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Abstract
Immunomodulatory therapies targeting inhibitory 
checkpoint molecules have revolutionized the treatment 
of solid tumor malignancies. Concerns about whether 
systemic administration of an immune checkpoint inhibitor 
could impact primary brain tumors were answered 
with the observation of definitive responses in pediatric 
patients harboring hypermutated gliomas. Although 
initial clinical results in patients with glioblastoma (GBM) 
were disappointing, recently published results have 
demonstrated a potential survival benefit in patients with 
recurrent GBM treated with neoadjuvant programmed cell 
death protein 1 blockade. While these findings necessitate 
verification in subsequent studies, they support the 
possibility of achieving clinical meaningful immune 
responses in malignant primary brain tumors including 
GBM, a disease in dire need of additional therapeutic 
options. There are several challenges involved in treating 
glioma with immune checkpoint modulators including 
the immunosuppressive nature of GBM itself with high 
inhibitory checkpoint expression, the immunoselective 
blood brain barrier impairing the ability for peripheral 
lymphocytes to traffic to the tumor microenvironment and 
the high prevalence of corticosteroid use which suppress 
lymphocyte activation. However, by simultaneously 
targeting multiple costimulatory and inhibitory pathways, 
it may be possible to achieve an effective antitumoral 
immune response. To this end, there are now several 
novel agents targeting more recently uncovered “second 
generation” checkpoint molecules. Given the multiplicity 
of drugs being considered for combination regimens, an 
increased understanding of the mechanisms of action and 
resistance combined with more robust preclinical and early 
clinical testing will be needed to be able to adequately 
test these agents. This review summarizes our current 
understanding of T lymphocyte-modulating checkpoint 
molecules as it pertains to glioma with the hope for 
a renewed focus on the most promising therapeutic 
strategies.

The promise of immunomodulatory 
checkpoint therapies
Immunomodulatory therapies targeting 
inhibitory checkpoint molecules have revo-
lutionized the treatment of solid tumor 
malignancies.1 Concerns about whether 
systemic administration of an immune check-
point inhibitor could impact primary brain 
tumors were answered with the observation 
of definitive responses in pediatric patients 

harboring hypermutated gliomas.2 Although 
initial clinical results in patients with glioblas-
toma (GBM) were disappointing, recently 
published results have demonstrated a poten-
tial survival benefit in patients with recurrent 
GBM treated with neoadjuvant programmed 
cell death protein 1 (PD-1) blockade.3 
While these findings necessitate verifica-
tion in subsequent studies, they support the 
possibility of achieving clinical meaningful 
immune responses in malignant primary 
brain tumors including GBM, a disease in 
dire need of additional therapeutic options.

There are several challenges involved in 
treating glioma with immune checkpoint 
modulators. First is the immunosuppressive 
nature of GBM itself, with its high expres-
sion of inhibitory checkpoint molecules and 
cytokines such as tumor growth factor beta 
(TGF-β), vascular endothelial factor (VEGF), 
and interleukin 10 (IL-10).4–9 Second, glioma 
tumors arise within the immunoselective 
blood brain barrier, thus impairing the ability 
for peripheral lymphocytes to traffic to the 
tumor microenvironment. However, recent 
studies in melanoma and non-small cell lung 
cancer have demonstrated that immune 
checkpoint inhibitors can indeed achieve 
intracranial response.10–12 It is hypothesized 
that immune cells transverse the meninges 
through the fenestrated endothelial and 
tight-junction epithelial layers of the choroid 
plexis.13 Alternatively, immune cells may 
directly migrate through meningeal blood 
vessels. In rat models, effector T lymphocytes 
have demonstrated the ability to transgress 
vascular walls into the cerebrospinal fluid 
(CSF).14 Finally, immune modulation therapy 
in patients with glioma is complicated by the 
high prevalence of corticosteroid use which 
inhibits lymphocyte activation.15 16

By simultaneously targeting multiple 
costimulatory and inhibitory pathways, it may 
be possible to achieve an effective antitumoral 
immune response. To this end, there are now 
several novel agents targeting more recently 
uncovered “second generation” checkpoint 
molecules. This review summarizes our 
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current understanding of T lymphocyte-modulating 
checkpoint molecules as it pertains to glioma with the 
hope for a renewed focus on the most promising thera-
peutic strategies. Additionally, the current clinical trials 
investigating immune checkpoint inhibitors in glioma or 
GBM are referenced in tables 1 and 2.

Targeting activators of effector T cells
Activating, also known as costimulatory, molecules 
promote effector T cell differentiation, proliferation, 
and activation. Effector T cells expressing the coreceptor 
CD8 recognize tumor peptides on antigen presenting 
cells (APC) through the interaction of the T-cell receptor 
(TCR) and major histocompatibility complex (MHC). 
Treatment with an antibody agonist targeting a costim-
ulatory response can upregulate this signaling leading to 
enhanced cytotoxic T cell activity and ultimately tumor 
quiescence or regression. The costimulatory molecules 
with the most potential for further development are 
reviewed below.

4-1BB
4-1BB, also known as CD137, is a costimulatory receptor 
expressed on the surface of activated T cells as well as 
natural killer (NK) cells. 4-1BB plays a role in cytokine 
section, antiapoptotic signaling, NK cytotoxicity and 
promotion of T cell effector function.17 After binding 
its natural ligand 4-1BBL, 4-1BB induces intracellular 
signaling through TNFR-associated factor 2.18 Murine 
glioma models have shown in vivo antitumor activity from 
treatment with 4-1BB agonists. Radiotherapy combined 
with anti-4-1BB agonists can induce tumor eradication 
and prolong survival.19 Furthermore, this antitumor 
response correlates with increased tumor-infiltrating 
lymphocyte (TIL) density and Interferon gamma (IFNy). 
The combination of a 4-1BB agonist and a CTLA-4 inhib-
itor, plus radiation treatment has also been shown to 
improve survival and TIL trafficking in an intracranial 
model.20 Interestingly, depletion of CD4 T cells abrogated 
this effect to an even greater extent than CD8 depletion. 
Given this preclinical evidence for antitumoral efficacy 
and immune modulation, 4-1BB represents an attractive 
target for GBM and indeed is being explored in a clinical 
trial, NCT02658981, in patients with recurrent GBM.

GITR
Glucocorticoid-induced tumor necrosis factor (TNF)-
related receptor (GITR) is highly expressed on T regu-
latory cells (Tregs) and induced by FOXP3 and NFkB 
signaling.21 Tregs are immunosuppressive lympho-
cytes which act to inhibit recognition and clearance of 
tumor cells.22 GITR ligand (TNFSF18) is expressed on 
APC. When GITR binds GITR ligand in concert with 
TCR stimulation, naïve T cells are activated, eventually 
leading to NF-kB mediated proliferation and cytokine 
production such as IL-2 and IFNy.23–25 Murine studies 
have shown that treatment with GITR agonists result in 

improved survival, increased immune cell infiltrates and 
robust cytokine production by TILs, but structural and 
functional differences between murine and human GITR 
exist.26 27 One study that evaluated the use of intracra-
nial injections of a GITR agonist found improved overall 
survival (OS) and selective Treg depletion.28 Systemic 
administration of these anti-GITR monoclonal antibody 
(mab) had limited effects on mouse survival. Another 
study combining anti-GITR mab with stereotactic radio-
surgery showed increased effector CD4 infiltration, as 
well as elevated IFNy, IL2, and TNFa production but this 
did not translate into survival benefit.29 The significance 
of the expression of GITR on Tregs is less clear. One 
study found no difference in the expression of GITR on 
peripheral blood cells between patients with GBM and 
healthy controls.30 In contrast, another report suggests 
that tumor growth upregulates GITR on intratumoral 
Tregs.31 There are multiple early phase trials evaluating 
GITR, but most are excluding patients with active central 
nervous system (CNS) metastasis and to date, there are no 
trials for patients with primary brain tumors. The GITR 
agonist BMS-986156 has recently demonstrated a favor-
able safety profile both alone and in combination with 
nivolumab. In a study of 66 patients, the most common 
side effect, occurring in 30%, was fever.32 A phase I GBM 
trial, NCT03707457 combining an anti-GITR agent with 
PD-1 blockade is currently recruiting.

ICOS
Inducible costimulatory (ICOS) is expressed by T cells 
following TCR crosslinking and CD28 costimulation.5 
Through its binding with the ICOS ligand (B7-H2), ICOS 
plays a role in a variety of immune processes including the 
regulation of T cell helper cells. The ICOS ligand protein 
and corresponding mRNA are expressed by gliomas and 
the neutralization of ICOS ligand subsequently reduces 
Th1 and Th2 cytokines.33 Chimeric antigen receptor 
(CAR) T cells targeting ICOS and epidermal growth 
factor receptor variant III (EGFRvIII) have demonstrated 
cytotoxicity against glioma (U87) cells in vitro, although 
concerns about the relevance of the U87 model to human 
GBM remain.34 35 These CAR T cells secreted IFNy as 
determined by cytokine release assay and suppressed 
tumor growth in a xenograph mouse model.

OX40
OX40 is a transmembrane glycoprotein expressed by 
Tregs and transiently expressed on T cells following TCR 
stimulation by viral antigen.36 37 OX40 agonism inhibits 
Treg immunosuppression, thereby leading to effector T 
cell proliferation.38 OX40 ligand is expressed on GBM 
tumor cells and high levels of OX40L mRNA are associ-
ated with prolonged progression-free survival in patients 
with GBM.39 Murine glioma models have shown that 
OX40 agonists can induce tumor regression and increase 
TILs.40 Similarly, combination immunotherapies have 
been investigated. One study combining anti-OX40 anti-
body plus dendritic cell (DC) vaccine plus local cranial 
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radiation demonstrated tumor regression, TIL infiltra-
tion, and improved survival compared with mice treated 
with only two of the three modalities.41 Another study 
combining granulocyte macrophage colony stimulating 
factor-expressing cells and an OX40 agonist, showing that 
the combined therapy promoted Th1 responses while 
also decreasing Th2 response.42 Of note, coexpression of 
PD-1, TIM-3, and lymphocyte-activation gene 3 (LAG-3) 
was also reduced.

CD27
CD27, a member of the TNF receptor family, is expressed 
on naïve CD4 and CD8 T cells and upregulated with T 
cell activation. On activation by binding CD70, a surface 
antigen expressed on meningioma and glioma cells,43 
CD27 promotes proliferation by facilitating entry into the 
cell cycle as well as promoting effector T cell differentia-
tion.44 In vitro studies have shown that glioma cells respond 
to CD70 signaling. Cell lines engineered to produce 
soluble CD70 increase proliferation and IFN secretion of 
cocultured lymphocytes.45 Treating in vivo murine glioma 
models with both a CD70 specific CAR T therapy46 and a 
CD70 antibody-drug conjugate produced tumor regres-
sion.47 However, other studies have suggested that the 
CD27 pathway may actually suppress T lymphocytes. One 
study found that glioma cells expressing CD70 could 
induce T cell apoptosis while simultaneously inhibiting 
glioma growth.48 This finding may be explained by lytic 
NK activity or a mechanistic difference in the apoptosis-
regulating Siva pathway between human and mice cells. 
Furthermore, CD70 overexpression has been shown 
to increase recruitment of immunosuppressive tumor-
associated macrophages.49 NCT02924038 is currently 
examining the CD27 agonist varlilumab in patients 
with low-grade glioma. Another study, NCT02335918, 
is looking at the combination of varlilumab with PD-1 
blockade among a variety of solid tumors including GBM. 
Finally, the clinical trial NCT03688178 is investigating 
varilumab in combination with a DC vaccine and is sched-
uled to begin soon pending new testing requirements 
from the FDA.

Targeting inhibitors of effector T cells
Inhibitory checkpoint molecules downregulate T cell 
differentiation, proliferation, and activation. Currently, 
most immune checkpoint inhibitors are antibodies that 
target these inhibitory molecules. By blocking the interac-
tion of the inhibitory molecules with their ligand immune 
checkpoint inhibitors, these checkpoint inhibitors 
prevent suppression of effector T cells and, in turn, allow 
for cytotoxic activity. The inhibitory molecules with the 
most potential for use in clinical trials are reviewed below.

CTLA-4
Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is 
constitutively expressed on activated Tregs.50 51 Addition-
ally, CTLA-4 expression can be induced on cytotoxic T 

cells after their stimulation. CTLA-4 competes with the 
costimulatory molecule CD28 for the CD80 and CD86 
ligands (B7-1 and B7-2, respectively), ultimately leading to 
T cell inactivation if CTLA-4 engagement predominates. 
Prognostically, CTLA-4 expression on CD4 and CD8 
T cells may positively correlate with survival in patients 
with GBM.52 Several murine glioma models have shown 
antitumor efficacy and improved survival using species-
specific mab blockade of CTLA-4. Although long-term 
tumor-free survival in mice is only modest with single 
agent anti-CTLA-4 therapy, combinational studies with 
anti-PD-1 or anti-PD-L1 have demonstrated cure rates as 
high as 75%.53 CTLA-4 antibody blockade has also been 
shown to enhance whole tumor-cell vaccine efficacy and 
improve survival.54 55 In mice treated with a herpes simplex 
oncolytic virus, the combination of anti-CTLA-4 and anti 
PD-1 therapy was found to improve survival.56 Further-
more, combined with intratumoral administration of 
IL-12, CTLA-4 inhibitors were shown to cause a reduc-
tion in tumor burden, decreasing Tregs and increasing 
effector T cells.57 Several early phase studies are exam-
ining CTLA-4 inhibitors in GBM. CheckMate 143, a phase 
I study of 40 patients with recurrent GBM treated with the 
PD-1 inhibitor nivolumab, alone or in combination with 
the CTLA inhibitor ipilimumab, showed a survival of only 
7 to 10 months and response rates of 0%–11%.58 Addition-
ally, nivolumab did not improve OS when compared with 
bevacizumab in this population.59 There remain several 
trials studying ipilimumab in conjunction with nivolumab. 
NCT03367715 is examining nivolumab and ipilimumab 
in conjunction with short-course radiotherapy. Similarly, 
NCT02829931 and NCT03425292 combine CTLA-4, PD-1 
and bevacizumab with radiation therapy. NCT03233152 
is investigating intratumoral administration of ipilim-
umab in conjunction with nivolumab after resection 
of recurrent GBM. NCT03430791 uses nivolumab and 
ipilimumab with tumor-treating fields. NCT03422094 
combines dual checkpoint blockade with a personalized 
neoantigen-based vaccine (NeoVax). The pediatric study, 
CheckMate 908, is examining ipilimumab and nivolumab 
in childhood CNS malignancies. NCT02794883 is a study 
of the CTLA-4 inhibitor tremelimumab plus the PD-1 
inhibitor durvalumab in recurrent glioma. Additionally, 
an expanded access program of ipilimumab is available in 
countries worldwide although it is currently not available 
in the USA and many European nations.

PD-1
PD-1, is expressed on activated T cells. When PD-1 binds 
its ligand, programmed death ligand 1 (PD-L1), TCR 
signaling is downregulated, which in turn decreases T cell 
proliferation and activation. PD-1 has also been implicated 
in the activation of epithelial-mesenchymal transition60 
and prevention of Treg expansion in glioma.61 Esti-
mates of PD-L1 expression on human GBM have ranged 
between 19% and 88%, with some variation ascribed to 
the technique and antibody use.62–64 Prognostically, PD-1 
expression on TILS and PD-L1 expression on tumor cells 
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both correlate with glioma grade.65 Zeng et al, described 
improved survival in murine models with the combina-
tion of PD-1 inhibitor plus radiotherapy.66 Combining 
anti-PD-1 with temozolomide, the standard of care for 
treatment of GBM, produces decreased tumor growth, 
increased TILs and improved survival when compared 
with monotherapy.67–69 PD-1 blockade combined with 
oncolytic viral therapy has also been shown to increase 
survival in mice.70 71 DC vaccines in combination with 
PD-1 inhibitors likewise demonstrate improved murine 
survival.72 Finally, the combination of a PD-1 inhibitor 
and toll-like receptor (TLR-3) agonist therapy increased 
DC activation and T cell proliferation.73 A phase I study of 
16 patients with recurrent GBM treated with atezolizumab 
reported a favorable safety profile but a disappointing 
median survival of only 4.2 months.74 Similarly, the phase 
I trial KEYNOTE-028 described 26 patients with recurrent 
PD-L1+GBM treated with pembrolizumab, observing an 
OS of 14.4 months and objective response rate of only 
4%.75 However, a pilot trial of 35 patients with recurrent 
GBM recently found neoadjuvant pembrolizumab treat-
ment arm to have an OS of 13.7 months, a statistically 
significant difference to the 7.5 month survival of those 
receiving adjuvant (post-surgical) pembrolizumab.3 
While the OS is in keeping with historical expectations, 
the molecular findings suggest that treatment effect may 
actually be responsible for the discrepancies between the 
two cohort arms. In this study, neoadjuvant PD-1 blockade 
upregulated T-cell-γ and IFN-γ signals and downregulated 
cell-cycle-related transcripts. Focal expression of PD-L1 
on tumor cells was also inducible by neoadjuvant treat-
ment. TCR sequencing demonstrated enhanced clonal 
expansion in this cohort as well. A companion paper 
detailing 30 patients with GBM treated with neoadju-
vant nivolumab likewise showed increases in chemokine 
transcripts, immune infiltration and TCR clonal diver-
sity.76 Two patients on this study remained alive over 28 
months later. Another study performed genomic and 
transcriptomic analysis of 66 patients with GBM treated 
with PD-1 inhibitors, highlighting alterations of PTEN in 
non-responders and the MAPK pathway in responders.77

There are numerous early phase trials examining 
PD-1 and PD-L1 targeting agents in gliomas, often in 
conjunction with radiation or bevacizumab. In addition 
to these, Checkmate 548 and 498 are phase III clinical 
trials examining checkpoint inhibitor therapy in MGMT 
methylated and unmethylated populations, respectively. 
A recent press release from CheckMate498 indicates 
that the study did not meet its primary endpoint of OS.78 
NCT03491683 combines a PD-1 inhibitor with an IL-12 
and antigen-stimulation strategy delivered by intramus-
cular injection and electroporation. Another interesting 
trial, NCT03347097, is examining the use of pluripotent 
immune killer cells constructed from transgenic-modified 
TILs to highly express PD-1. Combinational approaches 
with tyrosine kinase inhibitors (TKI) are also under 
investigation. GLIAVAX, a phase II trial of 54 patients 
with recurrent GBM treated with avelumab and axitinib 

demonstrated favorable tolerability but did not meet the 
primary endpoint goal with a 6-month progression-free 
survival (PFS-6) of only 18%.79 The addition of pembroli-
zumab to bevacizumab, a VEGF inhibitor, also did not 
improve PFS-6.80 Other TKI combinations being studied 
with PD-1 blockade include TTAC-001 (VEGFR-2/KDR) 
and lenvatinib (VEGFR1/2/3). Small molecule inhibi-
tors such as vorinostate (histone deacetylase inhibitor), 
ipatasertib (AKT), olaparib (PARP), and epacadostat 
(indoleamine 2,3-dixoygenase-1) are also being under 
investigation in GBM. The NCT Neuro Master Match 
employs molecular characterization and bioinformatic 
evaluation to stratify patients toward multiple therapeutic 
arms including atezolizumab. Vaccine combinations 
currently under investigation include the IMA950 (multi-
peptide vaccine), HSPPC-96 (heat shock protein peptide 
complex), DNX-2401 (genetically modified oncolytic 
adenovirus), SurVaxM (survivin tumor-specific antigen), 
DCVax-L (autologous DC pulsed with tumor lysate 
antigen), VXM01 (VEGFR-2 DNA vaccine), NeoVax, 
and a IDH1 R132H-specific vaccine. Additionally, there 
are also CAR T strategies targeting EGFRvIII and PD-1. 
NCT02359565 and NCT03173950 are examining PD-1 
inhibitors among rare or pediatric CNS tumors popu-
lations. Finally, NCT02311582 and NCT03341806 are 
studies focused on the effects of PD-1 inhibition in 
conjunction with MRI-guided laser ablation and laser 
interstitial thermal therapy, respectively.

LAG-3
LAG-3 is an immunoglobulin expressed on NK, DC, and 
B cells that plays an inhibitory role in T cell proliferation 
and cytokine secretion.81 In glioma samples analyzed by 
flow cytometry, 30% of CD8 TIL express LAG-3.82 Much 
lower expression (1.25%) was observed in CD4 TILs. One 
phase I study, NCT03493932, is examining LAG-3 inhib-
itor therapy after cytokine microdialysis and tumor resec-
tion in patients with recurrent GBM.

TIGIT
T cell immunoreceptor with Ig and ITIM domains 
(TIGIT) is a transmembrane protein which binds to 
CD155 and inhibits NK cell activity.83 TIGIT expression 
is also found on CD8 T cells, CD4 T cells, Tregs, and NK 
cells. Pediatric glial tumors contain CD4 and CD8 T cells 
which express TIGIT as well as TIM3, OX40, and 4-1BB.84 
Combination treatment with TIGIT and PD-1 blockade 
was shown to increase cytotoxic CD8 cells, reduce Tregs 
and improved survival in a murine glioma model.85 
PD-1 and TIGIT coblockage increased IFNy- and TNFa-
producing CD8 (and CD4) T cells as compared with 
monotherapy groups. Tregs were also decreased but with 
no significant difference observed between combination 
and monotherapy groups. Reimplantation of tumor in 
the surviving animals demonstrated immune memory 
with no deaths at 90 days compared with a median survival 
of 21 days in a control group. There are currently no trials 
of TIGIT agents specifically in glioma or GBM. However, 
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NCT03119428 is examining the anti-TIGIT agent OMP-
313M32 in locally advanced, recurrent or metastatic solid 
tumor malignancies.

TIM-3
T-cell immunoglobulin and mucin-domain containing-3 
(TIM-3) is present on T cells, DC, macrophages, NK, 
and tumor cells. On binding galectin-9 and phospha-
tidylserine, TIM-3 induces T cell apoptosis, increasing 
phagocytosis and upregulating proinflammatory cytokine 
secretion.86 TIM-3 also binds carcinoembryonic antigen 
cell adhesion molecule 1 (CAECAM1) on activated T 
cells thereby inhibiting them.86 TIM-3 is expressed in 
higher grade glioma and negatively correlates with T-cell-
mediated immune responses.87 Peripheral T lymphocyte 
expression of TIM-3 is also increased and correlates with 
worsened grade.88 89 Furthermore, this expression may 
be even higher in intratumoral effector lymphocytes.90 
Combined antibody blockade of TIM-3 and its CAECAM 
ligand have been shown to prolong survival in GBM 
mouse models.91 This therapy increased the ratio of CD4/
CD8 to Tregs among brain-infiltrating lymphocytes (BIL) 
and selective depletion of these CD4 and CD8 cell extin-
guished the survival effect. IFNy and TGF-β were upreg-
ulated and decreased, respectively, reflecting shift in the 
cytokine milieu. Triple therapy with PD-1 blockade, TIM-3 
blockade, and radiation has also been demonstrated to 
improved survival compared with dual or monotherapy.92 
Combination therapy also increased the CD8 effector/
Treg ratio, IFNγ-producing CD4 cells and IFNγ-producing 
CD8 cells. Interestingly, BIL coexpression of PD-1 and 
TIM-3 were noted to increase with time. This suggests 
that the natural history of glioma may upregulate TIM-3, 
representing an immunosuppressive adaptation that can 
be countered with inhibitors. Following reimplantation, 
none of these long-term survivors established tumors, thus 
demonstrating that the mice had achieved immunolog-
ical memory. A clinical trial, NCT03961971, combining 
the anti-TIM-3 inhibitor MBG453 with the PD-1 inhibitor 
spartalizumab and stereotactic radiosurgery is scheduled 
to begin August 2019.

A2AR
Adenosine A2 receptor (A2AR) is a G protein-coupled 
receptor. Tissue breakdown and hypoxia promote extra-
cellular adenosine production which in turn leads to 
anti-inflammatory effects mediated by these G protein-
coupled receptors.93 Increased cyclic AMP upregulates 
immunosuppressive cytokines, increases PD-1, induces 
T cell anergy and promotes Treg differentiation. Taken 
together, these events create a more immunosuppressive 
tumor microenvironment. Inhibition of A2AR is, there-
fore, a potential method to stimulate the immune system. 
Several purine derivatives related to this have been iden-
tified as having in vivo activity against glioma. The surface 
ectoenzyme CD39 catabolizes proinflammatory ATP into 
AMP, and glioma cells have been shown to induce CD4 T 

cell suppression via CD39, an effect which is preventable 
with the introduction of A2AR antagonists.94

B7-H3
B7-H3, an immunomodulatory protein expressed on 
both lymphocytes and tumor cells, appears to have a 
host of complex effects on T lymphocytes. Initial reports 
of human B7-H3 identified a role in upregulating T cell 
proliferation, and it was noted that cytotoxicity with anti-
body blockade of B7-H3, or its potential ligand TLT-2, 
in turn suppresses T cell activation.95 96 However, more 
recent experiments of murine B7-H3 conversely suggest 
that B7-H3 may actually have suppressive effects on cyto-
toxic T cells by downregulating proinflammatory Th1 
cells.97 98 B7-H3 expression in glioma correlates with 
higher grade and worsened prognosis.99 100 One study in 
murine glioma models found that B7-H3 gene silencing 
of B7-H3 leads to a less invasive phenotype.101 Together, 
these suggest that B7-H3 upregulation promotes tumor 
growth and invasion which, if true, could be through 
immune or non-immune related mechanisms.

VISTA
V-domain Ig suppressor of T cell activation (VISTA), also 
known as PD-1H, is an inhibitory molecule expressed 
on hematopoietic cells and tumor cells. On binding an 
unknown receptor VISTA suppresses CD4 and CD8 T 
cell activation and promotes Treg proliferation.102 103 In 
murine glioma models (GL261), VISTA knockout was 
shown to prolong survival and synergism with radiation 
was observed.104 VISTA is not currently being studied in 
human trials.

B7-H4
There are a host of other immune checkpoint molecules 
which have been shown to influence the tumor microen-
viroment but remain early in development. B7-H4 (B7S1) 
is an inhibitory molecule expressed on APC which inhibits 
T cells.105 106 Additionally, B7-H4 is expressed by glioma 
stem-like cells (U251).107 B7-H4 expression has been 
shown to be associated with prognosis in GBM where it 
appears to mediate cross talk between glioma and macro-
phages via the IL-6/STAT3 signaling pathway.108 Other 
checkpoint molecules such as B and T lymphocyte atten-
uator (BTLA) have yet to be sufficiently described in 
glioma.

Alternative mechanisms of immune modulation for T 
lymphocyte activation
To date, the success of targeting immune modulatory 
molecules has been by using monoclonal antibodies that 
block either ligand or receptor. However, multiple other 
mechanisms of targeting these interactions are also under 
development.

In contrast to monoclonal antibodies, small molecule 
inhibitors contain only sufficient chemical structures 
needed to antagonize target molecules. Small molecule 
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inhibitors would conceivably possess greater molecular 
stability, less immunogenicity and improved penetra-
tion to tumor sites than monoclonal antibodies. The 
ability to more easily penetrate the BBB makes these 
small molecule inhibitors particularly attractive for the 
treatment of glioma. The PD-1/PD-L1 binding site has 
been characterized as hydrophobic and spatially flat.109 
To this end, various compounds have been developed 
that specifically block the PD-1/PD-L1 interaction.110 
These compounds consist of a core scaffold of either 
three aromatic rings or two and a benzodioxan ring with 
additional variant moieties. They have been shown to 
bind PD-L1 and block the interaction of PD-1 as verified 
by the restoration of 15N resonance signal on radiola-
beled PD-1.111 The EC50 of the least toxic compounds 
BMS-1001 and BMS-1116 was 33.4 and 40.5 uM, respec-
tively. These compounds were shown to induce TCR 
stimulation, as measured by a luciferase reporter gene. 
Crystallography demonstrated that BMS-1166 showed 
four protein bonds with a dimer complex of PD-L1. 
Furthermore, four decompensation fragments, repre-
senting the core aromatic and benzodioxan structures, 
displayed PD-L1 affinity.

Typical monoclonal antibodies are ~150 kDa in weight 
and consist of two heavy and two light protein chains, 
as well as Fab and single-chain variable fragments. 
Nanobodies, also called single-domain antibodies, are 
recombinant antibody fragments containing a mono-
meric antigen-binding domain. Nanobodies are only 
~15 kDa, more hydrophilic, more stable and less sterically 
hindered then their full antibody counterparts, drasti-
cally improving their ability to penetrate into tumor and 
molecular sites.112–114 Furthermore, these nanobodies 
can be humanized to further decrease their immunoge-
nicity.115 Various delivery systems for immune checkpoint 
modulators, including platelet, viral and bacterial vectors 
are also under active investigation.116 Caplacizumab, 
a nanobody targeting von Willebrand factor, recently 
received the first ever FDA approval for a nanobody-
directed therapy.117 KN035, an anti-PD-L1 IgV-type nano-
body has been shown to bind chiefly through a 21 amino 
acid segment that includes the Ile54, Tyr56 and Arg113 
residues which participate in the PD-1 interaction.118 
Notably, KN035 affinity for PD-L1 is ~1000-fold stronger 
than PD-1’s affinity for PD-L1 (IC50=5.25 nM).119

CAR T cells, T cells genetically engineered with MHC-
independent recognition of tumor-associated antigens 
(TAA), have shown increasing benefit in the treatment 
of hematological malignancy.120 121 CAR T cells with anti-
PD-L1 targeting have demonstrated cytotoxic activity in 
mice bearing melanoma and colon tumors.122 In addition, 
CAR T cells have been developed with a switch receptor 
construct composed of extracellular PD-1 domains 
coupled to transmembrane and cytoplasmic CD28 
signaling domains.123 These CAR T cells have been shown 
to induce tumor regression in murine models of prostate 
cancer. CAR T cells have also been engineered to secrete 
PD-L1 antibody. In orthotropic renal cell cancer models, 

these CAR T cells were capable of inhibiting tumor 
growth via T-cell exhaustion and NK cell recruitment.124

Using vaccine therapy to induce T lymphocyte activa-
tion is another approach. Tumor vaccines are intended to 
provoke an adaptive immune response to TAA whereby 
these TAA are presented by MHC I/II on APC for recog-
nition by naïve T cells which then proliferate and differ-
entiate into cytotoxic T lymphocytes with specificity for 
tumors expressing said TAA.125 Several vaccine types exist 
including peptide-based, heat-shock protein and DC 
vaccines.

Peptide vaccines consist of TAA extracted from tumor 
tissue or synthesized from known epitopes. Some of the 
epitopes frequently employed in GBM-targeting peptide 
vaccines include melanoma-associated antigen 1 (MAGE-
1), human epidermal growth factor receptor 2 (HER2) 
and gp100.126 They are frequently administered with 
an immunostimulatory adjuvant such as a TLR agonist. 
There have been several studies targeting the epidermal 
growth factor receptor variant III, a transmembrane 
tyrosine kinase receptor variant which is expressed in 
24%–67% of GBM.127 128 Phase II studies (ACTIVATE, 
ReACT) of EGFRVIII specific peptide initially showed 
promising OS in the newly diagnosed and recurrent 
settings, respectively.129 130 However, ACTIV, a phase III 
of 745 patients with newly diagnosed EGFRvIII+GBM 
treated with CDX-110 and GM-CSF showed no OS advan-
tage over control.131 Another approach has been to use 
intratumor delivery of recombinant polio-rhinovirus 
chimera, PVSRIPO. PVSRIPO binds with high affinity to 
poliovirus receptor (CD155) which is highly expressed on 
malignant glioma.132 A phase I trial of 61 patients with 
recurrent GBM showed a median OS of 12.5 months.133

Heat-shock vaccines combine TAA with chaperone 
heat shock proteins (HSP). HSP are involved in post-
translational protein folding as well as modulation of the 
immune response.134–136 HSP complex with TAA and then 
internalized into APC via receptor-mediated endocytosis, 
via CD91 and LOX-1, for presentation to CD8+ T cells 
by MHC I.137–139 Additionally, HSP can trigger an innate 
immune response through TLR.140 Phase II results of 41 
patients with recurrent GBM treated with a 96 kD HSP 
protein complex, HSPPC-96, showed a median OS of 
42.6 weeks.141 NCT03018288 is an ongoing randomized, 
double-blind phase II trial of surgery, chemoradiation, 
and pembrolizumab with and without HSPPC-96 in newly 
diagnosed MGMT unmethylated GBM.

DC vaccines use professional APC which participate 
in the innate immune response.142 On internalization of 
antigen, DC migrate to lymphoid tissue where they stim-
ulate CD4 and CD8 T cells. The VICTORI study, a trial 
of 20 patients with newly diagnosed grade III/IV glioma 
treated with autologous DC vaccine (DC pulsed with 
EGFRvIII peptide conjugated to keyhole limpet haemo-
cyanin) showed an OS of 22.8 months from diagnosis.143 
A significant increase in antigen-specific T cell prolifer-
ation was observed in postvaccination peripheral blood. 
Another phase I, ICT-107, treated 20 patients with GBM 
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(and 1 brainstem glioma) with a multiepitope-pulsed DC 
vaccine (HER2, TRP-2, gp100, MAG-1, IL13Ra2, AIM-2) 
observing a median OS of 38.4 months with expression 
of target epitopes (MAGE-1, AIM-2) correlating with 
improved survival.126 Other trials with smaller patient 
cohorts have shown long-term response and correlative 
immune response.144 Finally, a comparison of 6 patients 
with malignant glioma treated with glioma-associated 
antigen compared with 28 patients treated with autolo-
gous tumor lysate-pulsed DC vaccine showed elevated 
NK activity in the glioma-associated antigen cohort.145 
Additionally, decreased T reg ratio and activated NK cells 
correlated with prolonged survival in these patients.

Conclusion
The development of PD-1, CTLA-4 and newer, “second 
generation” checkpoint modulators represents a potential 
opportunity to develop novel therapies for the treatment 
of primary brain tumors, particularly GBM. Unfortu-
nately, there are currently limited data on immune 
checkpoint inhibitors in other types of glioma such as 
oligodendroglioma or astrocytoma. As these diseases tend 
to have a more indolent, although still malignant course, 
it is feasible that immune surveillance aided by check-
point modulation could fair better than the more prolif-
erative and aggressive GBM. A series of 10 patients with 
recurrent or refractory pediatric brain tumors including 
pineoblastoma, medulloblastoma, ependymoma and 
CNS embryonal showed transient partial responses in 
patients with PD-L1 expression and higher tumor muta-
tion burden.146 A study of the immune checkpoint inhib-
itor nivolumab is ongoing in patients with select rare 
CNS cancers (NCT03173950). Additionally, responses 
to immune checkpoint blockade have been reported, 
although rarely, in other primary CNS malignancies such 
as meningioma and primary CNS lymphoma147–149

Initial studies using single agent immune modulators in 
GBM have been mostly unsuccessful, thereby providing 
a stronger rationale for the consideration of combina-
tional regimens. However, as outlined in this review, 
there are many candidate agents, which when considered 
for combination regimens, yield an impractical number 
of dual agent treatment regimens. Therefore, increased 
understanding of the mechanisms of action and resis-
tance combined with more robust preclinical and early 
clinical testing will be needed to be able to adequately test 
the most promising therapies.

Among the activating immune checkpoint molecules, 
the ones with the most robust preclinical data are 4-1BB 
and GITR. Agonists against both these targets have 
demonstrated antitumoral activity and alteration of the 
cellular milieu in murine glioma models. They have both 
also proven to be synergistic with radiotherapy in mice, a 
particularly attractive feature as radiotherapy remains the 
mainstay of treatment for newly diagnosed GBM. GITR 
is also of interest in that, as its name suggests, it is upreg-
ulated by glucocorticoids.150 Given the high prevalence 

of steroid use in patients with GBM, GITR may be over-
expressed on the TILs of these patients. Although corti-
costeroids blunt the immune response of checkpoint 
modulators, upregulation of GITR with the addition of 
a robust GITR agonist may have an antitumor effect even 
in the presence of steroids. Furthermore, intracranial 
administration of GITR may be necessary to provoke an 
immune response. Given the available preclinical data, 
further early phase clinical trials to demonstrate safety 
and efficacy of these agonists in glioma are needed.

Other activating immune molecules including ICOS, 
OX40, and CD27 need further study in glioma mice 
models, specifically intracranial models, to demonstrate 
that agents targeting these molecules produce tumor 
regression, immune modulation, and improved survival. 
Preclinical work suggests combining OX40 agonists 
with vaccine therapies would likely be of most benefit. 
Cellular and antibody therapies directed against CD27 
and its ligand CD70 have shown tumor inhibition in mice. 
However, contradictory preclinical findings have called 
into question whether CD27 and B7-H3 signaling plays 
a protumoral or antitumoral role in the immune system 
and more work is needed to elucidate if the antitumoral 
effect initially observed is indeed T lymphocyte mediated.

The inhibitory immune checkpoint molecules PD-1 
and CTLA-4 are under active investigation with a recent 
study suggesting efficacy from PD-1 inhibitors when 
given preoperatively. This is consistent with the efficacy 
observed in early phase studies of Merkel cell, bladder, and 
triple negative breast cancer, suggesting that neoadjuvant 
treatment is a viable immunomodulatory approach.151 
Other modulatory strategies may also have utility. TIM-3 
antibody blockade improves survival and, like 4-1BB and 
GITR, appears to have synergistic benefit with radiation 
in mice models. TIM-3 studies have also shown immu-
nomodulation with increased immune cell infiltration, 
activation, and memory. Similarly, TIGIT, in combina-
tion with PD-1 blockade has demonstrated improved 
survival as well as increased cytotoxicity and decreased 
regulatory T cells. Both TIM-3 and TIGIT may be good 
candidates for phase I/II trials in patients with glioma. In 
contrast, the physiological mechanisms regarding LAG-3, 
A2AR, VISTA, and B7-H4 in glioma remain unclear and 
both targets would likely benefit from further preclinical 
studies to better define efficacy as well as their immuno-
modulatory effects. Similarly, conflicting findings exist 
for B7-H3, mandating additional research to elucidate 
the effect of B7-H3 blockade on different T cell subpop-
ulations and associated tumor response before its consid-
eration for clinical trial testing.

The function of immunomodulatory molecules such 
as those described here can be activated or inhibited by 
mab binding and this has to date proved to be the most 
successful approach. However, several other mechanisms 
for regulation exist, each with their own advantages 
and disadvantages. Small molecule inhibitors such as 
BMS-1166 could reach to molecular sites that larger anti-
bodies cannot access due to steric hindrance. Nanobodies, 



14 Kelly WJ, et al. J Immunother Cancer 2020;8:e000379. doi:10.1136/jitc-2019-000379

Open access�

like KN035 can bind PD-L1 with great affinity. Further-
more, delivery systems such as viral vectors may improve 
BBB infiltration of nanobodies. CAR T cells hold great 
potential due to the range of genetic modifications 
(chimeric switch-receptors, antibody secretion) currently 
under development. Finally, vaccine therapy can prime 
cytotoxic and helper T cells for a more robust immune 
response.

In conclusion, the development of several novel 
immune checkpoint molecules represents a potential 
mechanism to overcome the immunosuppressive environ-
ment of GBM and achieve meaningful benefit. Of these 
“second generation” checkpoint molecules, the ones with 
the greatest potential and most preclinical data in glioma, 
are 4-1BB, GITR, TIM-3, and TIGIT. All of which should 
be considered for early phase clinical trials in glioma.
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