with fewer than 500 genes per cell and 2500 reads per cell were removed from 

schizonts and injected sporozoites. Cells with fewer than 40 genes per cell and 1000 reads 

per cell were removed from merozoites, rings, and gland sporozoites (fig. S2 and table S1). 
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Additionally, we removed genes from further analysis that were detected in fewer than two 

cells across the entire dataset. The final dataset contained 1787 high-quality single cells from 

1982 sequenced cells and 5156 genes out of 5245 genes with annotated transcripts. 

Transcriptomes were normalized with the weighted TMM method (40). Cells were 

normalized either all together or in five groups containing biologically similar stages; groups 

included IDC, liver-stage, gametocytes, ookinetes/oocysts, and sporozoites. Visual 

inspection of the relative expression plot (fig. S2D) showed little difference between 

normalization by biological group versus all together. Unless otherwise specified, further 

analysis was done on cells normalized by biological group.

10x filtering and normalization—For P. berghei, the output filtered matrix from Cell 

Ranger was read into Seurat (v 2.3.4) (18). Low-quality P. berghei cells with fewer than 230 

detected genes were removed from further analysis. Initial inspection of filtered cells in the 

P. knowlesi and P. falciparum datasets showed that early-stage and late-stage IDC parasites 

were missing. These stages express fewer genes per cell relative to later stages based on our 

Smart-seq2 data, and we have previously observed a lower detection of genes per cell in P. 
falciparum (5), suggesting that these cells may have been removed by Cell Ranger’s default 

thresholding. Using the raw output matrices for these species, we adjusted thresholds to 

retain cells with >100 genes per cell for P. falciparum and >150 genes per cell for P. 
knowlesi. Intraspecies doublets were identified and removed from all three species using 

doubletFinder (v 1.0.0) (41). For the P. berghei/P. knowlesi run, we identified interspecies 

doublets as cells that contained >50 UMIs that mapped to each species (fig. S13A). The 

expected intraspecies doublet rate was calculated on the basis of this interspecies doublet 

rate, the relative proportion of each species, and the additional quality control thresholding. 

For P. falciparum, the intraspecies doublet rate was calculated from the expected doublet rate 

table provided by 10x Genomics. Thus, the numbers of intraspecies doublet cells removed 

were as follows: P. berghei = 200, P. knowlesi = 287, P. falciparum = 530 (fig. S13B). 

Doublets do not show a stage-specific bias (fig. S13B).

Single-cell transcriptome analysis of Smart-seq2 data

Cell clustering and projection—For timepoints where a heterogeneous population of 

stages was collected, we used k-means clustering using SC3 (version 1.7.7) to delineate 

stages and confirmed their classification based on known marker genes (42). This method 

was used for classification of males, females, trophozoites, and schizonts, as well as 

ookinetes and oocysts (figs. S3 and S4). For visualization in two dimensions, we performed 

UMAP (6) with the python package umap version 0.1.1 using the correlation distance 

metric, k–nearest neighbors of 10, min_dist of 1, spread of 2, and bandwidth of 1.

HeLa cell quality control and cell-cycle analysis—We performed initial filtering to 

identify the most robustly expressed genes across single cells. Genes were required to be 

expressed in >30 cells (of 164 cells) and cells needed to express >500 genes in both parasite 

and matched HeLa cells to be retained. This resulted in 163 matched cells with 4480 parasite 

genes and 8059 HeLa cell genes. We performed clustering of single HeLa and parasite cells 

independently using either all highly variable genes or subsets of annotated cell cycle genes. 

The highly variable genes were identified by plotting the averaged gene expression against 
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gene dispersion [similar to Seurat (18)]. Louvain clustering was performed on single HeLa 

cells using only cell cycle genes, resulting in four louvain groups (fig. S6D). These groups 

are highly indicative of cell cycle progression starting from group 0 (G0/G1) to group 1 

(G1S) to group 3 (G2) to group 4 (G2M).

Pseudotime—To order cells in a developmental trajectory, we reconstructed pseudotime 

using SLICER (43). Variable genes were identified within SLICER and then selected to 

build the trajectory based on a neighborhood variance that identifies genes that vary 

smoothly across the cell sets. SLICER was run independently on three groups of cells: (i) 

the liver-stage parasites, (ii) the entire IDC (merozoites, rings, trophozoites, and schizonts), 

and (iii) the ookinete-to-oocyst transition (bolus ookinetes, ookinete/oocyst, and oocyst). We 

assessed the performance of the algorithm by confirming that the pseudotime order matched 

the ground truth time point collections and expression of known marker genes over 

development (e.g., fig. S4E). To order all cells across the life cycle, we compiled these 

pseudotime orders with known timing of other stages that did not show a developmental 

signature (mature gametocytes and sporozoites).

Differential expression—Differential expression over the ookinete-to-oocyst transition 

and between gland and injected sporozoites was performed in monocle using the 

differentialGeneTest function (44).

Gene clustering and visualization of Smart-seq2 data—The gene count matrix was 

normalized by dividing by the mean counts for each gene and log scaling. This was done to 

reduce the amount to which gene clusters were driven by total gene expression and instead 

focus on the pattern of expression across cells. A k-NN graph was formed on the gene-

normalized expression matrix with the Nearest Neighbors subpackage of python’s 

scikitlearn version 0.19.2 with parameters of k = 5 and a manhattan distance metric (45). We 

chose a k value of 5 because it was smaller than the smallest cluster we were interested in 

detecting, and the graph appeared robust from k =3 to k = 20. We then performed spectral 

graph clustering on this k-NN graph using the SpectralClustering subpackage of python’s 

scikitlearn version 0.19.2 (8, 46). The graph was visualized in Gephi with the forceatlas 2 

graph layout algorithm in linlog mode to better show the clustering structure of the data (47, 

48). Gene Ontology analysis was conducted with the dedicated PlasmoDB tool (49). The top 

cited gene in each cluster was identified using the literature tool on PlasmoDB (49).

Marker genes—Marker genes for each stage were identified in two ways. First, 

differentially expressed genes were calculated using the findMarkers function in scran (50). 

This function performs a Welch t test between pairs of stages and then identifies genes that 

are uniquely expressed in that cluster (pval.type = “all,” direction = “up”). This method was 

used to identify markers for each canonical stage, as well as marker genes within each host 

(mouse versus mosquito) and each cellular strategy (invasive, replicative, and sexual forms) 

(data S1). Second, marker genes were identified by defining a core set of genes for each 

stage as all genes that are expressed in more than 50% of cells. To avoid bias from the 

number of cells sampled within a stage, 60 cells were randomly selected per stage (data S2). 

We defined the unique core transcriptome as genes from each stage’s core that were unique 
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to that stage’s core (i.e., not also found in more than 50% of cells from any other stage) (data 

S1).

Motif discovery—Motif discovery was performed using DREME, which searches for 

short (8 bp) motifs expressed as regular expressions (consensus sequences allowing for 

wildcards but not variable length gaps) in a given set of sequences (51). The 1000 bp 

upstream of the start codon for each gene detected in the Smart-seq2 dataset was used in the 

analysis. For each cluster, the input dataset was the upstream regions of each gene within 

that cluster and the negative set was the upstream region of genes that were not in that 

cluster. Clusters 18, 19, and 20 were not included in this analysis because they contain many 

paralogous genes from gene families with large duplicated upstream regions. The top motif 

of each cluster was compared to motifs from (12, 13, 52, 53) using Tomtom (54).

Analysis of development-independent gene expression variability—Almost all 

genes in Plasmodium genomes vary in expression over the life cycle. This is mainly thought 

to be related to the development of the parasite as it transitions between different life stages. 

We first identified highly variable genes in each stage independently. In the Smart-seq2 data, 

we used a general linear model to regress out the effect of pseudotime within developing 

stages [liver-stage exo-erythrocytic forms (EEFs), merozoites, rings, trophozoites, schizonts, 

ookinetes, and oocysts]. We preserved the mean expression of each gene by adding the 

predicted value of the mean to the residuals of the general linear model; in addition, we set 

any negative corrected values to zero in order to preserve the non-negativity of gene 

expression values. Finally, because the correction often shifted zeros to values only slightly 

above zero, we rounded these values down in order to meet the assumptions of the M3Drop 

model. We then used M3Drop (55) to identify genes with remaining heterogeneity [false 

discovery rate (FDR) ≤ 0.05], adjusted for mean expression level. Enrichment of each gene 

family within each stage was determined using the hypergeometric test with correction by 

FDR and a cutoff of 0.05.

We examined pir gene promoter architectures to determine whether particular gene 

expression patterns might be driven by transcription factors. First, we identified the 5′ UTR 

and upstream intergenic (putative promoter) regions of the pir genes shown in fig. S12. This 

was done manually by browsing the genome and referring to three P. berghei bulk RNA-seq 

samples of mixed early and late asexual stages as well as ookinete stages. Illumina reads 

from these libraries were mapped to the P. berghei v3 genome sequence using HISAT2 

v2.0.0 (37), with–rna-strandness RF–max-intronlen 5000. The data were viewed using 

Artemis v18.0.0 (56). 5′ UTRs were defined as the region between the start codon and 

where RNA-seq coverage dropped to zero in at least two of the three samples. Upstream 

intergenic regions were defined from the start of the 5′ UTR to the next, upstream increase 

in coverage from one or more RNA-seq libraries. The upstream intergenic regions were 

BLASTed against each other (blastall 2.2.25, -p blastn -e 1e-20). The sequences involved in 

each hit were extracted, excluding those overlapping others with lower E-values. These 

sequences were then BLASTed against each other (blastall 2.2.25, -p blastn -e 0.01) and the 

resulting similarity matrix was used to cluster them with MCL v12-068 (57) with the 

inflation parameter set to 1.4. Sequences were collected together based on the clustering and 

Howick et al. Page 13

Science. Author manuscript; available in PMC 2020 March 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



aligned using MUSCLE v3.8.31 (58). The alignments were then trimmed by identifying 

highly conserved regions. Alignments in nonoverlapping windows of 10 nucleotides were 

evaluated, counting the proportion of sequences that were ungapped. An alignment position 

was called as good if ≥70% of sequences were ungapped at that position. A window of 10 

nucleotides was called as a block if it contained no more than three bad positions. If there 

was more than one bad block in a row, a conserved region was ended. Only the longest 

conserved region from an alignment was kept. Sequences that began or ended within the 

conserved region were then removed. These alignments were used to build nucleotide profile 

hidden Markov models (HMMs) using HMMer i1.1rc3 (59). The models were then searched 

against the P. berghei v3 genome sequence, also using HMMer, to identify further members 

of the sequence families. Each hit was associated with the nearest downstream protein-

coding gene. We identified eight upstream intergenic (promoter) sequence families 

associated with pir genes that we called A, C, D, F, G, H, I, and J (fig. S12).

RNA velocity—For each IDC (ring, trophozoite, schizont) Smart-seq2 cell that passed 

quality control, the exonic, intronic, and mixed reads were counted using RNA velocity (20). 

Intronic and mixed reads were combined to estimate the total unspliced reads in the data, 

whereas purely exonic reads were assumed to represent spliced transcripts. Cells were split 

by life cycle stage as for the pseudotime analysis, the expected ratio of spliced to unspliced 

reads for each gene was fit using RNA velocity, and residuals for each cell were estimated 

for each group independently. To ensure that we only considered genes that were fit well by 

the RNA velocity model, we required a minimum slope of 0.1 (increased from the default 

setting of 0.05) and a minimum correlation between spliced and unspliced reads of 0.5 

(increased from the default setting of 0.05). To improve fits, we used the cells with the top 

and bottom 7.5% of expression levels for the fitting. Genes where more than 90% of 

residuals were either positive or negative were excluded as poorly fit genes. This resulted in 

1345 genes × 548 cells for the IDC.

10x single-cell transcriptome analysis

Cell clustering—To identify male and female gametocytes in the P. berghei data, data 

were log-normalized, and clusters were identified using the shared nearest neighbor 

modularity optimization-based clustering algorithm in the FindClusters() function in Seurat 

(18). Two clusters corresponded to gametocytes based on expression of marker genes. These 

clusters were removed when comparing the data to the Smart-seq2 via CCA, as well as for 

the pseudotime assignment, and alignment of the three datasets in scmap (Fig. 3). The three 

species IDC PCAs were generated on TMM normalized data in scater (version 1.6.3) (60). 

Additionally, we identified clusters using the CCA in Seurat to compare the two methods of 

scRNA-seq (Smart-seq2 and 10x) (18). We identified nine clusters of cells that had good 

representation in both datasets (fig. S13C). One cluster, 8, contained only 15 cells across the 

two datasets and was removed from further analyses.

SCmap—We used scmap (version 1.1.5) (19) to compare datasets. We built three sets of 

cell indices that could be queried with the scmapCell() function that would allow each 

individual cell in the query dataset to be mapped to a reference index (19). To compare the 

Smart-seq2 and 10x data, we built an index of the blood-stage Smart-seq2 data (including 
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gametocytes) and mapped the full P. berghei 10x dataset (including gametocytes) onto it. 

Because the IDC consists of a continuous set of cell stages and not discrete clusters, we 

modified the cell assignment method in scmap: Cells were assigned based on the top nearest 

neighbor. If the top cell had a cosine similarity of greater than 0.5, the query cell was 

assigned to that indexed cell along with its supporting metadata (cluster assignment, bulk 

prediction, pseudotime value). Using this cosine similarity threshold, 94% of 10x P. berghei 
cells were assigned to a cell in the SS2 P. berghei reference dataset.

To align the IDC trajectories across the three 10x datasets, we first compiled a set of one-to-

one orthologs among 10 Plasmodium species (P. berghei, P. knowlesi, P. falciparum, P. 
malariae, P. ovale, P. vivax, P. gallinaceum, P. yoelii, P. chabaudi, P. cynomolgi) from 

OrthoMCL (61) (data S3). Using these orthologs, we built a scmap reference index that 

contained all P. berghei 10x IDC cells (gametocytes removed). We mapped both the P. 
falciparum and P. knowlesi data to this ortholog reference index. In addition to identifying 

the top nearest neighbor cell, we were able to incorporate information from the top three 

nearest neighbors to assign each cell based on the principal component space. To do this, we 

took a mean of the first two principal components of the top three nearest neighbors. Given 

this coordinate assignment, we located the nearest cell on the PCA and assigned the query 

cell to this index cell. If all three of the nearest neighbors had a cosine similarity of 0.3, then 

the query cell was given an assignment. With this lower cosine similarity threshold to 

account for cross-species differences, we were able to assign more than 96% of P. 
falciparum and 99% of P. knowlesi cells to a P. berghei index cell.

Finally, to map single-cell samples from the field, we built a 1:1 ortholog index of the 

complete 10x P. berghei dataset, including the gametocytes that were excluded for the IDC 

evaluations. We used this reference because (i) it fully represents the IDC and mature 

gametocytes, and (ii) it originates from an in vivo system like the volunteer cells. Because 

the gametocyte data were more sparse, the IDC cell assignment was based on the top nearest 

neighbor alone along with a cosine similarity threshold of 0.4. Using this method, we were 

able to map 13 P. malariae cells and 22 P. falciparum cells, assigning each cell to a 

developmental time.

“Clock” pseudotime—For the three 10x datasets, pseudotime around the IDC was 

calculated by fitting an ellipse to the data projected into the first two principal components 

using direct least squares (Fig. 3C and fig. S15). Angles around the center of this ellipse 

were calculated for each cell and oriented to a starting cell, which was defined using known 

markers. To align the three species in pseudo-time, 10x data from P. knowlesi and P. 
falciparum were projected directly onto the P. berghei reference using scmap (19) and cells 

were given the pseudotime of their P. berghei assigned cell. This “clock” pseudotime was 

aligned to real-time progression through the IDC using two methods. First, bulk RNA-seq 

data (22) from synchronized P. berghei parasites across 12 equally spaced time points around 

the IDC were projected onto our single-cell reference and their position in the first two 

principal components’ space was estimated from the average of their three nearest 

neighbors. These principal components’ locations were used to calculate a respective 

pseudotime for each bulk sample. Second, we mapped our single-cell RNA-seq 

transcriptomes onto the densely sampled P. falciparum bulk RNA-seq time course generated 
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by Painter et al. (21). Genes were mapped across species using 1:1 orthologs (see above) and 

log-normalized RNA velocity-derived transcription rates were matched to the log-

normalized transcription rates reported in (21) using Pearson correlations.

RNA velocity—We also ran RNA velocity on the 10x single-cell RNA-seq data from each 

species independently. Cells were filtered as described above; genes were filtered to exclude 

those that did not have at least one unspliced transcript in at least 10 cells and one spliced 

transcript in at least 20 cells. To account for the high number of zeros present in 10x data, 

we increased the k for the cell and gene k-NN smoothing included in RNA velocity to 50 

and 5, respectively. To ensure good fits to the genes, we required a minimum slope of 0.2 

and minimum correlation of 0.2 and used the top and bottom 20% of cells for the fitting. In 

addition, we excluded poorly fit genes as above. After this filtering, P. knowlesi data 

contained 1235 genes × 4237 cells, P. berghei data contained 1368 genes × 4763 cells, and P. 
falciparum data contained 645 genes × 6737 cells.

Comparing transcriptional waves—In the transcriptional waves through the IDC in P. 
berghei, we called 12 peaks and troughs by fitting a smoothed curve to the transcriptional 

rate through pseudotime using smooth.spline in R (Fig. 3C), with smoothing parameter 

(spar) equal to 0.9. We then identified all inversion points in the slope of consecutive points 

in the smoothed curve. For each of the 13 segments defined by these peaks and troughs, we 

used piecewise linear regression to test for significant increases or decreases in RNA 

velocity in each of the three species (Bonferroni multiple testing correction). In addition, we 

used piecewise linear regression on the individual genes for significant increases/decreases 

in RNA velocity across each segment in each species (5% FDR). To examine the 

conservation of the genes involved in the transcriptional waves through the IDC, we matched 

one-to-one orthologs of the genes used in the RNA velocity analyses across all three species. 

We plotted a heat map of the slopes for each of the 306 genes that were orthologous across 

all three species and passed RNA velocity quality control filters, and counted the number of 

genes that had a consistent direction with the pattern observed in P. berghei. Time points 

were matched across species by determining which P. berghei time point had the highest 

proportion of genes with slopes in the same direction as each P. knowlesi or P. falciparum 
time point. Any time point where fewer than 10 genes had consistent slopes with any P. 
berghei time point was considered unmatched. Significance of the matches was evaluated 

using a Binomial test of whether significantly more genes had a slope agreeing with the P. 
berghei reference than disagreeing. We used this test because is was robust to the fact that 

the numbers of cells per time point were not consistent across species, particularly for the 

early time points, which may cause so many of the DE genes to lose significance in the other 

species because of low numbers of cells (low power for the statistical test).

Deconvolution of bulk transcriptomic samples using scRNA-seq—The P. 
berghei 10x data were used as a reference and marker genes were called for each cluster in 

Seurat (v 2.3.4) using the Standard AUC classifier method. Genes that were not detected in 

>40% of cells and negative markers were excluded. The top 10 marker genes in each cluster, 

by power, were identified and used for deconvolution (n = 107). BSeq-sc (v 1.0) (62) was 

Howick et al. Page 16

Science. Author manuscript; available in PMC 2020 March 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



then used to estimate the proportion of cell types in each bulk sample using the default 

analysis pipeline.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Introduction

Plasmodium parasites, the causative agent of malaria, are single-celled organisms with 

distinct morphological developmental stages each specialized to inhabit vastly different 

environments and host cell types. Underlying this morphological diversity is tight 

regulation of a compact genome, where the functions of ~40% of genes remain unknown, 

hampering the rate of effective drug and vaccine development. Single-cell RNA 

sequencing (scRNA-seq) has allowed high-resolution mapping of developmental 

processes, cellular diversity, and cell-to-cell variation, and its application to unicellular 

organisms reveals individual-level variation between parasites across their full life cycle.

Rationale

We have assembled a Malaria Cell Atlas that presents the transcriptomic profiles of 

individual Plasmodium parasites across all morphological life cycle stages. The ambition 

of such an atlas is to (i) inform gene function and usage throughout the life cycle, (ii) 

understand the gene regulatory mechanisms underlying developmental transitions, (iii) 

discover parasite bet-hedging patterns, and (iv) provide a reference dataset that can be 

used to understand parasite biology by the malaria community in both lab and natural 

infections for multiple Plasmodium species.

Results

We isolated 1787 parasites using cell sorting and profiled full-length transcriptomes at 10 

time points covering all life cycle stages across both the vector mosquito and the 

mammalian host. From these data, we could understand fine-scale transcriptional patterns 

of development and identify marker genes associated with parasite stage, cellular strategy 

(replicative, growth, and sexual phases), and host environment. Comparing single-cell 

gene expression patterns across the life cycle revealed groups of genes expressed in 

similar patterns during development. The resulting clusters of genes that behave similarly 

enables inference of possible function for the ~40% of genes that remain uncharacterized. 

Using droplet sequencing, we sequenced a further 15,858 cells from the intraerythrocytic 

developmental cycle for three different species, including two human pathogens. We 

aligned developmental trajectories across species during the pathogenic phase of the life 

cycle, establishing a cross-species comparison method. Finally, we developed a protocol 

for preserving wild parasites collected from naturally infected carriers and used scRNA-

seq, together with the Malaria Cell Atlas as a reference, to identify wild parasite 

developmental stages and characterize a natural mixed-species infection at single-cell 

resolution.

Conclusion

We generated transcriptomes for all life cycle stages of Plasmodium and released these 

via the interactive Malaria Cell Atlas website, www.sanger.ac.uk/science/tools/mca/mca/. 

The Malaria Cell Atlas provides new insights into gene function and parasite 

developmental progression. We have demonstrated that it can serve as a transcriptomic 

reference, facilitating the interpretation of data from multiple species and multiple 

technologies. The characterization of wild Plasmodium parasites with immense genetic 
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diversity will advance the study of the pathology and transmission of malaria directly 

from infected carriers. We envision that the Malaria Cell Atlas will support the 

development of much-needed new drugs, vaccines, and transmission-blocking strategies.
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Single-cell RNA-seq references for the Plasmodium genus.
Left: Single-cell transcriptomes from across the life cycle of Plasmodium berghei were 

profiled (including liver, blood, and mosquito life stages). Center: Deep exploration of 

blood-stage parasites captured transcriptomic diversity at single-cell resolution across 

three different Plasmodium species by droplet sequencing. Right: Such datasets can serve 

as references to understand wild parasites isolated from clinical samples.
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Fig. 1. A single-cell atlas of the P. berghei life cycle.
(A) The life cycle begins when an infected mosquito injects sporozoites into the mammalian 

host. From here, parasites enter the liver, where they develop, replicate, and then egress to 

enter the IDC. During the IDC, parasites invade erythrocytes, where they develop, replicate 

asexually, burst, and re-invade erythrocytes cyclically. Sexual forms are taken up by the 

mosquito, and if fertilization is successful, parasites invade the midgut and subsequently the 

salivary glands of the mosquito. In these different environments, parasites adopt different 

cellular strategies: replicative stages (liver stage, schizont, oocyst), invasive stages 

(merozoite, ookinete, and sporozoite), and sexual stages (male and female gametocytes). (B) 

UMAP of single-cell transcriptomes sampled from all stages of the life cycle, with cells 

colored according to their stage from (A). (C) The first three principal components from 

transcriptomes of all stages in the life cycle.
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Fig. 2. Graph-based clustering of genes reveals gene usage throughout the life cycle.
(A) A k-NN force-directed graph of all 5156 detected genes. Each node represents a gene. 

Nodes are colored according to their graph-based spectral clustering assignment, and each 

cluster is labeled by cluster number. (B) A heat map of mean expression for each cluster 

across all cells in the dataset. Cells are ordered by their developmental progression. Shown 

at the right are the number of genes in each cluster (N), the most significant Gene Ontology 

term (biological process) associated with the cluster (from data S1, Benjamini P < 0.05), and 

the top cited gene in the cluster (based on PlasmoDB). In the clusters where there is a tie for 
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lowest P value, the GO term with the greatest percentage of genes in the cluster relative to 

the background is shown. If terms had identical representation, the term with the lowest GO 

number is shown (see complete table in data S1). (C) The same graph as in (A) colored 

according to relative growth rate of knockout mutants in asexual blood-stage parasites (11).
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Fig. 3. Alignment of datasets reveals transcriptional rates in the IDC.
(A) P. berghei 10x data mapped to Smart-seq2 data using scmap-cell. Cells are grouped 

according to their 10x cluster assignment (figs. S13 and S15) and the cluster of the Smart-

seq2 cell it mapped to (fig. S15). A cosine similarity threshold of 0.5 led to classification of 

283 cells (<6% of cells) as unassigned (UA). (B) PCA of P. berghei IDC cells from 10x. 

Pseudotime of each cell was measured by fitting an ellipse to the data and calculating the 

angle (radians) around the center of this ellipse for each cell relative to the start cell (red 

point). Black points represent the mean PCA coordinates of the bulk prediction for each cell 
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(22) (fig. S14). (C) Left: PCAs of three Plasmodium species colored by their P. berghei cell 

assignment based on scmap. Arrows represent the relative change in transcriptional state 

based on RNA velocity. Right: Scaled increase in expression over the IDC. Cells are ordered 

according to the pseudotime of their scmap-assigned cell in the IDC P. berghei index. The 

top bar represents the matched time point between the P. berghei RNA velocity–derived 

transcription rates and P. falciparum transcription rates reported by Painter et al. (21) using 

Pearson correlations. Vertical gray lines mark peaks and troughs determined from the P. 
berghei data, as described in the methods.
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Fig. 4. The Malaria Cell Atlas enables high-resolution mapping of field-derived single-cell 
transcriptomes of P. falciparum and P. malariae.
(A) Phylogeny of Plasmodium showing the mammalian host and the stages found in 

circulation for each species. P. falciparum and P. berghei sequester their late stages in deep 

tissue, whereas other species have all morphological forms in circulation. Species in color 

were profiled in the atlas. (B) P. falciparum and P. malariae field-derived cells mapped onto 

the P. berghei 10x reference index using scmap-cell. The field-derived samples mapped to 

developmental stages that were expected in circulation for each species.
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