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Abstract

Purpose: Radiomic features extracted from medical images acquired in different countries may
demonstrate a batch effect. Thus, we investigated the effect of harmonization on a database of
radiomic features extracted from dynamic contrast-enhanced magnetic resonance (DCE-MR)
breast imaging studies of 3150 benign lesions and cancers collected from international datasets,
as well as the potential of harmonization to improve classification of malignancy.

Approach: Eligible features were harmonized by category using the ComBat method. Harmoni-
zation effect on features was evaluated using the Davies–Bouldin index for degree of clustering
between populations for both benign lesions and cancers. Performance in distinguishing between
cancers and benign lesions was evaluated for each dataset using 10-fold cross validation with the
area under the receiver operating characteristic curve (AUC) determined on the pre- and post-
harmonization sets of radiomic features in each dataset and a combined one. Differences in
AUCs were evaluated for statistical significance.

Results: The Davies–Bouldin index increased by 27% for benign lesions and by 43% for can-
cers, indicating that the postharmonization features were more similar. Classification perfor-
mance using postharmonization features performed better than that using preharmonization
features (p < 0.001 for all three).

Conclusion: Harmonization of radiomic features may enable combining databases from differ-
ent populations for more comprehensive computer-aided diagnosis models of breast cancer.
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1 Introduction

The goal of computer-aided diagnosis of cancer is to support decision making in clinical practice
of medicine by providing quantitative information on the state of disease. Quantitative descrip-
tions of lesions extracted from medical images, so-called radiomic features, can contribute to the
aims of computer-aided diagnosis.1–4 Many studies investigating the role of radiomic features
in computer-aided diagnosis have done so using subjects from a single population. While this
offers reduction of variation of image acquisition factors for that particular set of subjects, it is
of broader interest to develop decision-making models that incorporate subject images acquired
in different countries. Gain, system resolution, and image noise may all vary between imaging
protocols that are nominally the same. Additionally, the interval of time between images in
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dynamic contrast-enhanced magnetic resonance (DCE-MR) series can differ, or a contrast agent
may be administered with variation due to factors such as patient kidney health. It can be chal-
lenging to combine image databases from multiple centers for use in computer-aided diagnosis
without accounting for these differences, which may contribute to false positives or false neg-
atives in classification performance when machine learning models trained on cases imaged in
one center are tested on cases imaged in another center. Harmonization may enable the combi-
nation of multiple databases. The potential application of harmonization to radiomic features is
not unique to image-based computer-aided diagnosis. For example, in the field of genomics, the
issue of differences in data collected from samples that are otherwise nominally the same but
processed at different centers is referred to as the batch effect.5

The purpose of our study was to (a) assess the impact of harmonization on radiomic features
extracted from MR images of breast lesions in two different populations, i.e., patient images
acquired in the United States and those acquired in China, and (b) assess the impact of harmo-
nization on the classification performance in the task of distinguishing the lesions as benign or
cancerous, within each population and in a combined dataset of both populations.

2 Materials and Methods

2.1 Databases

DCE-MR images of breast lesions were retrospectively collected under Internal Review Board
and HIPAA compliance from an institution in the United States (during the period of 2005 to
2017) and in China (during the period of 2015 to 2017) (Table 1). These images constituted the
two “populations.” Images collected from the United States were acquired in the axial plane,
whereas images collected from China were acquired in the sagittal plane. The time interval
between postcontrast images was typically 60 s in the United States database and typically
90 s in the China database. Most images collected in the United States were acquired using
Philips scanners (Best, The Netherlands) (1145 out of 1163 cases), whereas all images collected
in the China database were acquired using GE Discovery 750 scanners (Waukesha, Wisconsin).

2.2 Computerized Breast Lesion Segmentation and Radiomic Feature
Extraction

Lesions were segmented using a fuzzy c-means method.6 Thirty-two computer-extracted radio-
mic features were automatically calculated, covering categories of size, shape, morphology,

Table 1 Composition of the databases: Number of lesions by status as benign or cancer, as well
as maximum linear size and age.

Number
of lesions

Median maximum linear size
[95% CI] (mm)

Median age
[95% CI] (years)

United States 1163 — —

Benign 264 (23%) 12.7 [5.0 to 41.8] 48 [27 to 74]

Cancer 899 (77%) 29.0 [8.3 to 106.9] 55 [33 to 81]

China 1987 — —

Benign 481 (24%) 19.9 [6.3 to 67.5] 43 [21 to 60]

Cancer 1506 (76%) 27.2 [11.5 to 87.6] 47 [30 to 69]

Note: In the United States database, some ages were given in terms of decade, e.g., “50s.” For the purpose of
calculating statistics for age of this database, the age was changed to the middle of the decade, e.g., “55” in the
example given. The ages of 6 subjects with benign lesions and 41 subjects with cancers were changed in this
manner. Additionally, the ages of 40 subjects with benign lesions and 50 subjects with cancers were unknown.
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texture, and kinetics of contrast dynamics.7–9 Features that were candidates for harmonization
were identified for their dependence upon gray level and potential for intrinsic variation related
to gain, image resolution, image noise, and imaging protocol. Features describing lesion geom-
etry (i.e., categories of size and shape) and the kinetic curve assessment feature of volume of
most enhancing voxels were deemed to not be candidates for harmonization due to these being
characteristics directly of the lesions and not dependent on the image acquisition. Additionally,
two other kinetic curve features, washout rate and curve shape index, were excluded from har-
monization because they are semi-categorical variables, in which the algorithm sets the feature
value to zero if criteria for indication of washout of contrast agent are not met, as is true for many
benign lesions.9 Because features were harmonized by feature category, these two features were
not included in the harmonization of the other kinetic curve features even when values were not
set to zero, as doing so would have resulted in unmatched sets of features of cases after removal
of features that were equal to zero. Based upon the consideration of features and their descrip-
tion, features that were candidates for harmonization were determined, whereas the other fea-
tures did not undergo harmonization (Table 2).

Table 2 Description of radiomic features.

Feature
abbreviation Feature name Feature description

Radiomic features deemed eligible for harmonization

M1 Margin sharpness Mean of the image gradient at the lesion margin

M2 Variance of margin sharpness Variance of the image gradient at the lesion margin

M3 Variance of radial gradient
histogram

Degree to which the enhancement structure extends in
a radial pattern originating from the center of the lesion

T1 Contrast Location image variations

T2 Correlation Image linearity

T3 Difference entropy Randomness of the difference of neighboring voxels’
gray levels

T4 Difference variance Variations of difference of gray levels between voxel pairs

T5 Energy Image homogeneity

T6 Entropy Randomness of the gray levels

T7 Inverse difference moment
(homogeneity)

Image homogeneity

T8 Information measure of
correlation 1

Nonlinear gray-level dependence

T9 Information measure of
correlation 2

Nonlinear gray-level dependence

T10 Maximum correlation
coefficient

Nonlinear gray-level dependence

T11 Sum average Overall brightness

T12 Sum entropy Randomness of the sum of gray levels of neighboring
voxels

T13 Sum variance Spread in the sum of the gray levels of voxel-pairs
distribution

T14 Sum of squares (variance) Spread in the gray-level distribution

Whitney et al.: Harmonization of radiomic features of breast lesions across international DCE-MRI datasets

Journal of Medical Imaging 012707-3 Jan∕Feb 2020 • Vol. 7(1)



2.3 Radiomic Feature Harmonization

Harmonization was conducted using the parametric version of the ComBat method, which is
based on additive and multiplicative batch effects using empirical Bayes estimates, with which
to transform the features.5 In our study, the two populations (i.e., patients imaged in the
United States and patients imaged in China) served as the two “batches,” yielding the source
of differences the ComBat algorithm seeks to reduce. The harmonization was applied separately
within categories features, i.e., morphology, texture, and kinetics, as described above. The
ComBat harmonization method can accommodate covariates, i.e., confounding variables, which
for our study was malignancy status of the lesions. The cancer prevalence was similar between
the two populations (see Table 1), an important consideration for the implementation of ComBat
harmonization for classification of lesions as benign or malignant.10

2.4 Effect of Harmonization on Radiomic Features

The effect of harmonization on feature value distributions in each population in benign lesions
and in cancers was evaluated for each eligible feature using the Kolmogorov–Smirnov (K-S) test
to compare the distributions.11,12 The K-S test statistic was used to characterize the change in
feature value distribution due to harmonization.

To visualize the impact of harmonization methods on clustering of features by population,
t-distributed stochastic neighbor embedding (t-SNE) methods were used to reduce the dimen-
sionality of the feature sets from 32 to two.13 The Davies–Bouldin index14 was used after
k-means clustering of the t-SNE values to assess inter- and intra-cluster agreement across the
two populations, separately for benign lesions and for cancers.

Table 2 (Continued).

Feature
abbreviation Feature name Feature description

K1 Maximum enhancement Maximum contrast enhancement

K2 Time to peak (s) Time at which the maximum enhancement occurs

K3 Uptake rate (1/s) Uptake speed of the contrast enhancement

K6 Enhancement at first
postcontrast time point

Enhancement at first postcontrast time point

K7 Signal enhancement ratio Ratio of initial enhancement to overall enhancement

Radiomic features deemed not eligible for harmonization

S1 Volume (mm3) Volume of lesion

S2 Effective diameter (mm) Greatest dimension of a sphere with the same volume
as the lesion

S3 Surface area (mm2) Lesion surface area

S4 Maximum linear size (mm) Maximum distance between any 2 voxels in the lesion

G1 Sphericity Similarity of the lesion shape to a sphere

G2 Irregularity Deviation of the lesion surface from the surface of a sphere

G3 Surface area/volume (1/mm) Ratio of surface area to volume

K4 Washout rate (1/s) Washout speed of the contrast enhancement

K5 Curve shape index Difference between late and early enhancement

K8 Volume of most enhancing
voxels (mm3)

Volume of the most enhancing voxels
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2.5 Effect of Harmonization on CAD Performance

Classification of lesions as benign or malignant was performed using two sets of 32 radiomic
features: (a) a feature set with all features in their original form (called as “preharmonization” in
this work) and (b) a feature set comprised of features not eligible for harmonization combined
with those that had undergone harmonization in their respective feature groups (called as “post-
harmonization” in this work).

The classification performance evaluations were performed separately for lesions imaged in
the United States, for lesions imaged in China, and the combined dataset. For each classification
evaluation on each set, 10-fold cross validation was performed using a random forest classifier
with 100 decision trees, with the posterior probability of malignancy used as the classifier output
for receiver operating characteristic (ROC) curve analysis. No feature selection was conducted
prior to the use of the random forest classifier. The area under the ROC curve (AUC), determined
using the proper binormal model,15 served as figure of merit, with its value and 95% CI deter-
mined using ROCkit software.16 The difference in AUC for each set of cases was deemed to be
statistically significantly different if p < 0.05.

3 Results

3.1 Effect of Harmonization on Radiomic Features

The harmonization method changed the distribution of values of the features that had been deter-
mined to be eligible for harmonization (Fig. 1). In general, for each radiomic feature eligible for
harmonization, the difference in median feature value for benign lesions and for cancers was
reduced after harmonization, and the distributions became more similar. The K-S test statistic
for comparing feature value distributions pre- and postharmonization showed that in benign
lesions, larger changes in most feature value distributions were seen in the lesions imaged
in the United States. For cancers, some feature value distributions demonstrated more change
in feature values in lesions imaged in China (features T2, T4, T9, T10, T12, and T13), and others
demonstrated more change in feature values in lesions imaged in the United States (mostly,
morphology and kinetic curve features, as well as the remaining texture features, Fig. 2).
T-SNE space visualized pre- and postharmonization in benign lesions and in cancers (Fig. 3)
show that the degree of clustering between populations was reduced after harmonization was
applied to eligible features. The Davies–Bouldin index for degree of interclustering and
intraclustering of t-SNE values increased after harmonization was applied to eligible features,
demonstrating that the features were more similar between populations postharmonization
(Fig. 4). The Davies–Bouldin index for benign lesions increased by 27%, whereas it increased
for cancers by 43%.

3.2 Effect of Harmonization on CAD Performance

In the task of classification of lesions as benign or malignant, classification performances, as
measured by AUC, demonstrated statistically significant increase when postharmonization
features were used compared with preharmonization features (Fig. 5, Table 3)

4 Discussion and Conclusion

Preliminary efforts toward harmonization of image-based features of cancer have been previ-
ously described for radiomic features extracted from postreconstruction positron-emission
tomography images of breast cancer17 and from full-field digital mammography images of breast
lesions.18 Our findings extend the application of this harmonization method to radiomic features
extracted from DCE-MR images of breast lesions in two populations and demonstrate the impor-
tance of applying the method to features in terms of categories as well as carefully identifying
which features can actually be submitted for harmonization. It is important to note that the
scope of this work is limited to harmonization of radiomic features and does not consider
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harmonization in the context of feature selection or classifier training, which also could affect
performance.

The larger changes in feature value distributions observed for most features in patients
imaged in the United States may be due to the longer time period over which the database was
collected in the United States, during which more variation in MR scanners and imaging protocol
could have occurred, or the differences in field strength acquisition between the two groups. For
example, the field strength of acquisition can have an inherent effect on features that depend
upon field strength, as well as coincidental effect, due to changes in image acquisition parameters
such as spatial resolution.19 Understanding these differences will be the subject of future work,
particularly in the context of field strength of acquisition.

One limitation of our work is that there are additional biological covariates within our data,
such as the variety of molecular subtypes within the database of the cancerous lesions. However,
the classification of lesions as benign or cancerous is a clinically relevant task in its own right,

Fig. 1 Example raincloud plots for the distribution of the values of (a) the texture feature of differ-
ence entropy and (b) the kinetic curve feature of enhancement at first postcontrast time point,
before and after harmonization for benign lesions and cancers within each population. The black
circles at the base of each distribution indicate the median of the distribution, and the connecting
lines between the medians of the distributions pre- and postharmonization demonstrate the
change of the median with harmonization of the feature. The dots below each distribution show
individual data points.
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Fig. 2 The K-S test statistic for feature value distributions compared pre- and postharmonization,
for (x axis) lesions imaged in the United States and (y axis) lesions imaged in China [(a) benign
lesions and (b) cancers]. Data points below the diagonal indicate that there is a larger difference
between the feature value distributions compared pre- and postharmonization in lesions imaged in
the United States, and data points above the diagonal indicate that there is a larger difference
between the feature value distributions compared pre- and postharmonization in lesions imaged
in China. Feature abbreviations are the same as in Table 2.

Fig. 3 t-SNE space for the 32 features reduced to 2 features for (a), (c) preharmonization state
and (b), (d) postharmonization. (a), (b) t-SNE space for benign features and (c), (d) t-SNE space
for cancers.

Whitney et al.: Harmonization of radiomic features of breast lesions across international DCE-MRI datasets

Journal of Medical Imaging 012707-7 Jan∕Feb 2020 • Vol. 7(1)



and our future studies will investigate the application of harmonization in the context of molecu-
lar subtype and field strength of image acquisition, as noted earlier.

Application of harmonization methods to eligible radiomic features extracted from DCE-MR
images of breast lesions resulted in increased similarity of features by population group. It also
demonstrated statistically significant improvement in classification performance in each popu-
lation separately and in the combined database, compared with classification performance using
all radiomic features in their original preharmonization form. These findings may contribute to

Fig. 4 The Davies–Bouldin index, a measure of inter- and intra-clustering, for the t-SNE values
(32 features reduced to 2) for benign lesions and cancers. A higher Davies–Bouldin index indi-
cates improved harmonization across the features between populations, as is also seen in Fig. 3.

Fig. 5 ROC curves in the task of classification of lesions as benign or malignant, for the three
datasets pre- and postharmonization of selected radiomic features. Within each dataset, ROC
analysis using the posterior probability of malignancy was performed after 10-fold cross validation
with random forest classifier.

Table 3 The AUC in the task of classification of lesions as benign or malignant, for classification
using preharmonization features and for classification using postharmonization features. Within
each dataset, the AUCwas determined using classification with random forest classifier via 10-fold
cross validation, with the posterior probability of malignancy used as the classifier output for ROC
curve analysis.

Dataset
AUCpreharmonization

[95% CI]
AUCpostharmonization

[95% CI] ΔAUC [95% CI] p value

US set 0.839 [0.810 to 0.864] 0.951 [0.937 to 0.964] 0.122 [0.095 to 0.131] p < 0.001

China set 0.886 [0.869 to 0.902] 0.999 [0.995 to 1.000] 0.113 [0.097 to 0.131] p < 0.001

Combined set
(US and China)

0.872 [0.857 to 0.886] 0.974 [0.968 to 0.980] 0.102 [0.090 to 0.115] p < 0.001
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the advancement of machine learning models for computer-aided diagnosis that are developed
using cases collected from multiple imaging centers, reducing the batch effect on classification
performance.
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