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Shared Causal Paths underlying 
Alzheimer’s dementia and Type 2 
Diabetes
Zixin Hu1,3, Rong Jiao2, Panpan Wang1, Yun Zhu4, Jinying Zhao   4, Phil De Jager   5, 
David A. Bennett6, Li Jin1,3 & Momiao Xiong2*

Although Alzheimer’s disease (AD) is a central nervous system disease and type 2 diabetes MELLITUS 
(T2DM) is a metabolic disorder, an increasing number of genetic epidemiological studies show clear 
link between AD and T2DM. The current approach to uncovering the shared pathways between AD and 
T2DM involves association analysis; however such analyses lack power to discover the mechanisms 
of the diseases. As an alternative, we developed novel causal inference methods for genetic studies of 
AD and T2DM and pipelines for systematic multi-omic casual analysis to infer multilevel omics causal 
networks for the discovery of common paths from genetic variants to AD and T2DM. The proposed 
pipelines were applied to 448 individuals from the ROSMAP Project. We identified 13 shared causal 
genes, 16 shared causal pathways between AD and T2DM, and 754 gene expression and 101 gene 
methylation nodes that were connected to both AD and T2DM in multi-omics causal networks.

Although Alzheimer’s dementia is a central nervous system disease and type 2 diabetes MELLITUS (T2DM) is a 
metabolic disorder, an increasing number of epidemiological and genetic epidemiological studies show clear link 
between Alzheimer’s dementia and T2DM. Alzheimer’s dementia with great economic, political and social con-
sequences is a progressive, irreversible degenerative disease of the brain and is the most common cause of demen-
tia due to the gradual accumulation of amyloid-beta βA( ) and twisting of tau protein1,2, and other common brain 
pathologies3. Alzheimer’s dementia is also involved in inflammation and oxidative address and exhibits memory 
loss and cognitive dysfunction4,5.

Two mechanisms underlying T2DM are insulin resistance and insufficient insulin secretion from pancreatic 
β-cells4. T2DM patients are unable to process insulin signaling correctly. In response to insulin resistance, pan-
creatic β-cells increase insulin production. However, when pancreatic β-cells gradually lose function; insulin 
production cannot be increased to maintain normal glucose levels. The brain is a target organ for insulin6. Insulin 
signaling plays an important role in the organization and function of the brain and impaired insulin signaling 
induces an overactivation of GSK-3 kinase, increases tau phosphorylation, alters tau modification and neurofi-
brillary degeneration7. T2DM also suffer from mild to severe nervous system damage. Persistent blood glucose 
may impair blood flow to the brain8.

Prior work in ROSMP found an association of T2DM with incident Alzheimer’s dementia and rate of cog-
nitive decline9. However, we did not find an association with Alzheimer’s disease (AD) pathology10. Rather, we 
found an association with cerebral infarcts. Other evidence from ROSMP continue to point to potential common 
mechanisms. For example, we found that brain insulin signaling was associated with AD pathology11. We also 
found interactions between GSKβ polymorphisms associated with β-amyloid deposition12.

The current approaches to identifying several shared pathophysiology processes between Alzheimer’s demen-
tia and T2DM have several limitations. Firstly, the most previous works have focused on identifying biological 
pathways underlying AD and T2DM. Few attempts to discover the role of dysregulated SNPs, gene expressions 
and methylations have been carried out. Secondly, the conventional evidences for linking AD and T2DM purely 
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depend on the statistical association13. There has been increasing recognition that association and causation are 
different concepts14. Association attempts to measure dependence between two variables, while causation is to 
study the distribution of the variable (effect) after taking action on the another variable (cause). The statistical 
tool for association analysis is the conditional distribution, while the tool for the causal analysis is the interven-
tion calculus. Many association signals may not be causal signals and some causal signals may not show strong 
association. If causation loci were searched only from association loci, many causation loci might be missed. The 
widely used gene expression networks are co-expression networks and phenotype networks are correlation net-
works. The major tools for integrated omics analysis are based on association analysis. The networks in the most 
multilevel omics analysis are undirected graphs. It is difficult to use undirected graphs for identifying the causal 
paths from genetic variants to diseases.

We are facing a great challenge to shift the current analytic platforms of genetic analysis from genetic asso-
ciation analysis to multilevel omics causal analysis for unraveling the mechanic link between AD and T2DM. 
To meet this challenge, we need (1) to develop and implement causation analysis methods for genetic studies 
of AD and T2DM; (2) to develop a general framework for construction of multilevel causal omics networks to 
discover common paths from genetic variations to AD and T2DM via methylations, gene expressions and mul-
tiple phenotypes. The real dada set ROSMAP15,16 will be used to valid the multilevel omics causal networks as a 
useful analytic platform for identifying shared causal paths between AD and T2DM and demonstrates that the 
proposed methods are capable of identifying the shared pathologic paths between AD and T2DM. A program 
for construction of multilevel causal networks can be downloaded from https://github.com/wenrurumon/mysrc/
tree/master/CNIF_0.3.0.

Results
Simulations.  To evaluate the performance of the proposed causal network analysis, we conducted a series of 
simulation studies to compare the detection power and false discovery rate (FDR) for three methods: (1) weighted 
gene co-expression network (WGCNA), (2) structural equation model (SEM) and structural equation model 
coupled with integer programming (SEMIP).

We randomly generated 1,000 directed acyclic graphs (networks) with 20 nodes (15 gene expression or pheno-
type nodes and 5 genotype nodes) and mean 30 directed edges, 1,000 directed acyclic graphs (networks) with 30 
nodes (22 expression/phenotype nodes, 8 genotype nodes), and mean 47 directed edges, and 40 nodes (30 gene 
expression or phenotype nodes and 10 genotype nodes), and mean 68 directed edges, respectively. Simulation 
results were summarized in Table 1 where we only listed undirected network results because the WGCNA can 
only estimate the undirected network. We calculated the power and FDR of three methods for 100, 300, 500 and 
1,000 samples. We can observe that in all cases, The SEMIP had the largest power and smallest FDR. When the 
number of nodes in the networks increased, the power to identify the structure of the networks decreased, while 
FDR increased. When the number of nodes reached 40, the SEMIP can reach 68.5% power and 7.40% FDR using 
1,000 samples.

Shared genetic loci underlying AD and T2DM.  The number of AD and T2DM directly connected or 
indirectly connected genes was summarized in Table 2. The total number of genes connected to both AD and 
T2DM including directly connected and indirectly connected was 759. The genes that were both directly and indi-
rectly connected to both AD and T2DM were summarized in Table S1. The genes that were indirectly connected 
to AD and both directly and indirectly connected to T2DM were listed in Table S2. Similarly, the genes that were 
both directly and indirectly connected to AD and indirectly connected to T2DM were summarized in Table S3.

We also tested causation of 299 pathways in the KEGG pathway database to AD and T2DM (Described in 
detail in the Methods section). The results were summarized as follows. The number of pathways that were 
directly connected to both AD and T2DM was 16; the number of pathways that were directly connected to AD 
and indirectly connected to T2DM was 17; the number of pathways that were directly connected to T2DM and 
indirectly connected to AD was 18, the number of pathways that were indirectly connected to both AD and 
T2DM was 114; the number of pathways that were directly connected to AD and not connected to T2DM was 6; 
the number of pathways that were not connected to AD and directly connected to T2DM was 2.

Then, we investigated shared gene expressions via multilevel causal networks. We summarized the results 
as follows. The number of expression genes that were directly connected to both AD and T2DM was two genes: 
GRMD1B, RP1-111D6.3, the number of expression genes that were directly connected to AD, but not directly 
connected to T2DM was 19 (P-value < 10−4, Table S4) and the number of expression genes that were directly con-
nected to T2DM, but not directly connected to AD was 7 (P-value < 10−4, Table S5). The number of expression 
genes that were indirectly connected to both AD and T2DM was 725.

Similarly, we can study shared methylation via multilevel causal networks. The number of methylated sites/ 
genes that were directly connected to AD, but not directly connected to T2DM was 17 (Table S6) and the num-
ber of methylated sites/genes that were directly connected to T2DM, but not directly connected to AD was 27 
(Table S7). The number of methylated sites/genes that were indirectly connected to both AD and T2DM was 117 
(Table S8).

The number of phenotypes that were directly connected to both AD and T2DM was six (Age, CHL, HDL ratio, 
LDL, Semantic memory and working memory).

Shared CREBBP, MAPK and PI3K-AKT pathways between AD and T2DM.  To assess whether 
CREBBP is a common genetic factor of AD and T2DM, and how CREBBP mediates the development of AD and 
T2DM, we searched the all possible paths from gene CREBBP to AD and T2DM in the inferred multilevel causal 
network. The results were shown in Fig. 1. Figure 1A plotted the path from CREBBP to AD and T2DM via MAPK 
and PI3K-AKT signaling pathways. The genes in the MAPK and PI3K-AKT signaling pathways, CREBBP, 
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episodic memory, MMSE, AD and T2DM were then used to further infer causal networks using SEMs and IP. The 
inferred causal network was shown in Fig. 1B. From Fig. 1B we observed a path from CREBBP to AD and T2DM 
via gene connections:  CREBBP CBL MAP K MAPK MAPK PIK CA2 4 8 1 3→ → → → → .  MAPK and 
PI3K-AKT pathways play critical roles in memory.

Shared TTC3, FoxO, MAPK, and PI3K-AKT Pathways between AD and T2DM.  Next we presented 
an example to illustrate shared causal paths that started a gene directly connected to AD and indirectly connected 
to T2DM.

Methods Nodes
Sample 
Sizes

Undirected Directed

Power FDR Power FDR

WGCNA 20 100 51.60% 16.00%

WGCNA 20 300 53.00% 15.30%

WGCNA 20 500 66.40% 13.00%

WGCNA 20 1000 82.60% 13.60%

SEM 20 100 70.80% 44.40% 50.70% 42.00%

SEM 20 300 77.80% 49.20% 53.90% 23.20%

SEM 20 500 83.50% 46.40% 56.90% 44.90%

SEM 20 1000 98.20% 32.40% 57.30% 26.70%

SEMIP 20 100 64.60% 34.70% 59.50% 15.50%

SEMIP 20 300 73.50% 39.30% 65.40% 17.40%

SEMIP 20 500 77.60% 25.40% 68.30% 12.00%

SEMIP 20 1000 86.60% 22.60% 76.60% 13.20%

WGCNA 30 100 43.30% 21.10%

WGCNA 30 300 49.80% 15.00%

WGCNA 30 500 53.60% 21.00%

WGCNA 30 1000 56.50% 13.20%

SEM 30 100 64.30% 34.10% 46.70% 26.00%

SEM 30 300 73.60% 41.20% 49.30% 22.50%

SEM 30 500 82.30% 34.80% 52.40% 34.10%

SEM 30 1000 94.50% 36.30% 52.80% 27.60%

SEMIP 30 100 63.30% 15.50% 58.50% 16.40%

SEMIP 30 300 67.40% 27.00% 63.50% 13.50%

SEMIP 30 500 71.50% 18.30% 64.20% 10.80%

SEMIP 30 1000 94.80% 28.60% 71.80% 15.00%

WGCNA 40 100 43.30% 21.40%

WGCNA 40 300 49.20% 17.00%

WGCNA 40 500 51.40% 19.70%

WGCNA 40 1000 54.10% 18.20%

SEM 40 100 61.70% 37.30% 46.50% 29.50%

SEM 40 300 70.10% 25.70% 49.60% 38.20%

SEM 40 500 79.90% 35.30% 54.50% 17.70%

SEM 40 1000 95.10% 45.90% 62.60% 27.90%

SEMIP 40 100 62.70% 23.20% 58.30% 11.60%

SEMIP 40 300 64.50% 21.10% 62.10% 10.30%

SEMIP 40 500 75.50% 32.30% 66.20% 15.30%

SEMIP 40 1000 82.00% 34.00% 68.50% 7.40%

Table 1.  Power and FDR of three methods for construction of causal networks with 20,30 and 40 nodes.

To T2DM

Directly 
Connected

Indirectly 
Connected

Both Directly and 
Indirectly Connected

Not 
Connected

To AD

Directly Connected 5 13

Indirectly Connected 682 13

Both Directly and 
Indirectly Connected 20 8

Not Connected 17

Table 2.  The number of genes connected to AD and T2DM.
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Again, we used the DFS algorithm to search the causal paths from multilevel causal networks. The 
causal paths from TTC3 to AD and T2DM were shown in Fig. 2. The paths from MAPK and PI3K-AKT 
pathway to AD and T2DM were the same as that in Fig. 1. The genes in the FoxO, MAPK and PI3K-AKT 
signaling pathways, TTC3, and episodic memory, MMSE, weight, AD and T2DM were then used to further 
infer causal networks using SEMs and IP. The structure of the inferred network was shown in Fig. 2B. There 
were a large number of causal paths from TTC3 to either AD or T2DM. The shared common causal paths 
were → → → →TTC NLK CACNA D CNCNG FOXO3 2 1 3 1→ → → →CCNE CYCS MAPK PIK CA1 1 3  and 
TTC NLK PLK MAPK MAPK MAPK PIK CA3 2 8 1 1 3→ → → → → → .

Shared morphine addiction and neuroactive ligand receptor interaction path-
ways.  Searching the causal paths from gene HNF4G to AD and T2DM via the multilevel causal networks 
using the DFS algorithm, we found that HNF4G was indirectly connected to AD and T2DM. In addition to 
shared MAPK and PI3K-AKT pathways between AD and T2DM which were discussed in the previous sec-
tions, we observed shared two new pathways between AD and T2DM: morphine addiction and neuroactive 
ligand receptor interaction pathways as shown in Fig. S1A. The structure of the inferred network that con-
sisted of shared morphine addiction and neuroactive ligand receptor interaction pathways between AD  
and T2DM was shown in Fig. S1B. There were more than 10 shared causal paths. We observed two shared 
major causal paths: (1) → → → → → →HNF G NLK PLK MAPK MAPK PIK CA AKT4 2 8 1 3 1 amd (2) 

→ → → → →HNF G NLK GNGT PLCB PLCB ADRB4 2 2 1 1.

Shared fatty acid biosynthesis and primary bile acid biosynthesis pathways.  Our data also pro-
vided evidence to show that fatty acid biosynthesis and primary bile acid biosynthesis pathways were shared 

Figure 1.  (A) Shared CREBBP, MAPK and PI3K-AKT pathways between AD and T2DM; (B) Shared causal 
subnetwork structure from CREBBP to AD and T2DM.

Figure 2.  (A) Shared TTC3, FoxO, MAPK, and PI3K-AKT Pathways between AD and T2DM; (B) Shared 
causal subnetwork structure from TTC3 to AD and T2DM.

https://doi.org/10.1038/s41598-020-60682-3
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pathways between AD and T2DM. Searching the multilevel causal networks from APP to AD and T2DM using 
the DFS algorithm, we identified the shared causal paths from APP to both AD and T2DM, shown in Fig. 3A. 
There were two shared causal paths between AD and T2DM: APP neuroactive ligand receptor interaction→  
and APP fatty acid biosynthesis primary bile acid biosynthesis→ → . Neuroactive ligand receptor interaction 
pathway was discussed in the previous section.

Next we presented the causal network structure of the shared genes between AD and T2DM in the two 
shared causal paths in Fig. 3B. We observed two major shared paths from APP to AD and T2DM. One path 
was APP → ACSLA → ACACA → NUDT9 → CMC1 → PTPLAD1 → CYP781 → CYP46A1 → working memory (or 
CYP781 → AMACA → working memory). Another causal path was APP → F2RL3 → PIK3R3 → (or F2RL3 → 
S1PR3 → PIK3R3.

To further illustrate the validity of the inferred causal paths, we presented Fig.  S2 that showed the  
average levels of expression of the genes in Fig. 3 for AD, T2DM and normal individuals. From Fig. 3, Figs. S2 and S3, 
we can observed that the genes along the path APP F RL PIK R or F RL S PR PIK R2 3 3 3 ( 2 3 1 3 3 3)→ → → →   
o f  t h e  i n d i v i du a l s  w i t h  A D  w e re  ov e r  e x pre s s e d ,  a n d  t h e  g e n e s  a l on g  t h e  p at h 
APP → ACSLA → ACACA → NUDT9 → CMC1 → PTPLAD1 → CYP781 → CYP46A1 → working memory (or 
CYP781 → AMACA → working memory) of the individuals with AD were under expressed. Genetic variation in gene 
APP either regulated over expressed genes or regulated under expressed genes. Both of them caused AD. For the indi-
viduals with T2DM, the majority of gene expressions along the causal paths from APP to T2DM which were regulated 
by genetic variation in gene APP was under expressed.

Shared methylated genes POU3F2, KIF4B and TNSL3, and dopaminergic synapse and AMPK 
pathways.  In this section, we illustrate how a shared gene regulates three shared gene methylations, which 
in turn regulate the shared pathways. Our results showed that genetic variation in gene POU3F2 regulated gene 
expressions in dopaminergic synapse and AMPK pathways via methylations of POU3F2, KIF4B and TMSL3, 
which in turn influences CHL/HDL Ration, and finally led to AD and T2DM (Fig. 4A).

Again, we presented the causal network structure of the shared genes between AD and T2DM in the two 
shared dopaminergic synapse and AMPK pathways in Fig. 4B. There were multiple shared directed paths from 
POU3F2 to AD and T2DM. A major shared directed path: m: POU3F2 → m: LOC644649 → KDM5C → PDPK2 
→ XPA → MK3R2 → ELK1 → AD (or → CHL → T2DM).

Discussion
This papers addresses several issues for uncovering causal paths shared between AD and T2DM. The first issue is 
to shift the current paradigm of genetic analysis from association analysis to deep causal inference for uncovering 
the shared mechanisms between AD and T2DM. The current paradigm for discovering mechanisms of diseases 
is association analysis. There is increasing recognition that a large proportion of association signals are not causal 
signals and causal signals may not be association signals. A large number of causal signals cannot be derived from 
set of association signals. Only searching causal signals from association analysis, a large proportion of causal 

Figure 3.  (A) Shared APP, Fatty Acid Biosynthesis and Primary Bile Acid Biosynthesis Pathways between AD 
and T2DM; (B) Shared causal subnetwork structure from APP to AD and T2DM.

https://doi.org/10.1038/s41598-020-60682-3
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signals will be missing. Therefore, the ANMs were developed as practical causal inference methods to identify the 
genetic variants that cause disease.

Second issue is to shift the current paradigm of genetic analysis from genetic analysis alone to integrated 
causal genomic, epigenomic, transcriptional and phenotypic data analysis for unraveling the mechanisms of AD 
and T2DM. The widespread existing omics networks that are essentially undirected graphs. Using undirected 
graphs, we cannot to identify direct causal relations among diversified types of variables at multilevel and the 
causal routes from genetic variants to complex phenotypes via omics. In this paper, we develop novel statistical 
methods for multilevel causal omics network construction and provide pipelines for uncovering shared causal 
paths between AD and T2DM via gene expressions, DNA methylations, environments and multiple phenotypes.

The third issue is to develop algorithms that can automatically search the causal routes from genetic variations 
to the complex phenotypes. The size of multilevel causal omics network is large. The number of nodes of such 
networks can reach ten thousand. The number of causal paths is huge. Manually searching causal paths from 
large causal networks is infeasible. To meet the challenge of searching causal paths from large causal networks, we 
develop computer representation of large causal networks and algorithms for searching the causal paths.

The results of application of the proposed pipelines for identifying causal paths to real data analysis of AD and 
T2DM provided strong evidence to support the link between AD and T2DM and unraveled causal mechanism 
to explain this link. We identified the shared causal genes, gene expressions, DNA methylations and pathways 
between AD and T2DM. Some of them can be supported by literature and some of them are new.

Specifically, we identified the shared CREBBP, MAPK and PI3K-AKT pathways between AD and T2DM. 
Binding of transcription factors to the cyclic Adenosine Monophosphate (cAMP) response element (CRE) regu-
lates the activity of RNA polymerase. cAMP Response Element binding protein (CREB) is a cellular transcription 
factor that binds the CRE17. CREB-binding protein (CREBBP) and CREB together mediate the conversion of 
short-term memory to long-term memory and alternate the activity of the β-amyloid (Aβ) peptide, which in turn 
regulates hippocampal-dependent synaptic plasticity18,19. Cognitive function such as working memory is involved 
in insulin signaling dysfunction and blood glucose levels. It was reported that working memory is linked with 
T2DM20–22.

The shared TTC3, FoxO, MAPK, and PI3K-AKT Pathways between AD and T2DM were also identified. The 
tetratricopeptide repeat domain 3 (TTC3) gene was an AD causing gene (P-value for causation of AD < 0.0001), 
but not directly connected to T2DM (P-value for causation of T2DM = 0.47). TTC3 is associated with differen-
tiation of neurons23. It is reported that a rare TTC3 variant is related with AD24. The TTC3–RhoA pathway could 
be a key determinant of the neuronal development, resulting in detrimental effects on the normal differentiation 
program25. Rho regulates the activation of MAPK pathway26. The Forkhead box O (FoxO) transcription factors 
that affect nervous system amyloid (Aβ) production, are implicated in the regulation of cell apoptosis and sur-
vival, and accelerate the progression of degenerative disease. FoxO pathway is involved in the PI3K/Akt and 
mitogen-activated protein kinase (MAPK) pathways in neuronal apoptosis in the brain.

FoxOs also can offer protection in the nervous system, reduce toxic intracellular protein accumulations and 
potentially effect Aβ toxicity19,27,28. Akt-FoxO that suppresses TLR4 signaling in Human Leukocytes is implicated 
in the development of T2DM29. Increasing evidences indicate that PI3K/AKT pathway are implicated in the 
development of T2DM30,31.

Our results further supported that morphine addiction and neuroactive ligand receptor interaction path-
ways were shared between AD and T2DM. Morphine addiction has neurotoxic effects and damages to the brain 
regions that function for learning, memory and emotions32. High dose of morphine may increase risk to T2DM33. 
It is also reported that neuroactive ligand receptor interaction pathway is associated with both AD and T2DM34.

Figure 4.  (A) Shared Methylated Genes POU3F2, KIF4B and TNSL3, and Dopaminergic Synapse and AMPK 
Pathways between AD and T2DM; (B) Shared causal subnetwork structure from POU3F2 to AD and T2DM.
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The causal network analysis provided evidence that fatty acid biosynthesis and primary bile acid biosynthesis 
pathways were shared between AD and T2DM. Brain function such as intelligence, memory, behavior and con-
centration are all influenced by brain nutrition35. Omega-3 fatty acids affect the fluidity of brain cell membranes, 
neurotransmitter synthesis and signal transmission and are implicated in AD36,37. Bile acids are involved in cell 
signaling and immune function. It performs as potent inhibitors of apoptosis and regulates transcriptional and 
post-transcriptional events that affect mitochondrial function in neurons38. A trend of increased bile acids in 
AD has been observed39. Fatty acid utilization induces insulin resistance40. Bile acids are signal molecules and 
play an important role in regulating metabolism and inflammation. The abnormal bile acids are correlated with 
changes in insulin secretion, which lead to T2DM41,42. The amyloid precursor protein (APP) is a transmembrane 
protein. The aggregated amyloid-β (Aβ) peptides are generated by sequential proteolytic processing of the APP. 
Accumulation of Aβ and the APP play an important role in regulating lipid homeostasis including fatty acids, 
which finally affect the development of AD43.

Finally, we showed that how the causal analysis identified the shared methylated genes POU3F2, KIF4B and 
TNSL3, and dopaminergic synapse and AMPK pathways between AD and T2DM. Emerging evidences indicate 
that methylation alternations to DNA of the brain are linked to Alzheimer’s disease44,45. DNA methylation also 
plays an important role in the pathogenesis of T2DM45,46. In order to better understand the etiology of AD and 
T2DM, we jointly investigated the genetic variants, DNA methylation and gene expression profiles, multiple phe-
notypes, AD and T2DM using causal inference pipelines. We found that gene POU3F2 regulated methylations 
of POU3F2, KIF4B and TMSL3. Alternations in methylation of three genes directly caused the development of 
AD and T2DM. Furthermore, methylation levels of three genes regulated gene expressions in dopaminergic syn-
apse and AMPK pathways, which in turn caused AD and T2DM via CHL/HDL Ratio (Fig. 4A). Recent advance 
revealed that alterations of the dopaminergic system contributes to memory and reward dysfunction and the 
dopaminergic system may well be involved in the occurrence of AD47,48. Recent studies also unravel that the brain 
damage in AD is linked to an over-activation of AMPK, which leads to the loss of the ability of neurons to grow 
axons and the modification of the tau proteins resulting in tangles of tau49. AMPK functions as a key energy sen-
sor. AMPK signaling elicits insulin-sensitizing effects and may be implicated in stimulating glucose up taking in 
skeletal muscles, fatty acid oxidation in adipose (and other) tissues50.

We identified an extremely large number of shared causal paths from genetic variants to both AD and T2DM 
via DNA methylation, gene expressions and phenotypes. This deep knowledge that uncovered the large number 
of causal mechanisms of AD and T2DM has profound implications in prevention and treatments of AD and 
T2DM. This explained why the drugs that were based on inhibition or activation of limited number of paths often 
failed simply because these limited number of paths cannot cover all causal paths to the diseases. Finally, the 
empirical evidence that the AD and T2DM shared a large number of causal genes, gene expressions, methylations 
and pathways supported hypothesis that AD can be considered as “type 3 diabetes”.

Methods
All methods were carried out in accordance with relevant guidelines and regulations.

ROSMAP data.  The data came from two longitudinal cohort studies of older persons. ROS started in 1994 
and enrolled Catholic nuns, priests, and brothers from more than 40 communities across United States, and MAP 
started in 1997 and enrolled participants with diverse backgrounds and socioeconomic status from continu-
ous care retirement communities throughout northeastern Illinois, as well as from individual homes across the 
Chicago metropolitan area19. These two studies are managed by the same team of investigators. Structured, quan-
titative neuropathological examinations are performed at a single site. Therefore, the data can be combined for 
analysis. Multi-layered omics datasets are generated from biospecimens donated by ROS and MAP participants, 
including genotypes, DNA methylation profiles and RNA-seq. The genotype data were generated by Affymetrix or 
the Illumina Omniquad express gene chips and were imputed using the 1000 Genomes Project data as reference. 
DNA methylation profiles were measured using the Illumina Infinium HumanMethylation450 beadset. RNA-seq 
data were generated using the Illumina HiSeq with 101 bp paired-end reads. Multiple phenotypes including clini-
cal diagnosis, cognitive function, measures of lifestyle, behavior, and activity, chronic medical conditions and risk 
factors were measured. A total of 432 individuals who simultaneously had genotype, RNA-seq, DNA methylation 
and some phenotypes were included in analysis. We considered 19 phenotypes and environments, two diseases 
(AD, T2DM), 299 pathways with RNA-Seq in KEGG pathway database, 20,242 methylation genes with 364,661 
CpG sites, and 51, 060 genotyped genes with 5,711,541 SNPs (4,283,876 common SNPs, 1,427,665 rare SNPs). All 
the data were downloaded from https://www.radc.rush.edu/.

The ROSMAP studies were approved by the Institutional Review Board of Rush University Medical Center. 
Written informed consent was obtained from all subjects, followed by an Anatomic Gift Act for organ donation.

General procedures for identifying shared genetic loci underlying AD and T2DM.  AD and 
T2DM result from the interplay of DNA sequence variation and nongenetic factors acting through molecular 
networks51–53. Their etiology is complex with many intermediate steps between genetic variation and diseases. 
Neither traditional GWAS, nor classical multi-omics analysis can identify the causal passes of complex diseases 
because not all these analyses can identify directed routes from genetic loci to diseases through environments, 
methylations, gene expressions, and phenotypes. To overcome these limitations, we developed a novel general 
framework for identifying all possible causal passes from genetic loci to diseases. The framework consists of three 
steps. The first step is to perform genome-wide causation studies (GWCS) where we test causation of each SNP 
across the genome to the disease. The additive noise model (ANM) with discrete variants will be used to test for 
causation54 (Methods). We focused on the rare variants in the paper. The second step is to use integer program-
ming (IP) and various modern causal models55–57 (Methods) for inferring multilevel genome-wide omics causal 
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networks that integrate genotype subnetworks, environmental subnetworks, methylation subnetworks, gene 
regulatory subnetworks, intermediate phenotype subnetworks and multiple disease subnetworks into a single 
connected multilevel genotype-disease network as shown in Fig. 5. The third step is to augment graph theoretical 
approaches with approximations for developing efficient search algorithms that discover all possible routes start-
ing from the genetic variant node directed to the disease node, including classical Depth First Search (DFS) and 
Breadth First Search (BFS) algorithms58–61.

There are two ways to identify shared dysfunctional genes (SNPs) between AD and T2DM. One way is to use 
ANM with discrete variables and functional data analysis to conduct genome-wide causation analysis54,62–64 for 
unravelling the direct connections between gene nodes and disease nodes to identify the shared dysfunctional 
genes between AD and T2DM.

Another way is to search the paths from the gene nodes to AD and T2DM in multilevel causal omics networks.
Association and causation are different concepts. Association between two variables is often characterized by 

dependence between two variables. Causation is a connection of phenomena where one variable acts or inter-
venes on another variables and leads to its changes. Therefore, the key component of causation is the generation 
and determination of values of one variable by another. The mechanism of causation is related to the transference 
of matter, motion and information. Causation as part of universe connection, is well known that nature consists 
of autonomous and independent causal generating process modules. These modules will not influence each 
other63,65. In other words, while output of one module may inform or influence input of another module, the 
events between modules are independent. In the probabilistic language, mechanism is often represented by con-
ditional distribution. Independent mechanism states that “the conditional distribution of each variable given its 
causes (i.e., its mechanism) does not inform or influence the other conditional distributions”63. In GWCS, we only 
consider two variables. In this case, independence of cause and mechanism (ICM) indicates that the conditional 
distribution of the effect given its cause is independent of distribution of cause. Consider the genetic analysis of 
alleles (A) with a disease allele A a normal allele a and with the disease (D) (disease D and normal d). The joint 
density function P a d( , ) can be decomposed into

P A D P A P D A
P D P A D

( , ) ( ) ( )
( ) ( )

= |
= | .

In the association analysis, we assess whether A is independent of D or not. The relationship between A and D 
is symmetric. However, in causal analysis, causations →A D and D A→  are different. They are asymmetric. 
Assessing causation is to consider the effect of intervention. Causation →A D indicates that the effect of A is to 
give rise to disease. However, disease status D will not generate allele A. Suppose that locus A is disease locus and 

→A D. If we change the allele a to allele A, then we assume that biological mechanism P D A( )|  responsible for 
giving rise to disease. This would hold true independent of the distribution (frequencies)_of allele A. If the locus 
A is disease locus, we can find that the distributions (frequencies) of allele A in two different populations are dif-
ferent, but the mechanism |P D A( ) would apply in two populations. The conditional probability P D A( )|  can also 
be viewed as penetrance of the allele. The marginal distribution P A( ) and conditional distribution |P D A( ) contain 
no information about each other. Both continuous and discrete ANMs satisfy the ICM and will be used for 
GWCS., The proposed method for genome-wide causation analysis and inferring multilevel causal 
genotype-methylation-expression-phenotype-disease network was applied to the ROSMAP dataset19 with 432 
individuals, 19 phenotypes and environments, two diseases (AD, T2DM), 299 pathways with RNA-Seq in KEGG 
pathway database, 20,242 methylation genes with 364,661 CpG sites, and 51, 060 genotyped genes with 5,711,541 

Figure 5.  Scheme of multilevel omic networks.
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SNPs (4,283,876 common snp, 1,427,665 rare snp) (imputed by 1000 Gnome Data). The inferred 
genotype-expression-methylation-phenotype-disease network consisted of 2,814 nodes and 22,184 edges where 
the edges were presented in the network if the path coefficients were significantly from zero with P-values < 0.05.

There were two ways to connect a gene (or SNP) to AD (T2DM). If a gene (or SNP) showed causation to AD 
(T2DM) by statistical causal test, then the gene (SNP) was directly connected to AD (T2DM) in the causal net-
work. Such gene (SNP) was called AD (T2DM) directly connected gene (SNP). We may observe the connection 
between a gene (SNP) and AD (T2DM) via multiple edges (paths) in the constructed multilevel causal network. 
Then, the gene (SNP) that was indirectly connected to AD (T2DM) via paths in the multilevel causal network was 
called AD (T2DM) indirectly connected gene (SNP).

Genome-wide causation studies.  Unlike GWAS where we test the association of each variant across the 
genome with the disease, genome-wide causation studies (GWCS) test the causation of each variant across the 
genome to the disease. Additive noise models (ANMs) with discrete variables will be used for GWCS54,62–64. The 
procedures that use the ANMs for GWCS are summarized as follows14,54,63.

Procedures for causal genetic analysis using ANM. 

	 1.	 Fit the following nonlinear integer regression to the data.

Y f X N( ) Y= + .

Calculate the residuals N Y f X( )Y = −ˆ ˆ .
	 2.	 Fit the following nonlinear integer regression to the data.

= + .X g Y N( ) X

Calculate the residuals ˆ ˆ= −N X g Y( )X .
	 3.	 Test for independence.

The contingence table and Fisher’s exact test can be used to test independence. Let the statistic for testing the 
independence between NY

ˆ  and X as X Y∆ →  and the statistic for testing the independence between NX
ˆ  and Y as 

∆ →Y X.
The null hypothesis for testing the causation of the variant is
H0: no causation between variables X and Y.
The statistic for testing the causation between two X and Y is defined as

TC X Y Y X= |∆ − ∆ |.→ →

When TC is large, the causation between genetic variant X and disease status Y  exists. When T 0C ≈ , this indi-
cates that no causal decision can be made. Since the distribution of the test statistic TC is difficult to calculate, 
P-value for testing the causation of the variant X can be calculated by permutations.

To improve the performance of causation analysis of rare variants, we first calculate the functional principle 
component score (FPCS) of the rare variants within a gene64 to summerize information of all rare variants within 
the gene. Then, the continuous FPCS are discreterized. Finally, the ANMs with discrete variables can be used to 
test causation of discreterized FPCS with the disease.

Structural equations for construction of causal networks.  Directed graphical models and structural 
equations can be used as a tool to model the complex causal structures among variables64,66. A graphical model 
consists of nodes and edges. The nodes represent variables and edges represent the dependence structures among 
variables. A directed graphic model is defined as the graph in which all the inter-node connections have a direc-
tion visually denoted by an arrowhead. Directed acyclic graphics (DAGs) are defined as directed graphics with no 
cycles. In other words, we can never start at a node X, travel edges in the directions of the arrows and get back to 
the node X. A DAG with nodes encodes conditional dependence structure of the variables …Y Y, n1 . We define the 
parents of a node as the nodes pointing directly to it. The concept of parents provides an easy way to read off 
conditional independence from DAGs.

Traditional regressions describe one-way or unidirectional relationships among variables in which the varia-
bles on the left sides of the equations are dependent variables and the variables on the right sides of the equations 
are explanatory variables or independent variables. The explanatory variables are used to predict the outcomes 
of the dependent variables. However, in many cases, there are two ways, or simultaneous relationships between 
the variables. Variables in some equations are response variables, but will be predictors in other equations. The 
variables in equations may influence each other. It is difficult to distinguish dependent variables and explanatory 
variables. The structural equation models (SEMs) are a powerful mathematic tool to describe such data generat-
ing mechanism and infer causal relationships among the variables.

The SEMs classify variables into two class variables: endogenous and exogenous variables. The jointly depend-
ent variables that are determined in the model are called endogenous variables. The explanatory variables that 
are determined outside the model or predetermined are called exogenous variables. In the genotype-phenotype 
networks, the phenotype variables such as BMI, cognitive function, working memory, are endogenous variables, 
age, sex, race, environments and genotypes are exogenous variables. In the genotype-expression networks, the 
gene expressions are endogenous variables and genotypes are exogenous variables. In the methylation-expression 
networks, gene expressions are endogenous variables and methylations are exogenous variables.
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We consider M endogenous variables. Assume that n individuals are sampled. We denote the n observations 
on the M endogenous variables by the matrix = …Y y y y[ , , , ]M1 2 , where y y y y[ , , , ]i i i ni

T
1 2= …  is a vector of col-

lecting n observation of the endogenous variable i. Exogenous variables are denoted by X x x x[ , , , ]M1 2= …  
where = …x x x x[ , , , ]i i i ni

T
1 2 . Similarly, random errors are denoted by E = …e e e[ , , , ]M1 2  where we assume 

E e[ ] 01 =  and σ=E e e I[ ]i i
T

i n
2  for = …i M1  The linear structural equations for modeling relationships among 

variables can be written as:

  

y y y x x x e

y y y x x x e

0

0 (1)

M M K K

M M M MM M M K KM M

1 11 2 21 1 1 11 2 21 1 1

1 1 2 2 1 1 2 2

γ γ γ β β β

γ γ γ β β β

+ + … + + + + … + + =

+ + … + + + + … + + =

where the γ’s and β’s are the structural parameters of the system that are unknown. Variables in the SEMs can be 
classified into two basic types of variables: observed variables that can be measured and the residual error varia-
bles that cannot be measured and represent all other unmodeled causes of the variables. Most observed variables 
are random. Some observed variables may be nonrandom or control variables (e.g. genotypes, drug dosages) 
whose values remain the same in repeated random sampling or might be manipulated by the experimenter. The 
observed variables will be further classified into exogenous variables, which lie outside the model, and endog-
enous variables, whose values are determined through joint interaction with other variables within the system. 
All nonrandom variables can be viewed as exogenous variables. The terms exogenous and endogenous are model 
specific. It may be that an exogenous variable in one model is endogenous in another.

Traditionally, we often select one endogenous variable to appear on the left-hand side of the equation. 
Specifically, the i-th equation is

γ γ γ γ β β= + … + + + … + + + … + +− − + +y y y y y x x e , (2)i i i i i i i i M Mi i K Ki i1 1 1 1 1 1 1 1

where γji is a path coefficient that measures the strength of the causal relationship from Yj to yi, βki is a path coeffi-
cient from the exogenous variable to the endogenous variable which measure the causal effect of the exogenous 
variable xk  on the endogenous variable yi. The coefficients γ = 0ji  and β = 0ki  imply the zero direct influence of 
Yj and xk on Yi, respectively and are usually omitted from the equation. Therefore, Eq. (2) is reduced to

y Y X e W e (3)i i i i i i i i iγ β= + + = ∆ +−

where −Y i is a vector of the endogenous variables after removing variable Yi, iγ  is a vector of the path coefficients 
associated with Y i− , and

γ β= ∆ = .−W Y X[ , ], [ , ]i i i i i i
T

Multiplying by the matrix XT on both sides of Eq. (3), we obtained

X y X W X e (4)
T

i
T

i i
T

i= ∆ + .

Estimation of the parameters in the structural equations is rather complex. It involves many different estima-
tion methods with varying statistical properties. We used two stage least squares (2SLS) method to estimate the 
parameters. In general, the causal networks are sparse. Using weighted least square and l1-norm penalization of 
Eq. (4), we can form the following optimization problem to estimate the structure of causal network:

fmin ( )i i 1
i

λ∆ + ||∆ ||
∆

Where

∆ = − ∆ − ∆ .−f X y X W X X X y X W( ) ( ) ( ) ( ) (5)i
T

i
T

i i
T T T

i
T

i i
1

The alternating direction method of multipliers (ADMM) and proximal methods can be used to estimate the 
parameters and structure of causal network64,67,68.

Functional structural equation models for construction of gene-based causal networks.  The 
SEMs carry out variant by variant analysis. However, the power of the traditional variant-by-variant analytical 
tools for construction of causal networks with rare variants as exogenous variables will be limited. Large simula-
tions have shown that combining information across multiple variants in a genomic region of analysis will greatly 
enhance the power to infer causal networks with rare variants as exogenous variables. To utilize multi-locus 
genetic information, we propose to use a genomic region or a gene as a unit in construction of causal networks 
and develop sparse structural functional equation models (SFEMs) for causal network analysis66.

We define a genotype function. Let t be a genomic position. Define a genotype function x t( )i  of the i-th indi-
vidual as

x t

P t
P P t

P t

QQ
Qq
qq

( )

2 ( )
(t) ( )

2 ( )
i

q

q Q

Q

=










−

−
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where Q and q are two alleles of the marker at the genomic position t, P (t)Q  and P (t)q  are the frequencies of the 
alleles Q and q, respectively. Suppose that we are interested in k genomic regions or genes a b[ , ]j j  denoted as 
T j K, 1, ,j = … . We consider the following functional structural equation models (FSEMs):

  

∫ ∫

∫ ∫

γ γ γ β β

γ γ γ β β

+ + … + + + … + + =

+ + … + + + … + + =

y y y x t t dt x t t dt e

y y y x t t dt x t t dt e

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0
(6)

M M
T T

k k

M M M MM
T

M
T

k kM M

1 11 2 21 1 1 11 1 1

1 1 2 2 1 1

k

k

1

1

where β = … = …t j k i M( ), 1, , , 1, ,ij  are genetic effect functions.
Functional principal components (FPCs) are efficient summary statistics. The FPCs simultaneously employs 

genetic information of the individual variants and correlation information (LD) among all variants. For each 
genomic region or gene, we use functional principal component analysis to calculate principal component func-
tion. Let N be the number of sampled individuals. We expand = … = …x t n N j k( ), 1, , , 1, ,nj  in each genomic 
region in terms of orthogonal principal component functions:

∑η φ= = …
=

x t t j k( ) ( ), 1, , ,nj
l

L

njl jl
1

j

where t j k l L( ), 1, , , 1, ,jl jφ = … = …  are the l-th principal component function in the j-th genomic region or 
gene and njlη  are the functional principal component scores of the n-th individual. Using the functional principal 
component expansion of x t( )nj , we can transform the FSEMs (6) into the traditional multivariate SEMs (1).

Integer programming for causal network learning.  Given the dataset, learning causal networks is the 
task of finding network structures that best fits the data57,64. We used “score and search” methods to learn causal 
networks via maximizing the score metrics that characterize the causal networks. The “score and search” algo-
rithms consist of two parts: (1) formulate objective function (global score for the whole network) using the score 
function for each node and (2) search algorithm.

We collected all nodes with directed edges in the causal network into a DAG, denoted as G V E( , )= . The score 
(objective function) for the DAG G was defined as

∑=
∈

Score G Score G m( ) ( )
j V

j

where Score G( )j  was a score for the node j in the network. The Score G( )j  was calculated as ( )f j∆  via solving the 
optimization problem (5). Therefore, the total score can be decomposed into a sum of score for all nodes in the 
DAG. In addition, the Score G( )j  is entirely determined by the parent set of the node j in G. A DAG can be encoded 
by the set = …W W W{ , , }p1  of parent variables for all nodes V in the graph G. We use C j W( , )j  to denote a score 
function for the pair of node j and its parent set Wj. Therefore, the total score for the DAG G was given by

∑= .
∈

C D C v W( ) ( , )
i V

v

The learning task is to find a DAG that optimizes the global score C(D) over all possible DAGs D or parent 
sets57:

∑ .
∈ ∈

C v Wmin ( , )
D i V W D

v
, v

Integer linear programming (ILP) was used as a search algorithm57. A DAG learning was formulated as the 
ILP as follows. We define a variable x W v( )v →  to indicate the presence or absence of the parent set Wv in the 
DAG. In other words, x W v( ) 1v → =  if and only if it is the parent set for the node v. The parent set Wv can be an 
empty set. The objective function for the ILP formulation of a DAG learning can be defined as

∑ ∑ → .
= =

C v W x W v( , ) ( )
(7)v

P

j

J

j j
1 1v

v

v v

The goal was to find a candidate parent set Wv for each node v by optimizing the objective function in (7). It is 
clear that every DAG can be encoded by a zero-one indicator variable. However, any set of zero-one numbers may 
not encode a DAG. A set of linear constraints must be posted to make the set of indicator variables to represent a 
DAG. Without constraints all indicator variables for the parent sets will be equal to either zero or one. These solu-
tions will not form a DAG. The constraints need to be imposed to ensure that the solutions encode a DAG. This 
constraint that is referred to as convexity constraint, can be expressed as

∑ → = = …
=

x W j j p( ) 1, 1, ,
(8)i

I

i
1j

j

j
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The convexity constraints (8) can define a directed graph. However, the generated directed graph may have 
cycles. To eliminate a cycle, we need to impose the following constraint to ensure that any subset C of the nodes V 
in a DAG must contain at least one node that has no parent in the subset C

C x W j( ) 1,
(9)j CW W C:

∑ ∑
∩

∀ ⊆ → ≥
∈ =∅

which is referred to as cluster-based constraints. Our goal is to find a candidate parent set Wj for each node j by 
optimizing objective function (7) subject to the constraints (8) and (9).

The branch and bound method is a popular algorithm ensured to find an optimal solution to the 0–1 ILP 
problem57. Let the LP solution represent “solution of the current linear relaxation”. The basic idea of the branch 
and bound method is to successively divide the ILP problem into smaller problems that are easy to solve and 
reduce the search space. Briefly, the branch and bound algorithm is summarized as follows. Step 1: Let x̂ be the LP 
solution. Step 2: if there are, valid constraints not satisfied by x̂ add them and go to Step 1; otherwise if the solu-
tion x̂ is an integer then stop, the current problem is solved; otherwise branch on a variable with a non-integer 
part in x̂ to generate two new sub-IP problems. We then again use branch and bound algorithms to solve two 
sub-ILP problems57.

Multilevel causal networks.  Multilevel causal omics networks integrated genotype subnetworks, methyl-
ation subnetworks, gene expression subnetworks, the intermediate phenotype subnetworks and multiple disease 
subnetworks into a single connected multilevel genotype-disease networks to reveal the deep causal chain of 
mechanisms underlying the diseases64. ILP was extended from a single causal network estimation to joint multi-
ple causal network estimations to integrate genomic, epigenomic and phenotype data.

For the convenience of discussion, consider M gene expression variables Y Y, , ,M1 …  Q methylation variables 
Z Z, , Q1 … , and K genotype variables X X, , K1 … . Let pa D( )D  be the parent set of the node d including gene 
expression, methylation and genotype variables. Consider three types of SEMs. First, we consider a general SEM 
model for the gene expression:

Y f Y f Z f X d M( ) ( ) ( ) , 1,
(10)

d
i pa D

di i
q pa D

dq q
j pa D

dj j d
( ) ( ) ( )D D D

∑ ∑ ∑ ε= + + + = …
∈ ∈ ∈

And

∑ ∑ ε= + + = …
∈ ∈

Z f Z f X q Q( ) ( ) , 1,
(11)

q
l pa q

ql l
m pa q

qm m q
( ) ( )Q Q

where fd and fq are linear functions from →| |R RpaD  and R RpaQ →| | , respectively, and the errors εd and qε  are 
independent, following distributions εP

d
 and εP

Q
, respectively. Equation (10) define a causal network that connects 

gene expressions, methylations and genotypes. Equation (11) define a causal network that connects methylations 
and genotypes.

Integer programming as a general framework for joint estimation of multiple causal net-
works.  We collected multiple types of data: genotype, gene expression, methylation, and phenotype and dis-
ease data. We wanted to estimate multiple causal networks with different types of data64.

The scores of the nodes Yd and Zq were, respectively, given by

C Y W Y I D D D D Y( , ) ( (( ) ) ( ) ) (12)d di d
T

Y
i

Y
i T

Y
i

Y
i T

d
1= − −

and

( )C Z W Z I D D D D Z, ( (( ) ) ( ) ) (13)q ql q
T

Z
l

Z
l T

Z
l

Z
l T

q
1= − −

where matrices DY
i  and DZ

l  corresponded to the parent sets Wdi and Wql.
Let VE be the set of nodes in the gene expression network and VM be the set of nodes in the methylation net-

work. Let CE be a subset of nodes in VE and CM be a subset of nodes in VM. A joint expression and methylation 
causal network can be formulated as the following ILP:

∑ ∑ ∑ ∑

∑

∑

∑ ∑

∑ ∑
∩

∩

→ + →

. . → = = …

→ = = …

∀ ⊆ → ≥

∀ ⊆ → ≥ .

= ∈ = ∈

∈

∈

∈ =∅

∈ =∅

( ) ( )

( )

C d W x W d C q W x W q

x W d d M

x W q q Q

C V x W d

C V x W q

min ( , ) ( ) ,

s t ( ) 1, 1, , ,

1, 1, , ,

: ( ) 1,

: ( ) 1
(14)

d

M

i pa d
di di

q

Q

l pa q
ql ql

i pa d
di

i pa q
ql

E E
d C W W C

d

M M
q C W W C

q

1 ( ) 1 ( )

( )

( )

:

:

D Q

D

Q

E d d E

M q q M
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Using branch and bound and other methods for solving the ILP, we can solve the ILP problem (14) to obtain 
the best joint causal genotype-methylation-expression and genotype-methylation network fitting the data.

Summary statistics for representation of groups of gene expressions.  Generalized low rank mod-
els were used to segment (cluster) the data. Principal component analysis (PCA) was used to reduce data dimen-
sions. The PCs were used to summarize the gene expression data in pathways and clusters69.

Simulations of causal networks.  We simulated causal networks with genes (genotype) and gene expres-
sions as the nodes of the networks. We randomly selected 8 genes (30 node model) and 10 genes (50 node model) 
from the ROSMAP dataset. The genotype information of multiple SNPs within a gene was summarized by FPCA 
scores which were taken as the values of the gene node. We used R package PCALG70,71 to randomly generate 
DAG with 30 nodes (edges ranging from 70 to 90), and with 50 noes (edges ranging from 80 to 110). The values 
of the gene expression nodes were generated by the following model66,70–72

y y x e i M, 1, , ,i
j pa y

ji j
k pa y

ki k i
( ) ( )i i

∑ ∑γ β= + + = …
∈ ∈

where pa y( )i  is the set of parents of the node yi, the coefficients γji and βki followed a uniform distribution u(1, 2), 
ei followed a normal distribution N(0, 1).

A total of 100, 300, 500 and 1,000 DAGs were generated. The number of replication was 1,000. Let Nt be the 
total number of edges among simulated DAGs, N0 the total number of edges that were not presented in the simu-
lated DAGs, NTrue the total number of edges detected by the algorithm and NFalse the false edges directed among 
N0. Then the false discovery rate (FDR) was defined as N

N
False

0
 and power of detection defined as N

N
True

t
.

Ethical approval and informed consent.  The ROSMAP studies were approved by the Institutional 
Review Board of Rush University Medical Center. Written informed consent was obtained from all subjects, 
followed by an Anatomic Gift Act for organ donation.

Data availability
All data are publically available and can be downloaded from RADC Research Resource Sharing Hub (https://
www.radc.rush.edu/).
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