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1 | INTRODUCTION

Congenital myasthenic syndrome 22 (CMS22, OMIM 616,224)
is a rare autosomal recessive disorder, characterized by severe
neonatal hypotonia, muscular weakness, feeding difficulties,
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Abstract

Background: Congenital myasthenic syndrome 22 (CMS22) is a rare autosomal re-
cessive disorder due to isolated PREPL deficiency and characterized by neonatal
hypotonia, muscular weakness, and feeding difficulties. Eight such cases have al-
ready been reported, while maternal uniparental disomy with a PREPL pathogenic
mutation has never been involved.

Methods: Trio whole-exome sequencing (WES), comparative genomic hybridiza-
tion microarray (arry-CGH), and Sanger sequencing were performed on a 6-month-
old girl with severe neonatal hypotonia and feeding difficulties. Also, the phenotype
and genotype of reported CMS22 patients were reviewed.

Results: In this female infant, we identified a novel homozygous frameshift mutation
in PREPL (c.1282_1285delTTTG, p.Phe428Argfs*18) by trio-WES. Sanger sequencing
confirmed that her mother was heterozygous and her father was normal. Trio-WES data
showed that 96.70% (1668/1725) variants on chromosome 2 were homozygous and mater-
nally inherited, suggesting maternal uniparental disomy of chromosome 2 [UPD(2)mat].
Array-CGH did not show copy number variants (CNVs) but revealed complete UPD(2).
Conclusion: To date, nine patients with CMS22 have been reported including our pa-
tient, and we report the youngest and the first UPD(2)mat with PREPL novel homozy-

gous pathogenic mutation case, which expand the mutation spectrum of PREPL gene.
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congenital myasthenic syndrome 22, uniparental disomy, PREPL gene, pyridostigmine treatment

growth hormone deficiency, and childhood obesity (Engel,
Shen, Selcen, & Sine, 2015). CMS22 is due to homozygous or
compound heterozygous mutation in the PREPL gene (OMIM
609,557), which encodes a serine oligopeptidase involved in the
filling of acetylcholine (ACh) into synaptic vesicles (Jacken et
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al., 2006). Patients with CMS22 also present with facial weak-
ness (ptosis and tented upper lip), motor developmental delay,
and cognitive deficiency (Regal et al., 2018, 2014). The patient
had favorable response to pyridostigmine in infancy and may
improve spontaneously after 1 year old (Engel, 2018). Regal
et al. (2014) reported that they treated three identified patients
at 1, 11, and 12 years old with pyridostigmine. Only the infant
improved, the two elder children did not respond to pyridostig-
mine. To date, eight patients with CMS22 have been reported
previously, among which there are eight different truncating
mutations and six gross deletions of PREPL gene (Laugwitz
et al., 2018; Regal et al., 2018, 2014; Silva, Miyake, Tapia, &
Matsumoto, 2018).

Uniparental disomy (UPD) is the inheritance of segmental
or total a homologous pair of chromosomes from only one
parent (Siegel & Slavotinek, 2005). The patient with UPD
may be involved in autosomal-recessive disorders, which
unmasks the rare pathogenic variants (Carmichael, Shen,
Nguyen, Hirschhorn, & Dauber, 2013; Labrijn-Marks et al.,
2019). However, maternal UPD of chromosome 2 (UPD(2)
mat) with a homozygous pathogenic mutation in PREPL has
not been reported before.

Here, we report the first case that UPD(2)mat renders a
novel homozygous frameshift mutation in PREPL causing
CMS22 features. Meanwhile, we review the clinical and ge-
netic features of CMS22, which further delineate the pheno-
type and genotype of CMS22.

2 | MATERIALS AND METHODS

2.1 | Molecular analysis

Genomic DNA was extracted from the infant's peripheral
blood and her parents using a whole blood genomic DNA ex-
traction kit (Qiagen, German). DNA fragments were enriched
using the Agilent SureSelect XT Human All Exon 50 Mb kit
(Santa Clara, CA). Then DNA libraries were sequenced on the
HiSeq2000/2500 sequencer according to the manufacturer's in-
structions (Illumina, San Diego, CA). The data analysis method
followed the pipeline established in house (Yang et al., 2019).
Human Phenotype Ontology (HPO) was converted and inte-
grated into the PhenoPro pipeline, a method developed by our
team (Li et al., 2019). The criteria of the molecular diagnosis
followed the American College of Medical Genetics (ACMG)
guidelines (Matthijs et al., 2016). The distribution of variant
heterozygosity on each chromosome was calculated to scan
the UPD event. UPD was detected using “B Allele Frequency”
(BAF) (van Riet et al., 2018).

The variant of PREPL (NM_006036.4) was confirmed by
Sangersequencingusing ABI3,730 Genetic Analyzer (Applied
Biosystems). Paired primers were designed by Primer3 web-
site: primer-F (5'-TTAATGATACTTGGTGGCCTAAATA

AA-3") and primer-R (5'-GCTTTCAGTAAATGGGAGCT
GA-3).

Agilent SurePrint G3 comparative genomic hybridization
(CGH) and SNP 4 x 180K microarray (Agilent Technologies,
USA) was used to confirm the UPD(2) following the manu-
facturer's instructions. We used Agilent Cytogenomics soft-
ware package for CNVs and loss of heterozygosity (LOH)
calling and visualization.

2.2 | Patient

The proband is a 6-month-old Chinese Han female infant who
is the first child of healthy non-consanguineous parents. She
was born after an uneventful full-term pregnancy with a birth
weight of 2.8 kg. She presented with neonatal hypotonia and
feeding difficulties, and was suspected of spinal muscular at-
rophy (SMA) in the local hospital. She was referred to our
hospital because of poor nursing, weak crying, and delayed
developmental milestones. Her motor examination demon-
strated low muscle tone and muscle strength (4/5, MRC scale)
for all major muscle groups in the upper and lower extremi-
ties. Needle EMG showed myopathic changes. The test results
of liver function, thyroid function, blood ammonia, liquid
chromatography-tandem mass spectrometry analysis of blood
and urine and SMA- multiplex ligation-dependent probe am-
plification (MLPA) were all normal. She was diagnosed with
CMS?22 at the age of 6 months and treated with pyridostigmine
(15 mg, three times a day, per orally) at the age of 8 months.
At the last follow-up when she was 9 months, she was better
than before in feeding and could raise her head steadily, rollo-
ver independently, and stand with support.

Pretest counseling was performed in the clinic. Informed
consent was signed by the parents. The criteria of genetic
testing received approval from the ethics committees of the
Children's Hospital, Fudan University (2015-130).

3 | RESULTS

Trio-WES data showed that 96.70% (1668/1725) variants on
chromosome 2 had a BAF higher than 0.95 inherited from
mother, revealing the LOH of the proband and suggest-
ing UPD(2)mat (Figure la). Meanwhile, a novel homozy-
gous frameshift mutation in PREPL (c.1282_1285delTTTG,
p-Phe428Argfs*18) was detected in the proband, her mother
was heterozygous and her father was normal (Figure 1b). This
variant was confirmed by Sanger sequencing (Figure 1c¢). It has
never been reported in the 1,000 Genome Project, the EXAC
or the gnomAD database, and it is the only record in our in-
house database, which contains more than 30 000 exome se-
quencing data of patients. The frameshift variant may form
truncated proteins, which lead to loss of the peptidase S9 prolyl
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FIGURE 1

Results of genetic tests in our patient. (a) Trio-WES identifies that 96.70% (1668/1725) variants on chromosome 2 are

homozygous and inherited from the mother, suggesting that the proband has UPD(2)mat. (b) A novel homozygous frameshift variant on PREPL

(c.1282_1285delTTTG) is detected in the proband. Her mother is heterozygous and her father is normal. (c) The variant is confirmed by Sanger

sequencing. D Array-CGH identifies UPD(2) by showing the LOH across the whole chromosome 2

oligopeptidase catalytic domain. Three of the eight reported
truncating mutations (including nonsense and frameshift mu-
tations) are located after this frameshift variant (Figure 2a).
Therefore, this frameshift variant was classified as pathogenic.

Trio-WES did not identify other pathogenic or likely
pathogenic variants associated with the clinical features
or other inherited diseases. Data from array-CGH showed
complete UPD(2) by showing LOH across the entire chro-
mosome 2, which supported the diagnosis of UPD(2). Array-
CGH did not reveal any other pathogenic CNVs (Figure 1d).

In combination of the clinical phenotype (neonatal hypo-
tonia, muscular weakness, and feeding difficulties) and the
molecular genetic finding, the proband was diagnosed with
CMS22 caused by a PREPL novel homozygous pathogenic
variation with UPD(2)mat.

4 | DISCUSSION

The PREPL gene is one of the genes affected in contiguous
gene deletion syndromes at 2p21 (Bartholdi et al., 2013).
Isolated PREPL deficiency results in CMS22 (OMIM
616,224). PREPL is localized in the cytosol with high-
est expression in brain, kidney, and muscle, in decreasing
order (Martens et al., 2006). It is an effector of clathrin-
associated adaptor protein 1 (AP-1) to take part in the regu-
lation of AP-1 membrane binding (Radhakrishnan, Baltes,
Creemers, & Schu, 2013), which is required for normal
trafficking of the vesicular ACh transporter between the
synaptic vesicle and the cytosol (Kim & Hersh, 2004). In

a CMS22 patient, Régal et al found the absence of PREPL
in frozen muscle fibers and at the endplates (EPs) in the
neuromuscular junction, but EPs showed normal ACh re-
ceptor and ACh enzyme. However, microelectrode stud-
ies showed reduced miniature endplates potential (MEPP)
and miniature endplates current (MEPC) amplitudes and
decreased quantal release. Hence, Régal et al hypothesized
that the absence of PREPL may affect function of AP-1 and
lead to reduced filling of the synaptic vesicles with ACh
(Regal et al., 2014). Hence, we speculate that pyridostig-
mine, as a cholinesterase inhibitor, can inhibit the decom-
position of ACh, and relieve the neuromuscular symptoms
of patients. These may provide a potential explanation for
the pyridostigmine treatment of CMS22.

Nine patients with CMS22 have been reported including
our patient (Table 1). There were seven females and two
males with the symptoms onset in neonatal period (9/9).
However, the age of diagnosis varied from 6 months to
25 years. Our patient was the youngest one who was diag-
nosed with CMS22 at 6 months. The CMS22 patient may
respond to pyridostigmine in the first year of life (Regal et
al., 2014). Patient 7 were treated with pyridostigmine be-
fore 1 year old and turned out to have a positive response,
while patient 8 started treatment at 14 months without clin-
ical response. Our patient (patient 1) started pyridostig-
mine treatment at 8 months and had a positive response.
Interestingly, other 6 patients without pyridostigmine
treatment and patient 8 all showed symptom improvement
after one year old. Although the rationale of spontaneous
improvement of symptoms is not clear, it is noticeable
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FIGURE 2 Summary of pathogenic variants and gross deletions in PREPL. (a) Nine truncating mutations on PREPL. The red shows the

novel frameshift mutation in our patient. (b) The size and location of the six reported gross deletions in CMS22 patients

that the positive response to pyridostigmine seemingly ap-
peared when the patients were performed treatment before
1 year old (patient 1 and 7), and the earlier the treatment,
the better the response (patient 7 with a strongly positive
response, better than our patient). If treated after 1 year old,
the effect of pyridostigmine treatment seems to be weak,
and the symptom may start to relieve.

In total, nine mutations and six gross deletions in
PREPL have been detected currently (Figure 2). The nine
mutations are all truncating mutations which include
four frameshifts (p.Vall2lllefs*121, p.Thr595Lysfs*19,
p-Vall15Leufs*39, and p.Phe428Argfs*18), three non-
sense mutations (p.Leu535Ter , p.Arg295Ter, and p.Met-
270Ter), and two splicing mutations (c.1156-1G>A and
c.1529+1G>A). The eight reported mutations all locate in
the protein domains (peptidase S9A N-terminal domain or
peptidase S9 prolyl oligopeptidase catalytic domain). The
novel frameshift mutation at exon 8 detected in our study
(p.Phe428Argfs*18) do not locate in the protein domains.
But, it could lead to the loss of the peptidase S9 prolyl
oligopeptidase catalytic domain (Figure 2a). In the six pa-
tients with gross deletions, patient 2 and 3 with PREPL
single gene deletion, other 4 involve contiguous genes of
SLC3A1 and CAMKMT (Figure 2b).

UPD can be associated with human diseases through
three primary mechanisms: imprinting, homozygosity for an
autosomal recessive trait, or mosaic aneuploidy (Siegel &
Slavotinek, 2005). It is worth mentioning that, both UPD(2)
mat and UPD(2)pat have been reported in individuals with
normal phenotype (Bernasconi et al., 1996; Keller et al.,
2009), suggesting that the imprinting is not the pathogenic
mechanism for patients with UPD2 presenting phenotype.

The clinical features of CMS22 are similar to those of
Prader-Willi syndrome (PWS), such as neonatal hypotonia,
feeding difficulties, the improvement of symptoms after
1 year old and childhood-onset obesity. So, four of nine
patients were firstly suspected of PWS. Our infantile pa-
tient showed neonatal hypotonia and feeding difficulties,
and she was firstly suspected of SMA. Therefore, CMS22
should be carefully considered by the pediatrician when the
common causes including PWS and SMA were negative.
The timely genetic test is crucial to the early diagnosis of
CMS22.

In summary, we report the first and the youngest case of
CMS22 for UPD(2)mat with a novel homozygous frame-
shift variant in PREPL, which expands the mutation spec-
trum and further delineates the phenotype and genotype of
CMS22.
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