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ABSTRACT

Immunomodulatory therapies targeting inhibitory
checkpoint molecules have revolutionized the treatment
of solid tumor malignancies. Concerns about whether
systemic administration of an immune checkpoint inhibitor
could impact primary brain tumors were answered

with the observation of definitive responses in pediatric
patients harboring hypermutated gliomas. Although

initial clinical results in patients with glioblastoma (GBM)
were disappointing, recently published results have
demonstrated a potential survival benefit in patients with
recurrent GBM treated with neoadjuvant programmed cell
death protein 1 blockade. While these findings necessitate
verification in subsequent studies, they support the
possibility of achieving clinical meaningful immune
responses in malignant primary brain tumors including
GBM, a disease in dire need of additional therapeutic
options. There are several challenges involved in treating
glioma with immune checkpoint modulators including

the immunosuppressive nature of GBM itself with high
inhibitory checkpoint expression, the immunoselective
blood brain barrier impairing the ability for peripheral
lymphocytes to traffic to the tumor microenvironment and
the high prevalence of corticosteroid use which suppress
lymphocyte activation. However, by simultaneously
targeting multiple costimulatory and inhibitory pathways,
it may be possible to achieve an effective antitumoral
immune response. To this end, there are now several
novel agents targeting more recently uncovered “second
generation” checkpoint molecules. Given the multiplicity
of drugs being considered for combination regimens, an
increased understanding of the mechanisms of action and
resistance combined with more robust preclinical and early
clinical testing will be needed to be able to adequately
test these agents. This review summarizes our current
understanding of T lymphocyte-modulating checkpoint
molecules as it pertains to glioma with the hope for

a renewed focus on the most promising therapeutic
strategies.

THE PROMISE OF IMMUNOMODULATORY
CHECKPOINT THERAPIES

Immunomodulatory  therapies targeting
inhibitory checkpoint molecules have revo-
lutionized the treatment of solid tumor
malignancies.! Concerns about whether
systemic administration of an immune check-
point inhibitor could impact primary brain
tumors were answered with the observation
of definitive responses in pediatric patients

harboring hypermutated gliomas.” Although
initial clinical results in patients with glioblas-
toma (GBM) were disappointing, recently
ublished results have demonstrated a poten-
tial survival benefit in patients with recurrent
GBM treated with neoadjuvant programmed
cell death protein 1 (PD-1) blockade.?
While these findings necessitate verifica-
tion in subsequent studies, they support the
possibility of achieving clinical meaningful
immune responses in malignant primary
brain tumors including GBM, a disease in
dire need of additional therapeutic options.

There are several challenges involved in
treating glioma with immune checkpoint
modulators. First is the immunosuppressive
nature of GBM itself, with its high expres-
sion of inhibitory checkpoint molecules and
cytokines such as tumor growth factor beta
(TGF-B), vascular endothelial factor (VEGF),
and interleukin 10 (IL-10).** Second, glioma
tumors arise within the immunoselective
blood brain barrier, thus impairing the ability
for peripheral lymphocytes to traffic to the
tumor microenvironment. However, recent
studies in melanoma and non-small cell lung
cancer have demonstrated that immune
checkpoint inhibitors can indeed achieve
intracranial response.'”"? It is hypothesized
that immune cells transverse the meninges
through the fenestrated endothelial and
tightjunction epithelial layers of the choroid
plexis.'”” Alternatively, immune cells may
directly migrate through meningeal blood
vessels. In rat models, effector T lymphocytes
have demonstrated the ability to transgress
vascular walls into the cerebrospinal fluid
(CSF)." Finally, immune modulation therapy
in patients with glioma is complicated by the
high prevalence of corticosteroid use which
inhibits lymphocyte activation.' '

By simultaneously targeting multiple
costimulatory and inhibitory pathways, it may
be possible to achieve an effective antitumoral
immune response. To this end, there are now
several novel agents targeting more recently
uncovered “second generation” checkpoint
molecules. This review summarizes our
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current understanding of T lymphocyte-modulating
checkpoint molecules as it pertains to glioma with the
hope for a renewed focus on the most promising thera-
peutic strategies. Additionally, the current clinical trials
investigating immune checkpoint inhibitors in glioma or
GBM are referenced in tables 1 and 2.

TARGETING ACTIVATORS OF EFFECTOR T CELLS

Activating, also known as costimulatory, molecules
promote effector T cell differentiation, proliferation,
and activation. Effector T cells expressing the coreceptor
CD8 recognize tumor peptides on antigen presenting
cells (APC) through the interaction of the T-cell receptor
(TCR) and major histocompatibility complex (MHC).
Treatment with an antibody agonist targeting a costim-
ulatory response can upregulate this signaling leading to
enhanced cytotoxic T cell activity and ultimately tumor
quiescence or regression. The costimulatory molecules
with the most potential for further development are
reviewed below.

4-1BB

4-1BB, also known as CD137, is a costimulatory receptor
expressed on the surface of activated T cells as well as
natural killer (NK) cells. 4-1BB plays a role in cytokine
section, antiapoptotic signaling, NK cytotoxicity and
promotion of T cell effector function.'” After binding
its natural ligand 4-1BBL, 4-1BB induces intracellular
signaling through TNFR-associated factor 2.'® Murine
glioma models have shown in vivo antitumor activity from
treatment with 4-1BB agonists. Radiotherapy combined
with anti-4-1BB agonists can induce tumor eradication
and prolong survival.'” Furthermore, this antitumor
response correlates with increased tumor-infiltrating
lymphocyte (TIL) density and Interferon gamma (IFNy).
The combination of a 4-1BB agonist and a CTLA-4 inhib-
itor, plus radiation treatment has also been shown to
improve survival and TIL trafficking in an intracranial
model.” Interestingly, depletion of CD4 T cells abrogated
this effect to an even greater extent than CD8 depletion.
Given this preclinical evidence for antitumoral efficacy
and immune modulation, 4-1BB represents an attractive
target for GBM and indeed is being explored in a clinical
trial, NCT02658981, in patients with recurrent GBM.

GITR

Glucocorticoid-induced tumor necrosis factor (TNF)-
related receptor (GITR) is highly expressed on T regu-
latory cells (Tregs) and induced by FOXP3 and NFkB
signaling. Tregs are immunosuppressive lympho-
cytes which act to inhibit recognition and clearance of
tumor cells.?? GITR ligand (TNFSF18) is expressed on
APC. When GITR binds GITR ligand in concert with
TCR stimulation, naive T cells are activated, eventually
leading to NF-kB mediated proliferation and cytokine
production such as IL-2 and IFNy.%_25 Murine studies
have shown that treatment with GITR agonists result in

improved survival, increased immune cell infiltrates and
robust cytokine production by TILs, but structural and
functional differences between murine and human GITR
exist.” 77 One study that evaluated the use of intracra-
nial injections of a GITR agonist found improved overall
survival (OS) and selective Treg depletion.” Systemic
administration of these anti-GITR monoclonal antibody
(mab) had limited effects on mouse survival. Another
study combining anti-GITR mab with stereotactic radio-
surgery showed increased effector CD4 infiltration, as
well as elevated IFNy, IL2, and TNFa production but this
did not translate into survival benefit.* The significance
of the expression of GITR on Tregs is less clear. One
study found no difference in the expression of GITR on
peripheral blood cells between patients with GBM and
healthy controls.”” In contrast, another report suggests
that tumor growth upregulates GITR on intratumoral
Tregs.”! There are multiple early phase trials evaluating
GITR, but most are excluding patients with active central
nervous system (CNS) metastasis and to date, there are no
trials for patients with primary brain tumors. The GITR
agonist BMS-986156 has recently demonstrated a favor-
able safety profile both alone and in combination with
nivolumab. In a study of 66 patients, the most common
side effect, occurring in 30%, was fever.””> A phase I GBM
trial, NCT03707457 combining an anti-GITR agent with
PD-1 blockade is currently recruiting.

ICOS

Inducible costimulatory (ICOS) is expressed by T cells
following TCR crosslinking and CD28 costimulation.”
Through its binding with the ICOS ligand (B7-H2), ICOS
plays a role in a variety of immune processes including the
regulation of T cell helper cells. The ICOS ligand protein
and corresponding mRNA are expressed by gliomas and
the neutralization of ICOS ligand subsequently reduces
Thl and Th2 cytokines.” Chimeric antigen receptor
(CAR) T cells targeting ICOS and epidermal growth
factor receptor variant III (EGFRvIII) have demonstrated
cytotoxicity against glioma (U87) cells in vitro, although
concerns about the relevance of the U87 model to human
GBM remain.” * These CAR T cells secreted IFNy as
determined by cytokine release assay and suppressed
tumor growth in a xenograph mouse model.

0X40

OX40 is a transmembrane glycoprotein expressed by
Tregs and transiently expressed on T cells following TCR
stimulation by viral antigen.”® ¥ OX40 agonism inhibits
Treg immunosuppression, thereby leading to effector T
cell proliferation.”™ OX40 ligand is expressed on GBM
tumor cells and high levels of OX40L mRNA are associ-
ated with prolonged progression-free survival in patients
with GBM.* Murine glioma models have shown that
OX40 agonists can induce tumor regression and increase
TILs.* Similarly, combination immunotherapies have
been investigated. One study combining anti-OX40 anti-
body plus dendritic cell (DC) vaccine plus local cranial
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radiation demonstrated tumor regression, TIL infiltra-
tion, and improved survival compared with mice treated
with only two of the three modalities.” Another study
combining granulocyte macrophage colony stimulating
factor-expressing cells and an OX40 agonist, showing that
the combined therapy promoted Thl responses while
also decreasing Th2 response.* Of note, coexpression of
PD-1, TIM-3, and lymphocyte-activation gene 3 (LAG-3)
was also reduced.

CD27

CD27, a member of the TNF receptor family, is expressed
on naive CD4 and CD8 T cells and upregulated with T
cell activation. On activation by binding CD70, a surface
antigen expressed on meningioma and glioma cells,*
CD27 promotes proliferation by facilitating entry into the
cell cycle as well as promoting effector T cell differentia-
tion.** Invitro studies have shown that glioma cells respond
to CD70 signaling. Cell lines engineered to produce
soluble CD70 increase proliferation and IFN secretion of
cocultured lymphocytes.* Treating in vivo murine glioma
models with both a CD70 specific CAR T therapy* and a
CD70 antibody-drug conjugate produced tumor regres-
sion.” However, other studies have suggested that the
CD27 pathway may actually suppress T lymphocytes. One
study found that glioma cells expressing CD70 could
induce T cell apoptosis while simultaneously inhibiting
glioma growth.* This finding may be explained by lytic
NK activity or a mechanistic difference in the apoptosis-
regulating Siva pathway between human and mice cells.
Furthermore, CD70 overexpression has been shown
to increase recruitment of immunosuppressive tumor-
associated macrophages.” NCT02924038 is currently
examining the CD27 agonist varlilumab in patients
with low-grade glioma. Another study, NCT02335918,
is looking at the combination of varlilumab with PD-1
blockade among a variety of solid tumors including GBM.
Finally, the clinical trial NCT03688178 is investigating
varilumab in combination with a DC vaccine and is sched-
uled to begin soon pending new testing requirements
from the FDA.

TARGETING INHIBITORS OF EFFECTOR T CELLS

Inhibitory checkpoint molecules downregulate T cell
differentiation, proliferation, and activation. Currently,
most immune checkpoint inhibitors are antibodies that
target these inhibitory molecules. By blocking the interac-
tion of the inhibitory molecules with their ligand immune
checkpoint inhibitors, these checkpoint inhibitors
prevent suppression of effector T cells and, in turn, allow
for cytotoxic activity. The inhibitory molecules with the
most potential for use in clinical trials are reviewed below.

CTLA-4

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is
constitutively expressed on activated Tregs.50 51 Addition-
ally, CTLA-4 expression can be induced on cytotoxic T

cells after their stimulation. CTLA-4 competes with the
costimulatory molecule CD28 for the CD80 and CD86
ligands (B7-1 and B7-2, respectively), ultimately leading to
T cell inactivation if CTLA-4 engagement predominates.
Prognostically, CTLA-4 expression on CD4 and CDS8
T cells may positively correlate with survival in patients
with GBM.™ Several murine glioma models have shown
antitumor efficacy and improved survival using species-
specific mab blockade of CTLA-4. Although long-term
tumor-free survival in mice is only modest with single
agent anti-CTLA-4 therapy, combinational studies with
anti-PD-1 or anti-PD-L1 have demonstrated cure rates as
high as 75%.”> CTLA-4 antibody blockade has also been
shown to enhance whole tumor-cell vaccine efficacy and
improve survival.”**® In mice treated with a herpes simplex
oncolytic virus, the combination of anti-CTLA-4 and anti
PD-1 therapy was found to improve survival.”® Further-
more, combined with intratumoral administration of
1L-12, CTLA-4 inhibitors were shown to cause a reduc-
tion in tumor burden, decreasing Tregs and increasing
effector T cells.”” Several early phase studies are exam-
ining CTLA-4 inhibitors in GBM. CheckMate 143, a phase
I'study of 40 patients with recurrent GBM treated with the
PD-1 inhibitor nivolumab, alone or in combination with
the CTLA inhibitor ipilimumab, showed a survival of only
7 to 10 months and response rates of 0%-11%."® Addition-
ally, nivolumab did not improve OS when compared with
bevacizumab in this population.”” There remain several
trials studying ipilimumab in conjunction with nivolumab.
NCT03367715 is examining nivolumab and ipilimumab
in conjunction with short-course radiotherapy. Similarly,
NCT02829931 and NCT03425292 combine CTLA-4, PD-1
and bevacizumab with radiation therapy. NCT03233152
is investigating intratumoral administration of ipilim-
umab in conjunction with nivolumab after resection
of recurrent GBM. NCT03430791 uses nivolumab and
ipilimumab with tumor-treating fields. NCT03422094
combines dual checkpoint blockade with a personalized
neoantigen-based vaccine (NeoVax). The pediatric study,
CheckMate 908, is examining ipilimumab and nivolumab
in childhood CNS malignancies. NCT02794883 is a study
of the CTLA-4 inhibitor tremelimumab plus the PD-1
inhibitor durvalumab in recurrent glioma. Additionally,
an expanded access program of ipilimumab is available in
countries worldwide although it is currently not available
in the USA and many European nations.

PD-1

PD-1, is expressed on activated T cells. When PD-1 binds
its ligand, programmed death ligand 1 (PD-L1), TCR
signaling is downregulated, which in turn decreases T cell
proliferation and activation. PD-1 has also been implicated
in the activation of epithelial-mesenchymal transition®
and prevention of Treg expansion in glioma.”’ Esti-
mates of PD-L1 expression on human GBM have ranged
between 19% and 88%, with some variation ascribed to
the technique and antibody use.”*** Prognostically, PD-1
expression on TILS and PD-L1 expression on tumor cells
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both correlate with glioma grade.” Zeng et al, described
improved survival in murine models with the combina-
tion of PD-1 inhibitor plus radiotherapy.”® Combining
anti-PD-1 with temozolomide, the standard of care for
treatment of GBM, produces decreased tumor growth,
increased TILs and improved survival when compared
with monotherapy.”* PD-1 blockade combined with
oncolytic viral therapy has also been shown to increase
survival in mice.” "' DC vaccines in combination with
PD-1 inhibitors likewise demonstrate improved murine
survival.” Finally, the combination of a PD-1 inhibitor
and toll-like receptor (TLR-3) agonist therapy increased
DC activation and T cell proliferation.” A phase I study of
16 patients with recurrent GBM treated with atezolizumab
reported a favorable safety profile but a disappointing
median survival of only 4.2 months.” Similarly, the phase
I trial KEYNOTE-028 described 26 patients with recurrent
PD-L1+GBM treated with pembrolizumab, observing an
OS of 14.4 months and objective response rate of only
4%.™ However, a pilot trial of 85 patients with recurrent
GBM recently found neoadjuvant pembrolizumab treat-
ment arm to have an OS of 13.7 months, a statistically
significant difference to the 7.5month survival of those
receiving adjuvant (postsurgical) pembrolizumab.”
While the OS is in keeping with historical expectations,
the molecular findings suggest that treatment effect may
actually be responsible for the discrepancies between the
two cohort arms. In this study, neoadjuvant PD-1 blockade
upregulated T-cell-y and IFN-y signals and downregulated
cell-cycle-related transcripts. Focal expression of PD-L1
on tumor cells was also inducible by neoadjuvant treat-
ment. TCR sequencing demonstrated enhanced clonal
expansion in this cohort as well. A companion paper
detailing 30 patients with GBM treated with neoadju-
vant nivolumab likewise showed increases in chemokine
transcripts, immune infiltration and TCR clonal diver-
sity.”® Two patients on this study remained alive over 28
months later. Another study performed genomic and
transcriptomic analysis of 66 patients with GBM treated
with PD-1 inhibitors, highlighting alterations of PTEN in
non-responders and the MAPK pathway in responders.”’

There are numerous early phase trials examining
PD-1 and PD-LI targeting agents in gliomas, often in
conjunction with radiation or bevacizumab. In addition
to these, Checkmate 548 and 498 are phase III clinical
trials examining checkpoint inhibitor therapy in MGMT
methylated and unmethylated populations, respectively.
A recent press release from CheckMate498 indicates
that the study did not meet its primary endpoint of OS.”
NCT03491683 combines a PD-1 inhibitor with an IL-12
and antigen-stimulation strategy delivered by intramus-
cular injection and electroporation. Another interesting
trial, NCT03347097, is examining the use of pluripotent
immune killer cells constructed from transgenic-modified
TILs to highly express PD-1. Combinational approaches
with tyrosine kinase inhibitors (TKI) are also under
investigation. GLIAVAX, a phase II trial of 54 patients
with recurrent GBM treated with avelumab and axitinib

demonstrated favorable tolerability but did not meet the
primary endpoint goal with a 6-month progression-free
survival (PFS-6) of only 18%.” The addition of pembroli-
zumab to bevacizumab, a VEGF inhibitor, also did not
improve PFS-6.*" Other TKI combinations being studied
with PD-1 blockade include TTAC-001 (VEGFR-2/KDR)
and lenvatinib (VEGFR1/2/3). Small molecule inhibi-
tors such as vorinostate (histone deacetylase inhibitor),
ipatasertib (AKT), olaparib (PARP), and epacadostat
(indoleamine 2,3-dixoygenase-1) are also being under
investigation in GBM. The NCT Neuro Master Match
employs molecular characterization and bioinformatic
evaluation to stratify patients toward multiple therapeutic
arms including atezolizumab. Vaccine combinations
currently under investigation include the IMA950 (multi-
peptide vaccine), HSPPC-96 (heat shock protein peptide
complex), DNX-2401 (genetically modified oncolytic
adenovirus), SurVaxM (survivin tumor-specific antigen),
DCVax-LL (autologous DC pulsed with tumor lysate
antigen), VXMOl (VEGFR-2 DNA vaccine), NeoVax,
and a IDH1 R132H-specific vaccine. Additionally, there
are also CAR T strategies targeting EGFRvVIII and PD-1.
NCT02359565 and NCT03173950 are examining PD-1
inhibitors among rare or pediatric CNS tumors popu-
lations. Finally, NCT02311582 and NCT03341806 are
studies focused on the effects of PD-1 inhibition in
conjunction with MRI-guided laser ablation and laser
interstitial thermal therapy, respectively.

LAG-3

LAG-3 is an immunoglobulin expressed on NK, DC, and
B cells that plays an inhibitory role in T cell proliferation
and cytokine secretion.®’ In glioma samples analyzed by
flow cytometry, 30% of CD8 TIL express LAG-3.* Much
lower expression (1.25%) was observed in CD4 TILs. One
phase I study, NCT03493932, is examining LAG-3 inhib-
itor therapy after cytokine microdialysis and tumor resec-
tion in patients with recurrent GBM.

TIGIT

T cell immunoreceptor with Ig and ITIM domains
(TIGIT) is a transmembrane protein which binds to
CD155 and inhibits NK cell activity.”” TIGIT expression
is also found on CD8 T cells, CD4 T cells, Tregs, and NK
cells. Pediatric glial tumors contain CD4 and CD8 T cells
which express TIGIT as well as TIM3, OX40, and 4-1BB.*
Combination treatment with TIGIT and PD-1 blockade
was shown to increase cytotoxic CD8 cells, reduce Tregs
and improved survival in a murine glioma model.”
PD-1 and TIGIT coblockage increased IFNy- and TNFa-
producing CD8 (and CD4) T cells as compared with
monotherapy groups. Tregs were also decreased but with
no significant difference observed between combination
and monotherapy groups. Reimplantation of tumor in
the surviving animals demonstrated immune memory
with no deaths at 90 days compared with a median survival
of 21 days in a control group. There are currently no trials
of TIGIT agents specifically in glioma or GBM. However,
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NCT03119428 is examining the anti-TIGIT agent OMP-
313M32 in locally advanced, recurrent or metastatic solid
tumor malignancies.

TIM-3

T-cell immunoglobulin and mucin-domain containing-3
(TIM-3) is present on T cells, DC, macrophages, NK,
and tumor cells. On binding galectin-9 and phospha-
tidylserine, TIM-3 induces T cell apoptosis, increasing
phagocytosis and upregulating proinflammatory cytokine
secretion.®® TIM-3 also binds carcinoembryonic antigen
cell adhesion molecule 1 (CAECAM1) on activated T
cells thereby inhibiting them.* TIM-3 is expressed in
higher grade glioma and negatively correlates with T-cell-
mediated immune responses.87 Peripheral T lymphocyte
expression of TIM-3 is also increased and correlates with
worsened grade.*® ® Furthermore, this expression may
be even higher in intratumoral effector lymphocytes.”
Combined antibody blockade of TIM-3 and its CAECAM
ligand have been shown to prolong survival in GBM
mouse models.” This therapy increased the ratio of CD4/
CD8 to Tregs among brain-infiltrating lymphocytes (BIL)
and selective depletion of these CD4 and CD8 cell extin-
guished the survival effect. IFNy and TGF-} were upreg-
ulated and decreased, respectively, reflecting shift in the
cytokine milieu. Triple therapy with PD-1 blockade, TIM-3
blockade, and radiation has also been demonstrated to
improved survival compared with dual or monotherapy.”
Combination therapy also increased the CD8 effector/
Treg ratio, IFNy-producing CD4 cells and IFNYy-producing
CD8 cells. Interestingly, BIL coexpression of PD-1 and
TIM-3 were noted to increase with time. This suggests
that the natural history of glioma may upregulate TIM-3,
representing an immunosuppressive adaptation that can
be countered with inhibitors. Following reimplantation,
none of these long-term survivors established tumors, thus
demonstrating that the mice had achieved immunolog-
ical memory. A clinical trial, NCT03961971, combining
the anti-TIM-3 inhibitor MBG453 with the PD-1 inhibitor
spartalizumab and stereotactic radiosurgery is scheduled
to begin August 2019.

A2AR

Adenosine A2 receptor (A2AR) is a G protein-coupled
receptor. Tissue breakdown and hypoxia promote extra-
cellular adenosine production which in turn leads to
anti-inflammatory effects mediated by these G protein-
coupled receptors.” Increased cyclic AMP upregulates
immunosuppressive cytokines, increases PD-1, induces
T cell anergy and promotes Treg differentiation. Taken
together, these events create a more immunosuppressive
tumor microenvironment. Inhibition of A2AR is, there-
fore, a potential method to stimulate the immune system.
Several purine derivatives related to this have been iden-
tified as having in vivo activity against glioma. The surface
ectoenzyme CD39 catabolizes proinflammatory ATP into
AMP, and glioma cells have been shown to induce CD4 T

cell suppression via CD39, an effect which is preventable
with the introduction of A2AR antagonists.”

B7-H3

B7-H3, an immunomodulatory protein expressed on
both lymphocytes and tumor cells, appears to have a
host of complex effects on T lymphocytes. Initial reports
of human B7-H3 identified a role in upregulating T cell
proliferation, and it was noted that cytotoxicity with anti-
body blockade of B7-H3, or its potential ligand TLI-2,
in turn suppresses T cell activation.” *° However, more
recent experiments of murine B7-H3 conversely suggest
that B7-H3 may actually have suppressive effects on cyto-
toxic T cells by downregulating proinflammatory Thl
cells.”” ®® B7-H$ expression in glioma correlates with
higher grade and worsened prognosis.” ' One study in
murine glioma models found that B7-H3 gene silencing
of B7-H3 leads to a less invasive phenotype.'” Together,
these suggest that B7-H3 upregulation promotes tumor
growth and invasion which, if true, could be through
immune or non-immune related mechanisms.

VISTA

V-domain Ig suppressor of T cell activation (VISTA), also
known as PD-1H, is an inhibitory molecule expressed
on hematopoietic cells and tumor cells. On binding an
unknown receptor VISTA suppresses CD4 and CD8 T
cell activation and promotes Treg proliferation.'” '’ In
murine glioma models (GL261), VISTA knockout was
shown to prolong survival and synergism with radiation
was observed.'” VISTA is not currently being studied in
human trials.

B7-H4

There are a host of other immune checkpoint molecules
which have been shown to influence the tumor microen-
viroment but remain early in development. B7-H4 (B7S1)
is an inhibitory molecule expressed on APC which inhibits
T cells.'™ ' Additionally, B7-H4 is expressed by glioma
stem-like cells (U251).""” B7-H4 expression has been
shown to be associated with prognosis in GBM where it
appears to mediate cross talk between glioma and macro-
phages via the I1L-6/STATS signaling pathway.'” Other
checkpoint molecules such as B and T lymphocyte atten-
uator (BTLA) have yet to be sufficiently described in
glioma.

ALTERNATIVE MECHANISMS OF IMMUNE MODULATION FOR T
LYMPHOCYTE ACTIVATION
To date, the success of targeting immune modulatory
molecules has been by using monoclonal antibodies that
block either ligand or receptor. However, multiple other
mechanisms of targeting these interactions are also under
development.

In contrast to monoclonal antibodies, small molecule
inhibitors contain only sufficient chemical structures
needed to antagonize target molecules. Small molecule
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inhibitors would conceivably possess greater molecular
stability, less immunogenicity and improved penetra-
tion to tumor sites than monoclonal antibodies. The
ability to more easily penetrate the BBB makes these
small molecule inhibitors particularly attractive for the
treatment of glioma. The PD-1/PD-L1 binding site has
been characterized as hydrophobic and spatially flat.'”
To this end, various compounds have been developed
that specifically block the PD-1/PD-L1 interaction.'"
These compounds consist of a core scaffold of either
three aromatic rings or two and a benzodioxan ring with
additional variant moieties. They have been shown to
bind PD-L1 and block the interaction of PD-1 as verified
by the restoration of 15N resonance signal on radiola-
beled PD-1.""" The EC,, of the least toxic compounds
BMS-1001 and BMS-1116 was 33.4 and 40.5uM, respec-
tively. These compounds were shown to induce TCR
stimulation, as measured by a luciferase reporter gene.
Crystallography demonstrated that BMS-1166 showed
four protein bonds with a dimer complex of PD-LI.
Furthermore, four decompensation fragments, repre-
senting the core aromatic and benzodioxan structures,
displayed PD-L1 affinity.

Typical monoclonal antibodies are ~150kDa in weight
and consist of two heavy and two light protein chains,
as well as Fab and single-chain variable fragments.
Nanobodies, also called single-domain antibodies, are
recombinant antibody fragments containing a mono-
meric antigen-binding domain. Nanobodies are only
~15kDa, more hydrophilic, more stable and less sterically
hindered then their full antibody counterparts, drasti-
cally improving their ability to penetrate into tumor and
molecular sites.!'2 114 Furthermore, these nanobodies
can be humanized to further decrease their immunoge-
nicity.""® Various delivery systems for immune checkpoint
modulators, including platelet, viral and bacterial vectors
are also under active investigation.''® Caplacizumab,
a nanobody targeting von Willebrand factor, recently
received the first ever FDA approval for a nanobody-
directed therapy.""” KN035, an anti-PD-L1 IgV-type nano-
body has been shown to bind chiefly through a 21 amino
acid segment that includes the Ile54, Tyr56 and Argll13
residues which participate in the PD-1 interaction.'®
Notably, KN035 affinity for PD-L1 is ~1000-fold stronger
than PD-1s affinity for PD-L1 (IC,=5.25nM).""

CAR T cells, T cells genetically engineered with MHC-
independent recognition of tumor-associated antigens
(TAA), have shown increasing benefit in the treatment
of hematological malignancy."® '*! CAR T cells with anti-
PD-L1 targeting have demonstrated cytotoxic activity in
mice bearing melanoma and colon tumors.'?? In addition,
CAR T cells have been developed with a switch receptor
construct composed of extracellular PD-1 domains
coupled to transmembrane and cytoplasmic CD28
signaling domains.'® These CAR T cells have been shown
to induce tumor regression in murine models of prostate
cancer. CAR T cells have also been engineered to secrete
PD-L1 antibody. In orthotropic renal cell cancer models,

these CAR T cells were capable of inhibiting tumor
growth via T-cell exhaustion and NK cell recruitment.'**

Using vaccine therapy to induce T lymphocyte activa-
tion is another approach. Tumor vaccines are intended to
provoke an adaptive immune response to TAA whereby
these TAA are presented by MHC I/1I on APC for recog-
nition by naive T cells which then proliferate and differ-
entiate into cytotoxic T lymphocytes with specificity for
tumors expressing said TAA.'® Several vaccine types exist
including peptide-based, heatshock protein and DC
vaccines.

Peptide vaccines consist of TAA extracted from tumor
tissue or synthesized from known epitopes. Some of the
epitopes frequently employed in GBM-targeting peptide
vaccines include melanoma-associated antigen 1 (MAGE-
1), human epidermal growth factor receptor 2 (HER2)
and gpl100." They are frequently administered with
an immunostimulatory adjuvant such as a TLR agonist.
There have been several studies targeting the epidermal
growth factor receptor variant III, a transmembrane
tyrosine kinase receptor variant which is expressed in
24%-67% of GBM.'"" 12 Phase II studies (ACTIVATE,
ReACT) of EGFRVIII specific peptide initially showed
promising OS in the newly diagnosed and recurrent
settings, respectively.'* " However, ACTIV, a phase III
of 745 patients with newly diagnosed EGFRvIII+GBM
treated with CDX-110 and GM-CSF showed no OS advan-
tage over control.””! Another approach has been to use
intratumor delivery of recombinant polio-rhinovirus
chimera, PVSRIPO. PVSRIPO binds with high affinity to
poliovirus receptor (CD155) which is highly expressed on
malignant glioma.'™ A phase I trial of 61 patients with
recurrent GBM showed a median OS of 12.5 months.'”

Heat-shock vaccines combine TAA with chaperone
heat shock proteins (HSP). HSP are involved in post-
translational protein folding as well as modulation of the
immune response.'***® HSP complex with TAA and then
internalized into APC via receptor-mediated endocytosis,
via CD91 and LOX-1, for presentation to CD8+ T cells
by MHC 1.”7"% Additionally, HSP can trigger an innate
immune response through TLR."*’ Phase II results of 41
patients with recurrent GBM treated with a 96 kD HSP
protein complex, HSPPC-96, showed a median OS of
42.6 weeks.'"' NCT03018288 is an ongoing randomized,
double-blind phase II trial of surgery, chemoradiation,
and pembrolizumab with and without HSPPC-96 in newly
diagnosed MGMT unmethylated GBM.

DC vaccines use professional APC which participate
in the innate immune response.'* On internalization of
antigen, DC migrate to lymphoid tissue where they stim-
ulate CD4 and CD8 T cells. The VICTORI study, a trial
of 20 patients with newly diagnosed grade III/IV glioma
treated with autologous DC vaccine (DC pulsed with
EGFRVIII peptide conjugated to keyhole limpet haemo-
cyanin) showed an OS of 22.8 months from diagnosis.'*
A significant increase in antigen-specific T cell prolifer-
ation was observed in postvaccination peripheral blood.
Another phase I, ICT-107, treated 20 patients with GBM
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(and 1 brainstem glioma) with a multiepitope-pulsed DC
vaccine (HER2, TRP-2, gp100, MAG-1, IL13Ra2, AIM-2)
observing a median OS of 38.4 months with expression
of target epitopes (MAGE-1, AIM-2) correlating with
improved survival.'*® Other trials with smaller patient
cohorts have shown long-term response and correlative
immune response.'** Finally, a comparison of 6 patients
with malignant glioma treated with glioma-associated
antigen compared with 28 patients treated with autolo-
gous tumor lysate-pulsed DC vaccine showed elevated
NK activity in the glioma-associated antigen cohort.'®
Additionally, decreased T reg ratio and activated NK cells
correlated with prolonged survival in these patients.

CONCLUSION

The development of PD-1, CTLA-4 and newer, “second
generation” checkpoint modulators represents a potential
opportunity to develop novel therapies for the treatment
of primary brain tumors, particularly GBM. Unfortu-
nately, there are currently limited data on immune
checkpoint inhibitors in other types of glioma such as
oligodendroglioma or astrocytoma. As these diseases tend
to have a more indolent, although still malignant course,
it is feasible that immune surveillance aided by check-
point modulation could fair better than the more prolif-
erative and aggressive GBM. A series of 10 patients with
recurrent or refractory pediatric brain tumors including
pineoblastoma, medulloblastoma, ependymoma and
CNS embryonal showed transient partial responses in
patients with PD-L1 expression and higher tumor muta-
tion burden."*® A study of the immune checkpoint inhib-
itor nivolumab is ongoing in patients with select rare
CNS cancers (NCT03173950). Additionally, responses
to immune checkpoint blockade have been reported,
although rarely, in other primary CNS malignancies such
as meningioma and primary CNS lymphomalM_149

Initial studies using single agent immune modulators in
GBM have been mostly unsuccessful, thereby providing
a stronger rationale for the consideration of combina-
tional regimens. However, as outlined in this review,
there are many candidate agents, which when considered
for combination regimens, yield an impractical number
of dual agent treatment regimens. Therefore, increased
understanding of the mechanisms of action and resis-
tance combined with more robust preclinical and early
clinical testing will be needed to be able to adequately test
the most promising therapies.

Among the activating immune checkpoint molecules,
the ones with the most robust preclinical data are 4-1BB
and GITR. Agonists against both these targets have
demonstrated antitumoral activity and alteration of the
cellular milieu in murine glioma models. They have both
also proven to be synergistic with radiotherapy in mice, a
particularly attractive feature as radiotherapy remains the
mainstay of treatment for newly diagnosed GBM. GITR
is also of interest in that, as its name suggests, it is upreg-
ulated by glucocorticoids.'™ Given the high prevalence

of steroid use in patients with GBM, GITR may be over-
expressed on the TILs of these patients. Although corti-
costeroids blunt the immune response of checkpoint
modulators, upregulation of GITR with the addition of
a robust GITR agonist may have an antitumor effect even
in the presence of steroids. Furthermore, intracranial
administration of GITR may be necessary to provoke an
immune response. Given the available preclinical data,
further early phase clinical trials to demonstrate safety
and efficacy of these agonists in glioma are needed.

Other activating immune molecules including ICOS,
0X40, and CD27 need further study in glioma mice
models, specifically intracranial models, to demonstrate
that agents targeting these molecules produce tumor
regression, immune modulation, and improved survival.
Preclinical work suggests combining OX40 agonists
with vaccine therapies would likely be of most benefit.
Cellular and antibody therapies directed against CD27
and its ligand CD70 have shown tumor inhibition in mice.
However, contradictory preclinical findings have called
into question whether CD27 and B7-H3 signaling plays
a protumoral or antitumoral role in the immune system
and more work is needed to elucidate if the antitumoral
effect initially observed is indeed T lymphocyte mediated.

The inhibitory immune checkpoint molecules PD-1
and CTLA-4 are under active investigation with a recent
study suggesting efficacy from PD-1 inhibitors when
given preoperatively. This is consistent with the efficacy
observed in early phase studies of Merkel cell, bladder, and
triple negative breast cancer, suggesting that neoadjuvant
treatment is a viable immunomodulatory approach.'”
Other modulatory strategies may also have utility. TIM-3
antibody blockade improves survival and, like 4-1BB and
GITR, appears to have synergistic benefit with radiation
in mice models. TIM-3 studies have also shown immu-
nomodulation with increased immune cell infiltration,
activation, and memory. Similarly, TIGIT, in combina-
tion with PD-1 blockade has demonstrated improved
survival as well as increased cytotoxicity and decreased
regulatory T cells. Both TIM-3 and TIGIT may be good
candidates for phase I/II trials in patients with glioma. In
contrast, the physiological mechanisms regarding LAG-3,
A2AR, VISTA, and B7-H4 in glioma remain unclear and
both targets would likely benefit from further preclinical
studies to better define efficacy as well as their immuno-
modulatory effects. Similarly, conflicting findings exist
for B7-H3, mandating additional research to elucidate
the effect of B7-H3 blockade on different T cell subpop-
ulations and associated tumor response before its consid-
eration for clinical trial testing.

The function of immunomodulatory molecules such
as those described here can be activated or inhibited by
mab binding and this has to date proved to be the most
successful approach. However, several other mechanisms
for regulation exist, each with their own advantages
and disadvantages. Small molecule inhibitors such as
BMS-1166 could reach to molecular sites that larger anti-
bodies cannotaccess due to steric hindrance. Nanobodies,
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like KNO35 can bind PD-L1 with great affinity. Further-
more, delivery systems such as viral vectors may improve
BBB infiltration of nanobodies. CAR T cells hold great
potential due to the range of genetic modifications
(chimeric switch-receptors, antibody secretion) currently
under development. Finally, vaccine therapy can prime
cytotoxic and helper T cells for a more robust immune
response.

In conclusion, the development of several novel
immune checkpoint molecules represents a potential
mechanism to overcome the immunosuppressive environ-
ment of GBM and achieve meaningful benefit. Of these
“second generation” checkpoint molecules, the ones with
the greatest potential and most preclinical data in glioma,
are 4-1BB, GITR, TIM-3, and TIGIT. All of which should
be considered for early phase clinical trials in glioma.
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