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The development of therapeutics for cytomegalovirus (CMV) infections, while progressing, has not matched the pace of new treat-
ments of human immunodeficiency virus (HIV) infections; nevertheless, recent developments in the treatment of CMV infections 
have resulted in improved human health and perhaps will encourage the development of new therapeutic approaches. First, the 
deployment of ganciclovir and valganciclovir for both the prevention and treatment of CMV infections and disease in transplant 
recipients has been further improved with the licensure of the efficacious and less toxic letermovir. Regardless, late-onset CMV dis-
ease, specifically pneumonia, remains problematic. Second, the treatment of congenital CMV infections with valganciclovir has ben-
eficially improved both hearing and neurologic outcomes, both fundamental advances for these children. In these pediatric studies, 
viral load was decreased but not eliminated. Thus, an important lesson learned from studies in both populations is the need for new 
antiviral agents and the necessity for combination therapies as has been shown to be beneficial in the treatment of HIV infections, 
among others. The development of monoclonal antibodies, sirtuins, and cyclopropovir may provide new treatment options.
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Advances in the prevention and treatment of cytomegalovirus 
(CMV) infections are limited but well documented. Realized 
successes indicate a need for improved therapies, if not combin-
ations. Only 5 CMV therapeutics are approved by the US Food 
and Drug Administration (FDA): foscarnet (1991), ganciclovir 
(1994) and its prodrug valganciclovir (2001), cidofovir (1996), 
and letermovir (2017). Risk/benefit considerations of foscarnet 
and cidofovir preclude use in neonatal and infant populations; 
letermovir, while licensed for adult stem cell transplant recipi-
ents, is being evaluated in children undergoing transplantation. 
This document provides a glimpse of the limited achievements 
and offers hope for further improvements.

ADVANCES IN THE TREATMENT OF CONGENITAL 
CYTOMEGALOVIRUS INFECTIONS

CMV infection is the leading nongenetic cause of sensori-
neural hearing loss (SNHL) [1–4] and the most frequent known 
viral cause of mental retardation [5], affecting 0.5%–0.7% of 
live births in industrialized countries [6–8], including 19  000 

to 26 600 congenital infections annually in the United States. 
Approximately 2300 (10%) have symptomatic disease at de-
livery, of whom 35% have SNHL, up to 66% have neurologic 
deficits, and 4% die in the newborn period [7–11]. SNHL occurs 
at a lower rate among the 90% of congenitally infected neonates 
who are asymptomatic at delivery, but accounts for the majority 
of cases of hearing loss overall [7, 12]. African American neo-
nates disproportionately suffer from congenital CMV infec-
tion at triple the rate of white neonates and 9-fold higher than 
Asian American neonates [13]. As estimated in Table 1, each 
year 4000–5000 of these babies will develop CMV-associated 
disabilities. Congenital CMV accounts for 21% of hearing loss 
at birth and 24% of all cases of hearing loss by 4 years of age [1, 
14]. The overall economic burden of congenital CMV infection 
exceeds $3 billion annually, adjusted for 2015 dollars [15–17].

Since the 1980s, the National Institute of Allergy and 
Infectious Diseases Collaborative Antiviral Study Group 
(CASG) has conducted a series of clinical trials with parenteral 
ganciclovir and oral valganciclovir in infants <1 month of age 
born with symptomatic congenital CMV disease [19–25].

Study Design and Results of the Ganciclovir Study

After establishing the appropriate dose of intravenous (IV) 
ganciclovir for use in neonates in the 1980s [19, 24, 25], the 
CASG conducted a phase 3 randomized controlled trial of 6 
weeks of IV ganciclovir (6  mg/kg/dose IV) vs no therapy for 
neonates with symptomatic neonatal disease [23]. One hundred 
patients with symptomatic congenital CMV disease involving 
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the central nervous system (CNS) were randomized. The pri-
mary study endpoint was improved brain stem evoked re-
sponse (BSER) audiometry by 1 gradation between baseline 
and the 6-month follow-up (or, for those patients with normal 
hearing at baseline, normal BSER at both time points). Clinical 
and laboratory improvement constituted secondary endpoints. 
Audiological analyses were performed on the best evaluable 
ear (“functional” assessment) and on total evaluable ears (“bi-
ologic” assessment).

For infants available at follow-up, 21 of 25 (84%) ganciclovir 
recipients either had improvement in hearing in their best 
ear between baseline and 6  months or had normal hearing 
at both time points, compared with 10 of 17 (59%) subjects 
in the no treatment group (odds ratio [OR], 5.03 [95% con-
fidence interval {CI}, .84–45.94]; adjusted P  =  .06). None 
of the 25 ganciclovir recipients had hearing deterioration 
in their best ear between baseline and 6  months, compared 
with 7 of 17 (41%) subjects in the no treatment group (OR, 
21.11 [95% CI, 2.84–∞]; adjusted P < .001). Five of 24 (21%) 
ganciclovir recipients had worsening in hearing in their best 
ear between baseline and ≥1  year, compared with 13 of 19 
(68%) subjects in the no treatment group (OR, 10.26 [95% CI, 
1.79–81.92]; adjusted P = .002). Ganciclovir-treated subjects 
also normalized alanine aminotransferase (ALT) more rap-
idly compared with the no treatment group (19 vs 66  days, 
respectively; P = .03).

Twenty-nine of 46 (63%) ganciclovir-treated subjects de-
veloped grade 3 or 4 neutropenia (Division of AIDS Toxicity 
Tables) compared with 9 of 43 (21%) subjects in the no treat-
ment group (P < .01). Fourteen of the 29 (48%) required dosage 
adjustments, although only 4 patients discontinued drug per-
manently. Neutropenia in ganciclovir-treated subjects resolved 
in 12.8 (±13.6) days, and in the no treatment group in 14.2 
(±13.5) days. All subjects resolved their neutropenia. The inci-
dence of grade 3–4 thrombocytopenia was comparable across 
both study arms, as was the incidence of grade 3–4 increases in 
ALT, and total bilirubin levels.

Developmental Analyses

Denver Developmental Evaluations were performed at 6 weeks, 
6 months, and 12 months [26]. At the 6-week assessment, the 
average number of developmental delays per subject was 1.5 
for ganciclovir and 2.05 for the no treatment subjects (P = .13); 
at 6 months, delays were 4.46 and 7.51, respectively (P =  .06) 
and at 12 months were 9.78 vs 17.14, respectively (P =  .007). 
Multivariate analysis of variance tested independent factors re-
lated to poor development, indicating that the ganciclovir ben-
efit remained statistically significant at 12 months (P =  .007), 
and approached statistical significance at 6 weeks (P = .08) and 
6 months (P = .08).

Study Design and Results of the Valganciclovir Therapy Study

Ganciclovir results suggested that therapeutic benefit waned over 
the first 2  years of life [23], implying that a new strategy of ex-
tending the duration of therapy may be beneficial. Thus, the CASG 
developed a pharmacokinetic and pharmacodynamic study to 
determine the dose of oral valganciclovir that achieved systemic 
ganciclovir exposure equivalent to IV ganciclovir [21], generally an 
area under the curve (AUC12) in the range of 27–32 µg × hour/mL, 
with a coefficient of variation in the range of 30%–40%.

Twenty-four subjects <1 month of age with symptomatic con-
genital CMV disease were assessed. A dose of 15.62 mg/kg pro-
vided an AUC12 of 27.4 µg × hour/mL. The oral bioavailability 
of valganciclovir increased in early infancy from 48% at approxi-
mately 4 weeks of life to 64% at approximately at 7 weeks of life, an 
increase proportionate to improved ganciclovir renal clearance.

Using the oral dose of valganciclovir of 16 mg/kg/dose twice 
daily, the CASG study assessed whether longer-term therapy 
provided prolonged beneficial effects. Ninety-six subjects were 
randomized to blinded study medication (47 drug, 49 placebo) 
after receiving 6 weeks of valganciclovir. Total ears from subjects 
receiving 6 months of valganciclovir were more likely to have 
improved hearing or to maintain normal hearing between base-
line and 12 months (compared to 6 weeks) after a priori adjust-
ment for CNS involvement at baseline (adjusted OR [aOR], 3.04 
[95% CI, 1.26–7.35]; P = .01). Similar results were evident when 
prematurity and age at treatment initiation were added to the 
model (P = .01). The relative risk for improved or protected total 
ear hearing between baseline and 12 months for the 53 subjects 
with baseline CNS involvement who received 6 months of treat-
ment and 6 weeks of treatment was 1.66 (95% CI, .92–2.4), and 
the risk difference was 0.27 (95% CI, .09–.45). The benefit of 
longer-term therapy in the total ear analysis was maintained at 
24 months, with improved outcomes after adjusting for CNS in-
volvement at baseline (aOR, 2.61 [95% CI, 1.05–6.43]; P = .04). 
Similar results were evident when prematurity at treatment in-
itiation was modeled (P =  .04). The relative risk for improved 
or protected total ear hearing between baseline and 24 months 
was 1.46 (95% CI, .87–2.05); the risk difference was 0.23  
(95% CI, .05–.41), following 6 months of therapy.

Table 1. Sequelae Following Congenital Cytomegalovirus Infection in the 
United States

Parameter Estimated Annual Value

No. of live births per year 3 800 000

Rate of congenital CMV infection 0.6%

No. of infected infants 22 800

No. of infants symptomatic at birth (12.8%) 2918

 Symptomatic at birth, who have or develop disa-
bility (50%)

1459

No. of infants asymptomatic at birth (87.2%) 19 882

 Asymptomatic at birth, who have or develop disa-
bility (13.5%)

2684

Total with congenital CMV-related disabilities 4143

Adapted from Cannon et al [18].

Abbreviation: CMV, cytomegalovirus.
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Adjusting a priori for CNS involvement, valganciclovir 
therapy led to higher Bayley III Language Composite (P = .0046) 
and Receptive Communication Scale (P = .0031) developmental 
scores at 24 months compared with subjects randomized to 6 
weeks of treatment. These differences were maintained when 
age at treatment initiation and prematurity were added to the 
model (P = .0037 and P = .0027, respectively).

Collectively, these trials led the FDA to modify the 
valganciclovir package insert to cite the dose used in CASG 
studies [22, 27], and the American Academy of Pediatrics now 
recommends 6 months of oral valganciclovir therapy for infants 
with symptomatic congenital CMV disease [28, 29].

Implications for Potential Biomarkers on New Treatment Approaches

Overall clinical benefit is modest, raising the possibility that 
more effective drugs or treatment regimens could provide addi-
tional benefit. Subjects with symptomatic congenital CMV dis-
ease who achieve complete viral suppression (defined as ≤2.5 
log) by day 14 of valganciclovir therapy and maintain it over 
the next 4 months are statistically more likely to have improved 
hearing across the first 2 years of life (Table 2) [30]. However, 
the ability of ganciclovir/valganciclovir to cause such a rapid 
decline is limited to a small number of patients; typically, viral 
load decreases by only 1 log over the first week and then <0.5 log 
over subsequent weeks (Figure 1) [22]. The rapidity of clearance 
of virus and cerebrospinal fluid findings require further eval-
uation. Combination therapy has the potential to significantly 
advance management options in the treatment of symptomatic 
congenital CMV disease, as has been the case with combination 
therapy in the treatment of human immunodeficiency virus 
(HIV) and hepatitis C virus infections. These data foreshadow 
the potential for linking CMV biomarker(s) to drug exposure. 
These relationships would serve to isolate the most important 
pharmacokinetic parameters linked to treatment response, and 
more precisely identify the optimum dosing strategy.

Current CASG Studies Assessing Additional Populations and Treatment 

Approaches

The CASG is currently evaluating oral valganciclovir therapy 
when started beyond the first month of life for treatment of infants 
and toddlers with CMV-associated hearing loss in a placebo-
controlled trial (ClinicalTrials.gov identifier NCT01649869). 
Furthermore, screening of 50 000 babies has been undertaken 
to identify approximately 230 otherwise asymptomatic in-
fected infants who will receive oral valganciclovir therapy for 
4 months (ClinicalTrials.gov identifier NCT03301415) to deter-
mine if hearing loss can be prevented.

UTILIZATION OF LETERMOVIR IN THE PREVENTION 
OF CMV INFECTIONS IN STEM CELL TRANSPLANT 
RECIPIENTS

CMV is the most common clinically significant viral infection 
following stem cell or organ transplantation, causing morbidity 

due to direct effects (pneumonia, hepatitis, retinitis and en-
cephalitis) and indirect effects (increased risk of opportunistic 
bacterial and invasive fungal infections, graft-vs-host disease, 
delayed engraftment, or graft failure/rejection), as well as in-
creased overall mortality [32, 33].

Two approaches exist to preventing CMV disease in trans-
plant recipients: (1) prophylaxis, whereby antiviral treatment 
is started prior to viremia; or (2) preemptive therapy, defined 
as active surveillance for viral replication, with treatment only 
initiated when CMV viremia is detected. Preemptive therapy 
has been the preferred approach for preventing CMV disease in 
hematopoietic stem cell transplant (HSCT) recipients to min-
imize the toxicities of the available nucleoside analog agents. 
Although the introduction of preemptive therapy for the man-
agement of CMV infection has reduced the incidence of CMV 
end-organ disease, this approach has remained suboptimal as 
(1) preemptive therapy is initiated only after patients develop 
CMV viremia, and any level of viremia is associated with an 
increased risk of overall mortality; and (2) nucleoside analog 
inhibitors have toxicities, including myelosuppression, delayed 
bone marrow engraftment, and nephrotoxicity. Prophylaxis 
would be a preferred strategy if a drug had reduced toxicity 
and/or improved potency compared with existing agents. 
PREVYMIS (letermovir) was developed to meet the unmet 
medical need for a prophylactic anti-CMV agent with potent 
activity and a favorable therapeutic index that could improve 
clinical outcomes in HSCT recipients [34].

PREVYMIS (letermovir) is an inhibitor of the CMV 
viral terminase that is responsible for the cleavage of newly 
synthesized CMV DNA into individual unit–length viral gen-
omes. The first terminase inhibitors described for CMV were 
the halogenated benzimidazole analogs and were shown to 
eliminate the formation of monomer viral genomes in infected 
cells [35, 36]. This series is remarkably specific for CMV, as re-
viewed earlier [37]. While they are nucleoside analogs, they 
do not require phosphorylation for antiviral activity [38], but 
rather target components of the viral terminase, including 
UL56 and UL89 [39]. Letermovir demonstrated potent and 
selective inhibition of CMV activity in vitro and in preclinical 
models [40–45].

A series of phase 2 and 3 studies has defined antiviral ac-
tivity and safety. First, proof of antiviral activity in humans 
was established in solid organ transplant recipients who had 
CMV viremia. Second, a phase 2b study demonstrated a dose 
response and excellent tolerability in the prevention of CMV 
viremia and/or disease in HSCT recipients. Last, these findings 
were confirmed in a pivotal randomized, placebo-controlled 
phase 3 study for the prophylaxis of CMV infection/disease in 
adult CMV-seropositive recipients of an allogeneic HSCT in 
the first 3 months posttransplant—a time frame for highest risk 
of CMV reactivation. Letermovir prophylaxis, started within 
28 days and continued until 14 weeks posttransplant, effectively 
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prevented clinically significant CMV infection/disease, with 
37.5% of participants on letermovir developing CMV viremia/
disease compared to 60.6% participants on placebo at 24 weeks 
posttransplant (P <  .0001). These results demonstrated an ap-
proximate 40% relative reduction of CMV infection/disease 
compared to placebo with a number needed to treat to pre-
vent 1 case of infection/disease of 5 patients. Furthermore, all-
cause mortality was decreased by approximately 30% compared 
to placebo (10.2% letermovir group vs 15.9% placebo group) 
at week 24 post-HSCT, with a number needed to treat of 20. 
The mortality benefit of letermovir treatment was maintained 
through week 48 after transplantation. Letermovir was well tol-
erated with no evidence of myelotoxicity; participants who re-
ceived letermovir had a similar time to engraftment compared 
with those who received placebo [46].

PREVYMIS was approved in the United States by the FDA 
on 9 November 2017 and by the European Union on 8 January 
2018, after accelerated assessment. As the first CMV therapeutic 
approved since 2001, PREVYMIS marks the beginning of a new 

era for the prophylaxis of CMV infection and disease in HSCT 
recipients by enabling the adoption of a new prevention para-
digm of CMV management.

DRUGS IN CLINICAL DEVELOPMENT

Maribavir, a benzimidazole L riboside structurally related to 
the halogenated benzimidazole terminase inhibitors, is a highly 
specific inhibitor of the CMV UL97 kinase, as reviewed [47, 
48]. This molecule exhibits favorable pharmacokinetic proper-
ties, is well tolerated, and holds promise for the treatment of 
CMV infections [49–51]. In a phase 3 study, maribavir-treated 
patients failed to meet the clinical endpoints [52], possibly 
due to an inadequate dose. One phase 3 trial recently dem-
onstrated equivalence of maribavir at higher doses compared 
with ganciclovir; another is ongoing (ClinicalTrials.gov identi-
fiers NCT02931539 and NCT02927067) [53]. The inhibition of 
UL97 kinase activity by this drug would interfere with the ac-
tivation of ganciclovir and filociclovir; thus, their concomitant 
administration would likely reduce the efficacy of the later dugs 

Table 2. Improvement and Protection in Best-Ear and Total-Ear Hearing Between Baseline and Follow-up in Subjects With Complete Viral Suppression 
by Day 14 of Therapy Through Month 4, and Subjects Without Complete Viral Suppression

Analysis No. of Subjects or Ears

Hearing Between Baseline and Follow-up

P ValueImproved/Protected Others

6-mo total-ear hearing

 With complete viral suppression 19 17 (89) 2 (11) .0098

 Without complete viral suppression 48 27 (56) 21 (44)  

12-mo total-ear hearing

 With complete viral suppression 20 20 (100) 0 .0007

 Without complete viral suppression 48 30 (63) 18 (38)  

24-mo total-ear hearing

 With complete viral suppression 17 16 (94) 1 (6) .0458

 Without complete viral suppression 41 28 (68) 13 (32)  

Adapted from Marsico et al [30].
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Figure 1. Whole blood cytomegalovirus DNA viral load. Reprinted from Kimberlin et al [31] with permission. Clearance of virus in congenitally infected infants who received 
either 6 weeks or 6 months of therapy. A rebound in virus titer occurred upon drug discontinuation.
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[54–56]. Clinical studies need to be designed with this issue in 
mind, but strategies to minimize this effect clearly exist.

The acyclic nucleoside phosphonates, such as cidofovir, have 
excellent antiviral activity against CMV, but its use is limited 
by toxicity [57, 58]. Brincidofovir, the new ether lipid ester 
prodrug of cidofovir [59], exhibits enhanced in vitro efficacy 
against all the human herpesviruses, including CMV [60], and 
retained activity against ganciclovir-resistant isolates of CMV 
having mutations in the UL97 gene. Brincidofovir also exhibits 
markedly enhanced activity in vitro against a spectrum of DNA 
viruses, including the herpesviruses, orthopoxviruses, adeno-
viruses, and polyomaviruses [60–63]. The drug was originally 
designed to improve the oral bioavailability of cidofovir and 
indeed proved to be readily absorbed by the oral route in phar-
macokinetic studies [64]. More importantly, this modification 
essentially eliminated its uptake in the kidney by the organic 
anion transporter, thus reducing its nephrotoxicity and offering 
a potentially significant advantage over cidofovir [65, 66].

In clinical studies, brincidofovir performed well in a phase 2 
trial for CMV infections in stem cell transplant recipients and 
reduced the number of CMV events, the primary endpoint, at 
an oral dose of 100 mg twice weekly [67]. In a phase 3, dou-
ble-blind, placebo-controlled, randomized trial, it did not meet 
its primary endpoint (above) (ClinicalTrials.gov identifier 
NCT00411645) [68]. An IV formulation of brincidofovir is in 
phase 2 development and was designed to reduce the incidence 
and severity of diarrhea and increase levels of the drug in other 
important compartments.

THERAPIES IN EARLY DEVELOPMENT

Overview of Small Molecules

Promising molecules in early stages of development have been 
reported. Distinct acyclic nucleoside phosphonate analogs, 
such as diaminopyrimidine derivatives, have broad-spec-
trum antiviral activity and may exhibit reduced toxicity [69]. 
Nonnucleoside inhibitors of the DNA polymerase also rep-
resent an important class of potent compounds, providing 
promise as broad-spectrum inhibitors of the herpesviruses 
without liabilities associated with nucleoside inhibitors [70]. 
The 4-oxo-dihydroquinoline derivatives provide an example of 
highly potent compounds with activity against all the human 
herpesviruses [71, 72] and have the advantage of remaining ac-
tive against ganciclovir-resistant isolates of CMV [73].

The first terminase inhibitors described for CMV were the 
halogenated benzimidazole analogs and were shown to elim-
inate the formation of monomer viral genomes in infected 
cells [35, 36]. This series is remarkably specific for CMV, as 
reviewed previously [37]. Although nucleoside analogs, they 
do not require phosphorylation for antiviral activity [38], but 
rather target components of the viral terminase including UL56 
and UL89 [39]. An advanced candidate is GW275175X, which 

inhibits the terminase complex [74] and retains good activity 
against CMV [75, 76].

Filociclovir, another acyclic nucleoside, is in clinical devel-
opment for the treatment and/or prevention of CMV, human 
herpesvirus 6, and adenovirus. Filociclovir demonstrated good 
in vitro and in vivo potency against human CMV. Filociclovir 
has a dual mechanism of action, inhibiting both the CMV UL54 
DNA polymerase and the CMV UL97 kinase while retaining 
activity against ganciclovir-resistant CMV, despite sharing a 
similar mechanism of action [55]. In addition, filociclovir is 
converted more efficiently in infected cells to the active triphos-
phate form than ganciclovir [77].

Oral bioavailability of filociclovir following single oral doses 
in rats and dogs was 22%–46% and 70%–91%, respectively. In 
safety pharmacology studies, filociclovir did not cause signif-
icant changes in respiratory, cardiovascular, or CNS param-
eters at doses up to 100 mg/kg. Filociclovir was not considered 
genotoxic. Toxicology studies established target organs similar 
to other drugs in the class: kidney, bone marrow, gastrointes-
tinal tract, and testes [78].

The first-in-human, phase 1a clinical study (ClinicalTrials.
gov identifier NCT01433835) [78] in healthy volunteers evalu-
ated the safety and pharmacokinetics of filociclovir in single as-
cending oral doses. Forty-eight healthy volunteers (3 male, 45 
female) were enrolled and completed the study. No serious ad-
verse events were reported. The most common adverse events 
were dry mouth and headache. Maximum plasma concentra-
tions (Cmax) and area under the curve values increased following 
filociclovir doses of 35–1000  mg and decreased at 1350  mg; 
exposure was less than dose proportional. Cmax values were 
281.5–1175 ng/mL and area under the curve at last assessment 
(AUClast) values were 946.2–5696 ng × hour/mL following ad-
ministration of 35, 100, 350, 700, 1000, and 1350 mg oral doses.

A phase 1b clinical study (ClinicalTrials.gov identifier 
NCT02454699; Rouphael et  al, unpublished data) has been 
completed in healthy volunteers and evaluated the safety and 
pharmacokinetics following administration of 7 oral daily doses 
(100, 350, or 750 mg) of filociclovir, and the results are being 
analyzed.

Safety data support advancement of filociclovir following 
work to improve formulation. Phase 2 clinical trials will be 
undertaken [69–72, 77–81].

Application of Monoclonal Antibodies for Therapeutic Purposes

Administering antibodies as an alternative to vaccines has been 
used in pregnancy to treat blood group incompatibilities to 
and prevent rubella, hepatitis, varicella, respiratory syncytial 
virus, and measles [82]. Advantages include more reliable and 
rapid achievement of efficacious plasma concentrations. Passive 
human immunoglobulin (HIG) immunization, which had sug-
gested value for the prevention of congenital CMV infection 
(2005–2012), became controversial when a 2014 study failed to 
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prevent fetal infection [83]. Subsequent study of HIG pharma-
cokinetics established unexpectedly rapid clearance (11 days). 
Based on this observation, a phase 2 trial was conducted [84] 
in which 40 pregnant women with a primary CMV infection 
(9.6 weeks median gestational age) were treated with HIG bi-
weekly rather than monthly as in previous trials. Transmission 
before amniocentesis at 20 weeks occurred in only 1 subject 
(2.5%), with 2 additional subjects infected after treatment. 
Including all 3 cases, the transmission rate was 7.5%, with no 
infected neonate symptomatic at birth. The results are signifi-
cant (P < .0001) when compared to untreated historical controls 
matched for first trimester seroconversion with amniocentesis 
at 20 weeks (108 pregnancies), for whom the transmission rate 
was 35.2% and incidence of sequelae was 14%.

HIG is also effective in solid organ transplant. A  meta-
analysis of 11 randomized trials (N  =  698; median follow-up 
of 12 months) concluded that HIG prophylaxis was associated 
with reduced CMV disease and improved survival [85]. For 
pediatric HSTC, CMV infection at 1 year was 13.4% for HIG-
treated children vs 44.4% without HIG (P = .001) [86].

Replicating the activity of HIG with a monoclonal anti-
body (mAb) offers the prospect of improved consistency in 
manufacturing, lower infusion volume, improved pharmacoki-
netics, and reduced risk of off-target reactivity leading to tox-
icity. Moreover, HIG batches are not rigorously evaluated for 
titer to particular antigens, which may contribute to variability 
in efficacy. Antibodies to the CMV pentameric complex are 
abundant in HIG [87], although immunodominance is not nec-
essarily correlated with neutralizing activity. The major clinical 
effort targeting the pentameric complex has been a mixture of 
2 mAbs (RG7667), which showed promise in a phase 2 trial in 
renal transplant recipients by delaying onset of CMV excretion 
[88] but is no longer being developed, despite modest neutral-
izing activity.

A drawback to targeting the pentameric complex is that anti-
bodies against it fail to neutralize infection of fibroblasts [89], 
whose ubiquitous distribution may be important for disease 
progression [90]. Antibodies to the gB fusion protein, which 
is essential for entry in all cell types, are also part of the nat-
ural immune response, and the adjuvanted gB/MF59 vaccine 
showed efficacy in a substantial number of subjects, both in 
transplant and congenital indications [91]. The first clinically 
tested mAb against gB (Theraclone: TCN-202) was well tol-
erated in a phase 1 trial, but development was discontinued. 
CSJ148 (Novartis) is a mixture of 2 mAbs (targets: gB [AD-
4], an immunodominant region, and the pentameric com-
plex) [92]. In a phase 1 trial, CSJ148 was well tolerated, but it 
too is no longer being advanced. Both AD-4 and the similarly 
immunodominant AD-1 are more variable than the AD-2 site 
I (which is also the least immunogenic site). TRL345 is a native 
human mAb that has 10-fold higher affinity than TCN-202 for 
this highly conserved epitope, and 6.5-fold higher potency in 

vitro than the anti-gB component of CSJ148 [93]. High affinity 
is important for the mAbs to prevent transmission by remaining 
bound to the virus following transcytosis across the placenta 
via the neonatal Fc receptor [94]. Furthermore, high affinity can 
prevent displacement of neutralizing antibodies to AD-2 site 
I by nonneutralizing antibodies to the adjacent site II present 
in approximately 25% of anti-CMV human serum samples [95]. 
Elevated titers to the TRL345 epitope is associated with reduced 
risk of congenital transmission [96].

TRL345 showed potent antiviral activity against 15 primary 
clinical isolates of diverse genotypes [97]. For several clinical 
strains, potency in a wide range of cell types was 10- to 50-fold 
better than HIG. The absence of a well-validated animal model 
has put a premium on studies using human placental tissue as 
a model. CMV replicates in trophoblast progenitor cells and 
impairs their capacity to self-renew and differentiate. TRL345 
was approximately 10-fold more potent than HIG in these cells 
[98]. In an established ex vivo model in which explants of first-
trimester human placenta are grown on Matrigel, TRL345 was 
highly effective at reducing infection [97].

TRL345 was also compared to a high-affinity antipentameric 
complex antibody cloned from published sequence data (mAb 
1F11 binding to UL128-131A). The 1F11 mAb had more po-
tent neutralizing activity on endothelial cells than TRL345, but 
it provided no protection against infection of smooth muscle 
cells, placental fibroblasts, or trophoblast progenitor cells 
[97]. Formation of multinucleated syncytia is a characteristic 
phenotype of CMV in vivo. In a study of syncytial spread in 
vitro, TRL345 was the most effective antibody in a comprehen-
sive panel of 28 antibodies, both polyclonal and monoclonal, 
targeting all major CMV virion glycoproteins [99]. An addi-
tional observation from this study was that antibodies targeting 
epitopes in gH or gH/gL exhibited strain and cell type depend-
ence. By contrast, the frequency of mutations in the TRL345 
epitope is approximately 10-fold lower than for other envelope 
glycoprotein sites [100], despite continuous selective pressure 
(antibodies to the epitope represent approximately 1% of the 
anti-CMV activity in serum), suggesting that escape will be 
rare. TRL345 has been expressed in stably transformed Chinese 
hamster ovary (CHO) cells at 1.8 g/L. The no-observed-adverse-
effect level in a 28-day toxicology study in Sprague-Dawley rats 
was 150 mg/kg/dose. At 15 mg/kg, the projected half-life in hu-
mans is 21 days. An investigational new drug application is ex-
pected to be filed in 2020.

ROLE OF SIRTUINS IN THE TREATMENT OF CMV 
INFECTIONS

Direct-Acting Antivirals Are Limited by Their Spectrum of Antiviral 

Effectiveness

Because direct-acting antivirals exert their therapeutic ef-
fect through direct interactions with a viral protein, they are 
also limited by drug resistance secondary to acquisition of 
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viral mutations disrupting the molecular interaction of the 
drug with the targeted viral protein. Drug-resistant clinical 
isolates of CMV have been identified for all marketed CMV 
antivirals: ganciclovir/valganciclovir, foscarnet, cidofovir, and 
letermovir [101]. A single mutation at UL56 C325 confers ab-
solute resistance to letermovir with minimal impact on viral 
fitness [102, 103].

Host-targeted antivirals (HTAs) are directed against the host-
cell processes upon which viruses are dependent. Compared to 
DAAs, HTAs have the potential to reduce or eliminate viral 
resistance, demonstrate broad-spectrum effectiveness, and 
provide therapeutic utility in areas of unmet medical need. 
First-generation HTAs, such as interferons, broadly activate the 
host’s innate and adaptive immune responses (eg, hepatitis B 
and C) [104]. The clinical use of interferons is limited by tox-
icity. Next-generation HTAs are small molecules that target host 
sirtuin proteins. By modulating sirtuin-enzyme activity, these 
leads are predicted to reduce viral replication by restoring host-
cell metabolism and intrinsic immunity within the infected cell.

The 7 human sirtuins (SIRT1–7) are nicotinamide adenine 
dinucleotide (NAD+)–dependent deacylases that regulate cel-
lular metabolism and gene activity by posttranslationally re-
moving acyl groups from target proteins [105]. In addition to 
the deacetylase activity of all 7 SIRTs, SIRT4, SIRT5, and SIRT6 
can also remove lipoyl, methylglutaryl, hydroxymethylglutaryl, 
and 3-methylglutaconyl moieties [106, 107]; malonyl and 
succinyl moieties; and myristoyl moieties, respectively. The ex-
tent to which proteins in the cell are acylated by the distinct 
fatty-acyl chains is dependent on acyl–coenzyme A  metabo-
lism, which can be selectively regulated [108]. SIRTs localize 
to the nucleus (SIRT1, SIRT2, SIRT6), nucleolus (SIRT7), cyto-
plasm (SIRT2), and mitochondria (SIRT3, SIRT4, SIRT5). The 
NAD+ requirement for the deacylation reaction ties the activity 
of sirtuins to the metabolic capacity of the cell. As such, the 
emerging role of sirtuins is as sensors linking the metabolite 
profile of the cell to cellular signal transduction, as reviewed 
elsewhere [109]. Sirtuin-mediated deacylation of target pro-
teins impacts numerous cell functions, including metabolism, 
cell cycle, apoptosis, stress response, DNA repair, and gene ex-
pression—all functions known to affect virus growth.

Sirtuins control cellular processes that impact the growth of 
many different viruses and function as elements of intrinsic im-
munity [110]. Modulation of sirtuins can restrict the growth of 
both RNA and DNA viruses. Viruses depend on host cell me-
tabolism for energy, metabolic precursors for viral components, 
and cellular organization for replication, maturation, and dis-
semination. Not surprisingly, diverse, intracellular pathogens 
have been shown to directly interact with sirtuins in order to 
co-opt host-cell metabolism or epigenetic mechanisms into sup-
porting the pathogen. These include Salmonella typhimurium 
[111], Listeria monocytogenes [112, 113], Leishmania infantum 
[114], Kaposi sarcoma–associated herpesvirus [115], HIV 

[116], and hepatitis B virus (HBV) [117, 118]. In particular, 
recent publications demonstrate the potential utility of SIRT2 
inhibitors as antibacterial (Listeria) and antiviral (HBV) agents 
[112–117].

A small-molecule screen was carried out on a library of ap-
proximately 13 000 compounds to identify modulators of SIRT1, 
SIRT2, SIRT3, and/or SIRT6 deacetylase activity [119]. Belying 
the importance of metabolism on productive viral replication 
and the role of sirtuins as mediators of intrinsic immunity, 
among the 85 hits validated in the primary assay as signifi-
cantly inhibiting or activating 1 or more of the 4 sirtuins tested, 
more than two-thirds proved to be antiviral with 50% inhibi-
tory concentration <25 µM in a secondary CMV viral growth 
assay. A  medicinal chemistry campaign was performed with 
>400 molecules synthesized to improve the antiviral activity of 
a SIRT2 inhibitor identified in the screen (designated FH-003, 
a 6-{1-[2-(1,2,3,4-tetrahydroisoquinolin-2-yl)-1,3-thiazol-5-yl]
ethyl} quinoxaline). Table 3 shows approximately 100-fold im-
provement in anti-CMV activity with the current lead as well 
as broad-spectrum activity against multiple DNA and RNA 
viruses including BK virus, JC virus, influenza A  and B, and 
respiratory syncytial virus. As would be expected for targeting 
an evolutionally conserved host protein, the broad-spectrum 
antiviral activity was measured in cells derived from multiple 
species, including human, monkey, and dog—all demonstrating 
a therapeutic index >200.

Host targeting predicts favorable antiviral properties, in-
cluding a high barrier to development of resistance and synergy 
with known DAAs. Influenza A, a rapidly dividing RNA virus 
with a higher mutation rate and shorter doubling time than 
most DNA viruses, was used in these studies [120]. A complete 
absence of acquired drug resistance was observed after 10 in-
fluenza A passages in culture in the presence of the lead SIRT2 
inhibitor; in contrast, resistance to the DAA oseltamivir was 
evident after 2 passages. In addition, HTA plus DAA synergy 
was demonstrated by testing the interaction between the lead 
SIRT2 inhibitor and oseltamivir across a wide spectrum of pos-
sible drug combinations. The degree of combined viral inhibi-
tion ranged from 50% to 90%. Using Chou-Talalay modeling 
[121], the combination index was 0.68 combination index, or 
overall combination index < 1, indicating synergy across all rel-
ative combinations used.

The mechanism of SIRT2 inhibition on microbe growth 
is pathogen specific. Infection by Listeria monocytogenes in-
duces subcellular localization of SIRT2 from the cytoplasm 
to the nucleus where epigenetic effects manifest as repression 
of a significant program of host genes [116]. HBV replication 
upregulates protein expression of SIRT2 that acts in a feed-
forward fashion to increase HBV transcription and replication 
[113, 114]. Conversely, parainfluenza virus type 3 (HPIV3) 
reportedly forms viral inclusion bodies dependent on acetyl-
ated tubulin for efficient fusion; HDAC6 and SIRT2-mediated 
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deacetylation of α-tubulin can restrict HPIV3 inclusion body 
fusion [122]. The mechanism of SIRT2 inhibition on human 
CMV growth is under investigation. Pathways downstream of 
SIRT2 posttranslational modifications comprising potential in-
teraction with CMV biology include c-MYC, p53, CDK9, and 
AKT. The lead SIRT2 inhibitor can potently down-regulate 
c-MYC protein known to accumulate during CMV infection, 
presumably to induce efficient glutamine utilization required 
for viral nucleic acids and lipids [123]. p53 is a direct target 
of SIRT2 deacetylation [124, 125]. SIRT2 inhibition leads to 
hyperacetylation and activation of p53, whose transcriptional 
regulatory activity is known to be substantially inhibited by 
CMV [126, 127]. SIRT2 also activates CDK9 [128] and AKT 
kinases [129, 130], known to block the replication [131] or per-
sistence [132], respectively, of CMV.

The current lead in the FH-003 series demonstrates favorable 
pharmacokinetic properties in mice including 100% oral bioa-
vailability, 1:1 plasma:tissue distribution, a half-life approaching 
5 hours, development-amenable in vitro pharmaceutical prop-
erties, and manufacturing-scalable synthesis. Experiments are 
in progress to demonstrate effectiveness in animal models of 
infection with promising preliminary results. Successful devel-
opment of HTAs, including sirtuin modulators, will provide an 
arsenal of agents to use as stand-alone or combination therapies 
with existing DAAs, foretelling significant patient benefits of 
improved control of viral load, minimized adverse events, and 
reduced emergence of viral resistance, as has proven to be the 
case with HIV combination therapies. Given the intimate rela-
tionship between viral infection and host metabolism, broadly 

effective sirtuin-targeted antivirals may also address the unmet 
need of infection by pandemic viruses yet to be identified.
In conclusion, human CMV infections remain a considerable 
cause of morbidity and mortality. As the number of immuno-
suppressed individuals increases, with organ transplantation 
becoming more common, together with the mandate of therapy 
for congenitally infected infants, improved outcome is essential 
[22]. Newer approaches should explore combination therapies.
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Table 3. Broad-Spectrum Antiviral Effectiveness of Small-Molecule SIRT2 Inhibitors

Compound

DNA Viruses RNA Viruses

HCMV 
TB40 BK Virus JC Virus

Influenza A A/
PR/8/1934 

H1N1

Influenza A A/
WSN/1933 

H1N1 
Oseltamivir

Influenza A A/
CA/07/2000 

H1N1

Influenza A A/
Perth/16/2009 

H3N2

Influenza B 
B/FL/4/2006 

Yamagata
RSV Long 

Strain

Human 
MRC5 Human HFF

Monkey 
Cos7

Canine 
MDCK

Canine 
MDCK

Human 
HNBEc

Human 
HNBEc

Canine 
MDCK

Human 
MRC5

IC50
a SIb IC50 SI IC50 SI IC50 SI IC50 SI IC50 SI IC50 SI IC50 SI IC50 SI

FH-003 14 … … … … … … … … … … … … … … … … …

cpd1 7.2 … … … … … 7.9 … … … … … … … … … … …

cpd2 1.4 >18 0.85 >1592 0.05 >382 9.1 … … … … … … … … … … …

Lead cpd3 0.45 >56 … … … … 0.76 >12 2.5 >10 1.2 >82 2.1 >48 1.2 >21 6.7 >3.7

Ganciclovir 1.4 … … … … … … … … … … … … … … … … …

Oseltamivir … … … … … … 0.02 >69 9.0 … … … … … >25 … … …

Ribavirin … … … … … … … … … … 0.71 >141 0.73 >138 … … 16.1 >3.1

Cidofovir … … 4.4 … 3.8 … … … … … … … … … … … … …

Host-targeted SIRT2 inhibitors FH-003, cpd1, cpd2, cpd3, and direct-acting antivirals tested on indicated virus in indicated cell line at a multiplicity of infection of 0.1.

Abbreviations: HCMV, human cytomegalovirus; HFF, human foreskin fibroblasts; HNBE, human normal bronchial epithelial cekks; IC50, 50% inhibitory concentration; MDCK, Madin-Darby 
canine kidney cells; RSV, respiratory syncytial virus; SI, selectivity index.
aIC50 of viral spread given in µM; values in bold indicate 90% inhibitory concentration instead of IC50 measurement.
bSI indicates the 50% cell cytotoxic concentration/IC50.
cAssays performed by the National Institute of Allergy and Infectious Diseases, Division of Microbiology and Infectious Diseases, Resources for Researchers, in vitro testing.
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