
https://doi.org/10.1177/2398212818812011

Brain and Neuroscience Advances
Volume 2: 1–4

© The Author(s) 2018
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/2398212818812011
journals.sagepub.com/home/bna

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License 
(http://www.creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further 

permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction
Research investigating epigenetics and chromatin function in 
brain development and function has mushroomed over the last 
two decades. And yet epigenetics as a biological concept predates 
the discovery in the 1950s of DNA as the principle mode of 
inheritance by over a decade.

At the most fundamental level, epigenetic control is exerted 
through the covalent modification cytosine residues leading to 
5-methylcytosine (5mC). This process, known as DNA methyla-
tion (DNA-me), is central to transcriptional regulation, transpos-
able element suppression, genomic imprinting, X-chromosome 
inactivation and the stability of the genome (Shin et al., 2014). In 
mammals, the majority of DNA-me is found at CpG dinucleo-
tides as part of what are termed CpG islands. These CpG islands 
often form the differentially methylated regions (DMRs), which 
provide the key, often stable, epigenetic marks across the life 
cycle of mammals. Nonetheless, there is now an increasing 
awareness of the importance of non-CpG DNA-me at so-called 
CpH sites (H = A, C or T) and also of hydroxymethylation (5hmC) 
for brain function (Guo et  al., 2014; Kriaucionis and Heintz, 
2009).

In addition to direct modification of the DNA, gene regulation 
can also be exerted via modifications to the three-dimensional 
(3D) structure and packaging of DNA and its associated histone 
proteins and factors (Qureshi and Mehler, 2014). The DNA 
within a cell is far from naked; first it is wrapped around a histone 
octamer to form a nucleosome, which is in turn connected 
together via DNA wrapped around linker histones such as H1. 
These are then packed and arrayed into progressively higher-
order chromatin structures. Generally, chromatin states are 
divided into euchromatin (open) and heterochromatin (closed). 
However, this may be over-simplistic as chromatin structure is 

very dynamic with the accessibility being determined by modifi-
cations (acetylation, methylation, phosphorylation, to name but a 
few) of individual histone proteins, nucleosome movement and 
over larger genomic regions.

Here, I provide an overview of history of epigenetics research 
in relation to the brain and behaviour. As well as looking at the 
past- and present-day research into epigenetics, I also touch upon 
possible future development of relevance to neuroscience in this 
field.

Past
The idea of ‘epigenetics’ was first championed in the 1940s by 
Conrad Waddington (1942), an embryologist interested in the 
mechanisms of cell differentiation and subsequent maintenance 
of cellular identity. He correctly reasoned that as all cells carry 
the same genetic information there must be another layer of 
information over and above the genetic information which allows 
a totipotent cell to become specialized and to stay specialized 
with subsequent cell divisions. Put more generally, epigenetics 
refers to the process modulating the expression of a genotype into 
a given phenotype (Waddington, 1942). This classical definition 
of epigenetic mechanisms is of course completely applicable to 
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the development of the brain and, by default, the development of 
behaviour.

Perhaps because of its consequences for the expression of 
phenotypes, one of the first aspects of epigenetics directly linked 
with the brain and behaviour was genomic imprinting. Genomic 
imprinting is the process by which the inherited parental genomes 
are epigenetically marked differentially in the germline, initially 
by DNA-me but built upon by modification of associated chro-
matin modification (Figure 1). This results in expression of some 
imprinted genes only from the maternal copy (allele), whereas 
others are solely expressed from the paternal allele. Parental-
specific monoallelic expression of this kind is highly unusual 
(most genes are biallelic, being expressed from both inherited 
copies) and genomic imprinting is limited to mammals and only 
affects around 150 genes. However, correct expression of these 
genes is absolutely critical for normal development to progress, 
as evidenced by the death before mid-gestation of mouse embryos 
composed of solely maternally (parthenogenetic) or paternally 
(androgenetic/gynogenetic) derived genomes (Barton et  al., 
1984; McGrath and Solter, 1984). Soon after the discovery of the 
non-equivalence of maternal and paternal genomes, the first 
imprinted genes were identified and two distinct neurodevelop-
mental disorders were linked to a cluster of imprinted genes on 
human chromosome 15q11–q13 (Figure 1). Large deletions at 
this locus give rise to Angelman syndrome when maternally 
derived, but Prader–Willi syndrome when paternally derived 
(Williams et al., 1990). These clinical findings, coupled with the 
pioneering mouse work by Barry Keverne and colleagues in the 
1990s (Keverne, 1997), set the scene for future studies into how 
changes in the expression and epigenetic regulation of this small 
subset of mammalian genes has consequences for a range of the 
brain and behavioural phenotypes.

As we shall see in the next section, in addition to the pro-
grammed developmental role, a more recent finding is that epige-
netic mechanisms can also be labile and may act as a biochemical 

record of the impact of environmental events. However, this idea 
also has its origins some time ago. As far back as the late 1960s, 
the idea that DNA-me may provide a molecular mechanism 
underpinning memory formation was first postulated (Griffith 
and Mahler, 1969) and again highlighted as a possibility by 
Francis Crick (1984). Much more recent work by David Sweatt 
and colleagues has finally confirmed this inkling, showing that 
DNA-me associated with the memory-suppressor gene calcineu-
rin in the medial prefrontal cortex persists for at least 30 days 
following fear conditioning (Miller et al., 2010), suggesting, in 
this brain region at least, that this epigenetic change is an addi-
tional layer of molecular information and a marker for memory.

Present
Despite its long history and the prescient insight of a number of 
pioneering biologists, the huge progress in understanding the role 
of epigenetic mechanisms in the brain accelerated over last 
20 years, driven by the development of tools to study the various 
biochemical processes involved. There are increasingly sophisti-
cated molecular and biochemistry techniques for quantifying and 
modifying the different, but interacting, epigenetic mechanisms 
including DNA-me, histone modifications and varied classes of 
regulatory non-coding RNAs.

Neuroscientists have applied these tools to understanding the 
processes involved in neurodevelopment and brain maturation. A 
good example is the epigenetic mechanisms underlying the 
development of the brain and behaviour phenotypes exhibited by 
different castes of social insects. Social insects are characterized 
by a division of reproductive labour whereby some group mem-
bers are non-reproductive workers who provision and raise the 
offspring of their queen, whose sole function is reproduction 
(Wilson, 1971). These castes exhibit highly individual morpho-
logical and behavioural phenotypes, despite often sharing >75% 
of their genes. The differentiation of larvae into different castes 
has been compared to the cellular lineage reprogramming of 
mammals (Patalano et al., 2012), and a number of studies have 
demonstrated differences in global brain levels of DNA-me 
between distinct castes of social insects including in bees and 
ants (Yan et al., 2014). Critically, the causal importance of this 
epigenetic mark has been confirmed by showing that manipulat-
ing the levels of a key DNA-me enzyme in honeybee larvae leads 
to an increase in the number of queens produced (Kucharski 
et al., 2008).

In mammals much of the research into the epigenetic control 
of neurodevelopment has taken a more reductionist approach, 
focusing on the key changes that underpin the process of speciali-
zation of pluripotent cells into neurons (Hirabayashi and Gotoh, 
2010). Predictably, the number of genes that require regulation 
during neurogenesis is large and involves the coordination of a 
great many regulatory processes. The level of DNA-me is cer-
tainly important, as indicated by changes in DNA-me associated 
with the imprinted gene Dlk1, resulting in a switch from paternal-
only monoallelic, to biallelic expression during postnatal neuro-
genesis (Ferron et al., 2011). However, at present the key general 
mechanisms for cell fate during neurogenesis appear to involve 
changes in chromatin structure and transcriptional valiance, via 
histone modifications, polycomb groups and other chromatin 
modifiers (Tyssowski et al., 2014).

Figure 1.  Schematic showing a representative imprinted gene 
cluster, in this case, the Angelman and Prader–Willi Syndrome (AS/
PWS) imprinted cluster on human chromosome 15. As is common 
for imprinted genes, within this cluster are both maternally (red 
arrows) and paternally (blue arrows) expressed genes, including a 
long non-coding RNA (Lnc-RNA). Also marked with black ‘lollipops’ is 
the differentially methylated region (DMR), which in the case of the 
AS/PWS locus is methylated on the maternally derived chromosome 
and un-methylated on the paternal chromosome. The parental-
specific marking of the DMR distinguishes the maternal and paternal 
chromosomes at this interval and guides parental-specific gene 
expression control via chromatin changes and non-coding RNA (e.g. 
UBE3A antisense, UBE3A-as).
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Interestingly, a great deal of our understanding of the impor-
tance of such epigenetic mechanisms for human neurodevelop-
ment has come about through genomic studies. Perhaps 
unsurprisingly, we now recognize that several rare neurodevelop-
mental disorders involve mutations in genes encoding proteins 
involved in setting, interacting with or reading the normal epige-
netic marks spread throughout the genome during development. 
Mutations in these single genes can result in disrupted and incor-
rect expression of hundreds of other genes during the course of 
development. Selected examples include Rett, Kleefstra, 
Rubinstein–Taybi, Angelman and Prader–Willi syndromes (Isles, 
2015). More recently the first specific mutations causing schizo-
phrenia were identified in the gene SETD1A, which encodes a 
histone methyltransferase (Singh et al., 2016).

In addition to these very rare and highly penetrant mutations, 
detailed analyses of the common but low penetrance genetic vari-
ants, as identified by genome-wide association studies (GWASs), 
have also implicated abnormalities in epigenetic processes in 
psychopathology. For instance, by assigning the GWAS calls 
associated with schizophrenia to biological pathways, bioinfor-
maticians are able to detect which particular biological processes 
are significantly enriched within the signal. Such studies provide 
compelling evidence that genes involved in histone modification 
and/or chromatin remodelling are implicated in the development 
of psychiatric illness (McCarthy et al., 2014; Network Pathway 
Analysis Subgroup of Psychiatric Genomics, 2015; Singh et al., 
2016).

Over the last decade or so, a more controversial area of 
behavioural and neural epigenetics has emerged whereby the 
progress in molecular biology techniques has been used to 
identify changes in DNA-me and/or chromatin in response to 
environmental effects. There are many robust epidemiological 
studies linking environmental insults with the development of 
neuropsychiatric illness and/or changes in behaviour, such as 
prenatal exposure to famine and schizophrenia incidence 
(Susser and Lin, 1992). Changes to the epigenome could be a 
mechanism by which some of these environmental effects are 
mediated (Isles and Wilkinson, 2008). As a consequence, a 
number of groups have begun to measure genome-wide levels 
of DNA-me and ask whether epigenetic differences can disen-
tangle the relationship between disease states and/or exposure 
to environmental insults, such as prenatal diet and attention 
deficit disorder (Rijlaarsdam et al., 2017). However, it is cur-
rently impossible to determine the causal relationship in these 
studies; are any observed changes in DNA-me simply an epi-
genetic reaction to the disorder? Furthermore, while some of 
the observed epigenetic changes are significant statistically, 
they are quantitatively small, raising questions of their biologi-
cal relevance. Finally, by necessity these human studies often 
profile the epigenome of blood samples, raising the question of 
the relevance of any potential changes to brain function 
(Hannon et al., 2015).

More progress has been made in this area through the use of 
animal and/or cellular models, where there is access to appropri-
ate tissues and experimental manipulations allow the true causal 
relationships to be determined. Here, studies have demonstrated 
the causative epigenetic links between heat exposure and thermo-
tolerance (Kisliouk and Meiri, 2009), drug use and addiction 
(Kumar et al., 2005), and the level of maternal care and future 
stress reactivity (Weaver et al., 2004).

Future
One of the key challenges facing many aspects of neuroscience, 
and epigenetics research in particular, is the heterogeneity of cell 
types in the brain. Unlike genetic studies where, generally, the 
same DNA can be found samples from any tissue, epigenetic 
changes may be localized to specific cells. This has obvious 
implications for the relevance of human epigenome–wide asso-
ciation studies (EWASs) where primary tissue may not be avail-
able (Hannon et al., 2015). But these issues are also pertinent for 
in vivo animal studies of epigenetics in the brain. However, as 
sequencing techniques become increasingly sophisticated and 
cost-effective, the idea of single-cell epigenomic studies is on the 
horizon (Clark et al., 2016). For instance, coupled with single-
unit electrophysiological recordings, such techniques may allow 
fully integrated epigenome and transcriptome profiling (Figure 2) 
of synaptic plasticity.

In addition to ever-finessed measurements of changes in the 
epigenome and transcriptome, there will also be opportunities in 
the future to manipulate the epigenome locally. This may well be 
achieved via optogenetic or genome editing techniques such as 
CRISPR-cas9 (Vojta et  al., 2016) or a combination of both. 
Certainly, optogenetics has already been used to locally inhibit 
the REST neural gene transcription factor (Paonessa et al., 2016), 
and very recently expression of ΔFosB has been controlled in 
specific cell types within the nucleus accumbens using the his-
tone methyltransferase G9a coupled to zinc finger proteins (ZFP; 
Hamilton et al., 2018). Clearly, the field of epigenome editing is 
already developing rapidly.

Conclusion
There is a great deal of interest in the role epigenetics may play in 
brain development and function. Like all research in the field of 
epigenetics, the excitement in relation to neuroscience has been 

Figure 2.  Schematic illustrating the possible future applications of 
single-cell epigenomics to neuroscience. The example here links single-
cell electrophysiological recordings with single-cell transcriptomics, 
genomics and epigenomics. For instance, this would enable a true 
readout of the gene expression and associated DNA-me and/or 
chromatin changes that underpin synaptic plasticity.
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largely driven by the rapid and increased availability of biochemi-
cal tools to interrogate changes in gene expression, DNA-me and 
chromatin modification. This has led to some fascinating findings, 
particularly in relation to understanding the development of the 
nervous system and how this translates into brain function.
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