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Abstract

PURPOSE: In observational research, equipoise concerns whether groups being compared are 

similar enough for valid inference. Empirical equipoise was previously proposed as a tool to assess 

patient similarity based on propensity scores (PS). We extended this work for multi-group 

observational studies.

METHODS: We modified the tool to allow for multinomial exposures such that the proposed 

definition reduces to the original when there are only two groups. We illustrated how the tool can 

be used as a method to assess study design within three-group clinical examples. We then 

conducted three-group simulations to assess how the tool performed in a setting with residual 

confounding after PS weighting.

RESULTS: In a clinical example based on rheumatoid arthritis, 44.5% of the sample fell within 

the region of empirical equipoise when considering first-line biologics, whereas 57.7% did so for 

second-line biologics, consistent with the expectation that a second-line design results in better 

equipoise. In a simulation where the unmeasured confounder had the same magnitude of 

association with the treatment as the measured confounders and a 25% greater association with the 

outcome, the tool crossed the proposed threshold for empirical equipoise at a residual confounding 

of 20% on the ratio scale. When the unmeasured variable had a twice larger association with 
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treatment, the tool became less sensitive and crossed the threshold at a residual confounding of 

30%.

CONCLUSION: Our proposed tool may be useful in guiding cohort identification in multi-group 

observational studies, particularly with similar effects of unmeasured and measured covariates on 

treatment and outcome.
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INTRODUCTION

Pharmacoepidemiologists are often concerned with whether the exposure groups in an 

observational study are similar enough for unbiased causal inference. Lack of similarity can 

imply dangers of positivity violation1 and residual confounding from imperfectly measured 

and unmeasured variables. Statistical analyses alone cannot fully address these issues and 

design stage efforts2, such as the active comparator design3,4, are necessary. However, no 

well-accepted measure exists for deciding whether groups are similar enough, particularly in 

comparisons among three or more treatments.

Walker et al. introduced the concept of empirical equipoise5 in the setting of two-group 

comparative effectiveness research (CER). Empirical equipoise is a manifestation of 

underlying clinical equipoise6: a state of collective uncertainty among medical providers 

regarding the best treatment option for a specific patient population. In this circumstance, 

prescriber opinions, rather than patient characteristics, largely determine treatment choices5. 

A treatment assignment mechanism that is mostly independent of patient characteristics 

results in treatment groups that are similar and overlapping in covariates.

Since clinical equipoise pertains to prescriber opinions, it is not directly measurable in 

typical CER datasets such as administrative claims. Empirical equipoise is a measure of 

similarity of the distributions of potential confounders available in CER datasets and can be 

useful as a study design assessment tool7. To our knowledge, no such tool exists for studies 

with three or more groups even though multi-group CER is increasingly relevant due to the 

development of many treatment options for rheumatoid arthritis (RA)8, diabetes mellitus9, 

and atrial fibrillation10 to name a few. In this paper, we provide a detailed explanation of 

Walker et al.’s empirical equipoise tool, propose an extension to the multi-group CER 

setting, illustrate its face validity in empirical data, and examine its performance in 

simulations.

METHODS

Empirical equipoise assessment tool

Consider a two-group CER study. Let Ai be an indicator of the binary treatment for the i-th 

study participant, Xi a vector of potential confounders, and consider the following logistic 

model for the propensity score (PS), denoted ei:
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log
ei

1 − ei
= logit E[Ai Xi] = α0 + XiTαX

Walker et al. proposed a prevalence-adjusted version of PS, the preference score, denoted πi 

defined by:

log
πi

1 − πi
= log

ei
1 − ei

− log p
1 − p

where p is the marginal prevalence of treatment. The second term has the same form as the 

intercept adjustment for risk prediction from case-control data.11–13 Given this, the model 

for the preference score can re-written as:

log
πi

1 − πi
= α0 − log p

1 − p + XiTαX

Thus, the preference score considers treatment assignment in a hypothetical population with 

a treatment prevalence of 50% but for which the covariate effect on assignment remains the 

same as in the study population (eAppendix 1.2). If the covariates have no effect on the 

treatment assignment (i.e., αX = 0), the right-hand side reduces to zero, giving a preference 

score of 0.5 for every individual5. Solving the defining equation for the preference score 

gives:

πi =  

ei
p

1 − ei
1 − p +

ei
p

for which the numerator can be considered as an inverse prevalence scaled PS and the 

denominator can be seen as a normalizer to constrain πi within [0,1]. This transformation 

eliminates the influence of the treatment prevalence. For example, if the treatment is rare 

(small p), ei is generally small whereas πi is not because of the ei/p operation (small value/

small value).

Walker and colleagues proposed an assessment tool based on the proportion of each 

exposure group that falls within the central region of the preference score distribution [0.3, 

0.7] (i.e., 0.5 ± 0.2). Specifically, they proposed that having 50% or more of the subjects in 

this region indicates that the two drugs are in empirical equipoise.5 That is, the measured 

prognostic factors do not distinguish the users of one drug from the other, suggesting less 

danger of confounding by indication.

Extension to the multi-group setting

Here we propose an extension of the tool to settings where interest lies in comparing more 

than two treatments. Specifically, suppose there are J + 1 treatment groups so that Ai is a 

categorical variable taking on a value in {0, 1, …, J}. The generalized PS14 is defined as eji 
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= P[Ai = j | Xi] for j ∈{0, 1, …, J} where ∑j eji = 1 for all i. One option for modeling the 

generalized PS is to adopt a baseline-category logit PS model15, defined by the following J 
linear predictors:

log
eji
e0i

= log
P [Ai = j Xi]
P [Ai = 0 Xi]

= α0j + XiTαXj for   j ∈ 1, …, J

Let pj (j = 0, …, J) describe the marginal prevalence of j-th treatment (∑j pj = 1) and πji 

denote the multinomial preference score defined for the treatment group j for the i-th 

subject. We propose the generalized preference score, defined by the following J equations:

log
πji
π0i

= log
eji
e0i

− log
pj
p0

  for   j ∈ 1, …, J

Solving these equations for πji using a constraint ∑jπji = 1 (eAppendix 2.1) gives:

πji =  

eji
pj

∑k = 0
J eki

pk

for j ∈ 0, 1, …, J

which can be interpreted as the generalized PS scaled by the corresponding group’s marginal 

prevalence.

In extending the definition of the region of empirical equipoise, the threshold value needs to 

account for the number of groups. Thus, we propose the generalized threshold as:

πji ≥   3
5

1
J + 1   for all j ∈ 0, 1, …, J

The threshold is 0.3 in the two-group setting and becomes more lenient with the number of 

groups, for example, 0.2 in the three-group setting. This is necessary because once there are 

four groups, no individual can have πji ≥ 0.3 for all four treatments (eAppendix 2.2). We 

note that an appealing feature of the proposed region is that it reduces to [0.3, 0.7] in the 

two-group case (eAppendix 2.3).

Data examples in the three-group setting

We use two observational datasets to demonstrate the face validity of the tool. We used 

ternary plots (eAppendix 3.1).16 The Partners Healthcare Institutional Review Board 

approved these analyses.

Non-steroidal anti-inflammatory drugs example—This example was an 

observational study of non-steroidal anti-inflammatory drugs (NSAIDs) taken from an 

original study of cardiovascular and gastrointestinal safety of analgesics among Medicare 

beneficiaries with osteoarthritis or rheumatoid arthritis (eAppendix 3.2).17 The dataset 

included 23,532 naproxen, 21,880 ibuprofen, and 5,261 diclofenac users. As they belong to 
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the same pharmacological class, we expected clinical equipoise. In Figure 1 (left panel), 

closeness to each corner indicates a high propensity for the corresponding group. The 

prevalence imbalance drove the center of the distribution away from the smallest diclofenac 

corner (right lower). Preference scores (Figure 1, right panel) re-centered the distribution. Of 

the entire cohort, 86.6 percent fell within the proposed region of empirical equipoise, 

suggesting feasibility of the three-way comparison. The individual covariates mostly gave 

absolute standardized mean distance (SMD) less than 0.1 (eFigure 1).18,19 Table 1 shows the 

myocardial infarction outcome analyses. The generalized PS approach, which we advocate 

in this paper, resulted in transitive results, whereas the pairwise PS approach, which is more 

commonly done, resulted in non-transitive results.

Biological disease-modifying anti-rheumatic drugs example—This example was 

an observational dataset of new users of biological disease-modifying anti-rheumatic drugs 

(bDMARDs) taken from original studies of cardiovascular safety among rheumatoid arthritis 

patients (eAppendix 3.3)20,21. We constructed a first-line bDMARDs cohort and a second-

line (switch) bDMARDs cohort after prior use of one of the five tumor necrosis factor 

inhibitors (TNFi). The most up-to-date recommendations list all bDMARDs as equally 

indicated,8,22 however, abatacept and tocilizumab were more typically employed after TNFi 

failure. Thus, we reasoned that first-line abatacept and tocilizumab users would be 

somewhat atypical patients.23 Thus, we expected better equipoise in the second-line design 

(eAppendix 3.3). We used this example to assess if the tool correctly identified the second-

line design as superior. In the first-line cohort, there were 2,260 abatacept, 645 tocilizumab, 

and 27,939 TNFi users. The second-line cohort had 475 abatacept, 187 tocilizumab, and 

1,277 second TNFi users (switch within TNFi). Only 44.5% of the first-line cohort fell in the 

proposed region of empirical equipoise (Figure 2, right upper panel), indicating a need to 

revise eligibility, for example, regarding comorbidities and prior drug use. Using the second-

line design (Figure 2, right lower panel) resulted in improvement with a higher proportion of 

the cohort (57.7%) falling in the proposed region of empirical equipoise although the 

second-line design did modify the clinical question. Absolute SMDs generally decreased, 

particularly for relevant risk factors such as oral glucocorticoids (eFigure 2). We could not 

pursue outcome analyses due to insufficient numbers of cardiovascular outcome events.

Simulation setup

We conducted a simulation study to examine the settings under which the proposed tool 

reflected the risk of residual confounding (R code at [to be posted at the time of 
publication]).

Data generating mechanism.—Details regarding the data generating models are 

provided in the eAppendix 4.1. Briefly, we generated covariates X1 through X7 of various 

types and used them to assign treatment Ai via a three-group multinomial logistic regression 

model. The coefficient for X7 took on values zero, half, same, or twice as large as the 

coefficients for X1- X6. The coefficients were then simultaneously increased (less equipoise) 

or decreased (more equipoise). The outcome Yi was generated as a count outcome using a 

log-linear model. The rate ratio (RR) for X7 was 1.2 (same as other covariates), 1.5, or 2.0. 

We handled X7 as an unmeasured continuous variable in the subsequent analysis.
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Methods to be evaluated.—The region of empirical equipoise was defined at the 

threshold of 0.2 as stated above. We examined two assessment rules of three-group empirical 

equipoise: (1) whether the proportion of those who were in the region of empirical equipoise 

in the entire sample was greater than 50% (overall proportion); (2) whether the minimum of 

three group-specific proportions was greater than 50% (group-specific proportion).

Estimands of interest.—The estimands were the RRs for groups 1 vs. 0, groups 2 vs. 0, 

and groups 2 vs. 1. We conducted unadjusted analysis as well as three PS-weighted analyses 

with inverse probability of treatment weights (IPTW)24, matching weights (MW)25,26, and 

overlap weights (OW)27–29. See eAppendix 4.2 for weight definitions.

Performance measures.—We examined the relationship between the residual 

confounding after PS weighting and the proportions in the region of empirical equipoise. 

The desired result was a decreasing trend in the proportions in the region with increasing 

residual confounding.

RESULTS

Figures 3 and eAppendix 5.1 summarize the results from scenarios with no correlation 

among covariates (ρ = 0) and approximately equal group sizes (33:33:33). The columns of 

panels correspond to PS weighting methods. The rows of panels correspond to the RR for 

the unmeasured X7. Focusing on the panel in the MW column and RR 1.5 row (third 

column, second row) in Figure 3, the X-axis represents the multiplicative bias in RR 

estimates, whereas the Y-axis represents the average proportion of the simulated cohorts 

within the region of empirical equipoise (overall proportion).

The relationship between the residual confounding after PS weighting and the overall 

proportion varied with the relative strength of association of X7 with the treatment (denoted 

by line types). Given an unmeasured confounder with a similar association with treatment 

(Same line type), having an overall proportion of 50% in the region of empirical equipoise 

(crossing of the horizontal 50% line) corresponded to residual confounding of roughly 1.2 

(20% upward bias in RR estimates). This indicates in a setting where the unmeasured 

factor’s treatment association is similar to those of measured factors and the outcome 

association is only modestly stronger (+25%), the empirical equipoise tool would give an 

alert (overall proportion would drop below 50%) once the residual confounding is greater 

than 20%. A proportion above 50% means less bias.

Still focusing on the same panel in Figure 3, the level of residual confounding at which the 

empirical equipoise tool gave an alert depended on the associations of X7 with the treatment 

and outcome. On the other hand, the type of PS weights (IPTW, MW, and OW) made little 

difference. When the relative treatment association of X7 was decreased to the lower 

extreme end (no unmeasured confounding; solid line), the tool became overly sensitive. That 

is, the 50% threshold was crossed without a corresponding increase in residual confounding. 

On the other hand, as we increased the association of the unmeasured variable X7 and the 

treatment to twice as large as the measured ones, the slopes became shallower. This means 

the tool became less sensitive to residual confounding, only crossing the 50% overall 

Yoshida et al. Page 6

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2020 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



proportion threshold at a residual confounding level of about 1.37. That is, the unmeasured 

variable increasingly had a stronger effect on treatment not represented by the association 

between measured variables and treatment.

We also varied the level of unmeasured confounding by changing the RR between the 

unmeasured variable X7 and the outcome (rows of panels; RR 1.2, 1.5, and 2.0). For 

example, decreasing the unmeasured variable-outcome association to the same level as the 

other variables (third column, top row in Figure 3) resulted in the tool giving an alert at a 

residual confounding of roughly 1.1 (more sensitive) when X7 had the same treatment 

association. When increasing the RR between the unmeasured variable X7 and the outcome 

to 2.0 (67% increase over measured variables), the tool gave an alert at a residual 

confounding of around 1.3 (less sensitive). When both associations were strong for the 

unmeasured variable X7, the 50% overall proportion threshold was crossed at a residual 

confounding of around 1.6. This means having barely 50% of the cohort in this region does 

not assure a small level of unmeasured confounding in this setting.

DISCUSSION

We extended Walker et al.’s tool5 for assessing simultaneous empirical equipoise among 

multiple treatment groups in CER. We demonstrated its face validity in empirical data and 

examined its performance in simulations with three groups. Our simulations showed that 

having at least 50% of the overall cohort in the region of empirical equipoise can give a 

reasonable assurance of relatively small magnitude of residual bias. However, in settings 

with a strong unmeasured variable (outcome association RR of 2.0) and a strong influence of 

the unmeasured variable on treatment choice (twice more on the logit scale), a relatively 

large residual bias went undetected by the 50% threshold. As a result, the tool was most 

useful when we could assume the unmeasured confounder had covariate-treatment 

associations similar in magnitude to the measured confounders.

There are several ways this empirical equipoise assessment tool could be useful in the 

implementation of multi-group CER. First, when several datasets are available for a specific 

multi-group CER question, the tool could indicate which dataset may suffer less from 

residual confounding as well as positivity issue. Second, when dealing with one dataset, the 

tool may help in choosing eligibility criteria although sample size issues may need to be 

taken into consideration. Thirdly, another potential change in the study design is to refrain 

from conducting all comparison if the groups do not achieve reasonable simultaneous 

empirical equipoise (e.g., if key covariates are highly imbalanced in one group but not in the 

others). In this case, dropping one or more groups from the comparison may identify a 

subset of groups in better equipoise.

Our tool is designed to assess feasibility7 of simultaneous multi-group comparison in a 

single outcome analysis dataset, which attempts to emulate30 one multi-arm RCT. However, 

when there are three or more groups, pairwise PS-matched or PS-weighted cohort 

construction is common. A drawback of the pairwise approach is that it produces multiple 

outcome analysis datasets, one for each pairwise comparison, attempting to emulate separate 

pairwise RCTs. The pairwise approach can suffer from non-transitivity.31 This loosely used 
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term can be understood by considering actual RCTs. Network meta-analysis (NMA)32,33 is 

another CER approach given multiple treatments of interest, which combines information 

from several, typically pairwise, RCTs to form indirect comparisons of drugs that have not 

been compared in head-to-head RCTs. When such a pairwise RCT does exist (direct 
comparison), non-transitivity can manifest.33 Assume drugs A, B, and C and respective 

pairwise RCTs, we can derive indirect comparison of A-B based on RCT A-C and RCT B-C 

(for example, A>B), which may qualitatively contradict direct comparison in RCT A-B (for 

example, A<B). Even though each pairwise RCT should have near-perfect covariate balance, 

differential distributions of treatment effect modifiers across pairwise RCT (different target 

populations) can cause non-transitivity.34 The fundamental issue is the lack of an A-B-C 

multi-group trial in a single target population, which necessitated NMA. The generalized PS 

approach attempts to emulate this type of trial. In our NSAIDs example (Table 1 last row), 

we had a pairwise hazard ratio (HR) of 0.894 for the diclofenac-naproxen comparison, 0.946 

for the ibuprofen-naproxen comparison. The indirect comparison for the third contrast 

(diclofenac-ibuprofen) is 0.894 / 0.946 = 0.945, a protective HR estimate. However, the 

direct pairwise analysis gave an HR of 1.006, a result on the opposite side of 1.0 (more 

formally the margin of error needs consideration35). Simultaneous empirical equipoise 

assessment followed by construction of a single PS weighted cohort avoided this issue as 

seen in Table 1.

There are differences between the context in which Walker et al. developed the original 

empirical equipoise tool5 and the context for our proposed tool. We considered the drugs of 

interest that we want to compare in the proposed multi-group CER as given. Walker et al. 
proposed the tool as a prioritization tool given a source dataset that contains information on 

the use of many drugs. They developed their tool to assess the empirical equipoise of all 

possible pairwise contrasts of groups for prioritization. On the other hand, we framed our 

problem in a setting where we already had several drugs of interest a priori, with several 

alternative data sources or alternative designs to choose from.

One further point to consider in implementation is what variables we should include in the 

PS model for preference score construction. The tool’s usefulness rests on the assumption 

that the presence of strong measured clinical determinants of treatments (e.g., past 

medications) can inform the presence of strong unmeasured clinical determinants of 

treatments (e.g., physical frailty). If prescribers are sensitive to measured clinical factors in 

treatment choice, it is not unreasonable to assume they are also sensitive to an important 

unmeasured clinical factor. On the other hand, we can reason that how prescribers are 

influenced by administrative factors (e.g., formulary restrictions) is less representable of how 

they take into account clinical factors in choosing treatment. As a result, it is more prudent 

to include clinical factors into the PS model and to exclude purely administrative factors.

In conclusion, to examine the roles that equipoise assessment may play in the setting of 

multi-group CER, we extended Walker et al.’s empirical equipoise tool. Our tool gave 

reasonable guidance for unmeasured confounding when the associations of the unmeasured 

variables to the treatment and outcome were similar to associations of measured covariates. 

With this assumption, when the proportion in the region of empirical equipoise is very high, 

for example, > 75%, we can reasonably assume that the level of residual confounding is 
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small. A lower value, particularly < 50%, should prompt reconsideration of the study design 

or data source.
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Refer to Web version on PubMed Central for supplementary material.
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KEY POINTS:

• We extended Walker et al.’s empirical equipoise tool (Comp Eff Res 
2013;3:11) into the general multi-group settings.

• We verified a known improvement in the study design with three groups 

resulted in a corresponding improvement in multi-group empirical equipoise.

• Three-group simulations indicated that the tool was useful in signaling 

potential for residual confounding when the unmeasured variable had 

coefficients similar to measured variables.

• In practice, a high (e.g., > 75%) proportion of the multi-group cohort in the 

region of empirical equipoise likely indicates less risk of residual 

confounding in simultaneous comparison.

• A lower proportion, particularly < 50%, should prompt a reassessment and 

revision of the multi-group study design, including eligibility criteria, data 

source, and whether to drop one or more groups.
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Figure 1. 
Propensity score (left) and preference score (right) distributions in the naproxen (0 red; n = 

23,532), ibuprofen (green 1; n = 21,880), and diclofenac (2 blue; n = 5,261) example.

The inner triangular area in the right panel indicates the region of empirical equipoise 

proposed in the text. Overall 86.6% of the cohort fell into this region (88.3% of naproxen 

users, 83.7% of ibuprofen users, and 91.2% of diclofenac users).

Abbreviations: nsNSAIDs: non-selective non-steroidal anti-inflammatory drugs.
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Figure 2. 
Propensity score (left) and preference score (right) distributions in the abatacept (0 red), 

tocilizumab (1 green), and TNFi (2 blue) examples.

The inner triangular area in the right panel indicates the region of empirical equipoise 

proposed in the text. Among the first-line bDMARD users, 44.5% of the cohort fell into this 

region (40.2% of abatacept users, 40.5% of tocilizumab users, and 45.0% of TNFi users). 

Among the second-line bDMARD users, 57.7% of the cohort fell into this region (57.3% of 

abatacept users, 53.5% of tocilizumab users, and 58.5% of TNFi users).

Abbreviations: TNFi (tumor necrosis factor inhibitor); bDMARD: biological disease-

modifying antirheumatic drug.

Yoshida et al. Page 14

Pharmacoepidemiol Drug Saf. Author manuscript; available in PMC 2020 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Simulation results from scenarios with equal group sizes (1 vs 0 contrast).

The columns of panels denote different confounding adjustment methods. The rows of 

panels denote different levels of associations between X7 (unmeasured covariate) and 

outcome. A rate ratio of 1.2 was the same strength of association as the measured covariates, 

whereas only X7 had a stronger outcome association at a rate ratio of 1.5 and 2.0. In each 

panel, the X-axis represents the multiplicative bias in RR estimates, whereas the Y-axis 

represents the average proportion of the simulated cohorts within the region of empirical 

equipoise (overall proportion). The line types denote different levels of associations between 

X7 and treatment relative to the associations between measured variables and treatment.

Abbreviations: Unadj.: unadjusted; IPTW: inverse probability of treatment weights; MW: 

matching weights; OW: overlap weights.
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Table 1.

Hazard ratios and 95% confidence intervals for myocardial infarctions for the non-steroidal anti-inflammatory 

drugs example.

PS Adjustment Diclofenac vs Naproxen Ibuprofen vs Naproxen Diclofenac vs Ibuprofen† Expected for third contrast‡

- Unadjusted 0.899 [0.635, 1.274] 1.022 [0.833, 1.253] 0.880 [0.620, 1.248] 0.880

Multi IPTW 0.901 [0.626, 1.295] 0.940 [0.765, 1.155] 0.958 [0.665, 1.380] 0.958

Multi MW 0.886 [0.623, 1.260] 0.877 [0.700, 1.099] 1.010 [0.705, 1.447] 1.010

Multi OW 0.904 [0.636, 1.286] 0.899 [0.724, 1.115] 1.006 [0.704, 1.439] 1.006

Pair IPTW 0.906 [0.634, 1.294] 0.947 [0.771, 1.164] 0.943 [0.652, 1.363] 0.957

Pair MW 0.883 [0.621, 1.256] 0.944 [0.767, 1.160] 1.010 [0.705, 1.446] 0.936§

Pair OW 0.894 [0.629, 1.271] 0.946 [0.770, 1.163] 1.006 [0.704, 1.438] 0.945§

Abbreviations: PS: propensity score; Multi: multinomial generalized propensity score; IPTW: inverse probability of treatment weights; MW: 
matching weights; OW: overlap weights; Pair: pairwise propensity score.

†
Direct comparison results for diclofenac vs ibuprofen.

‡
Indirect comparison results for diclofenac vs ibuprofen based on the first two contrast. That is, (hazard ratio for diclofenac vs naproxen) / (hazard 

ratio for ibuprofen vs naproxen).

§
Non-transitive results for the third contrast. The direct comparison estimates and the indirect comparison estimates are on the opposite side of 1.0 

although the difference is small.
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