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Abstract

Cytology is the first pathological examination performed in the diagnosis of lung cancer. In

our previous study, we introduced a deep convolutional neural network (DCNN) to automati-

cally classify cytological images as images with benign or malignant features and achieved

an accuracy of 81.0%. To further improve the DCNN’s performance, it is necessary to train

the network using more images. However, it is difficult to acquire cell images which contain

a various cytological features with the use of many manual operations with a microscope.

Therefore, in this study, we aim to improve the classification accuracy of a DCNN with the

use of actual and synthesized cytological images with a generative adversarial network

(GAN). Based on the proposed method, patch images were obtained from a microscopy

image. Accordingly, these generated many additional similar images using a GAN. In this

study, we introduce progressive growing of GANs (PGGAN), which enables the generation

of high-resolution images. The use of these images allowed us to pretrain a DCNN. The

DCNN was then fine-tuned using actual patch images. To confirm the effectiveness of the

proposed method, we first evaluated the quality of the images which were generated by

PGGAN and by a conventional deep convolutional GAN. We then evaluated the classifica-

tion performance of benign and malignant cells, and confirmed that the generated images

had characteristics similar to those of the actual images. Accordingly, we determined that

the overall classification accuracy of lung cells was 85.3% which was improved by approxi-

mately 4.3% compared to a previously conducted study without pretraining using GAN-gen-

erated images. Based on these results, we confirmed that our proposed method will be

effective for the classification of cytological images in cases at which only limited data are

acquired.
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Introduction

Lung cancer is the leading cause of death among men worldwide [1]. According to the patho-

logical examinations performed to provide detailed lung cancer diagnoses, it has become pos-

sible to identify tissue types and subtypes via immunostaining and genetic examinations [2].

Based on these tests, patients may undergo surgery, radiation therapy, drug therapy, or a com-

bination of these treatments. With the advent of molecular targeting drugs and immune

checkpoint inhibitors [3], good therapeutic results have been obtained in recent years, and

accurate diagnoses have thus become essential for determining appropriate therapeutic

methods.

In the pathology-based diagnosis of lung cancer, cytology is first performed using cells

biopsied during a bronchoscopy [4], and comprehensive diagnostic results are then obtained

from histological examinations. However, there are considerable variations in cell types,

including atypical regenerative tumorous cells. Correspondingly, expert screeners or cytolo-

gists sometimes need to make difficult judgments. In addition, the detection of abnormal cells

from many cell images is a very difficult task. Therefore, if the identification can be supported

using image analyses or artificial intelligence technologies [5–10], diagnostic accuracy could

be improved.

We have previously developed a method to classify benign and malignant lung cells using a

deep convolutional neural network (DCNN) [11], and have also developed a DCNN-based

lung cancer type classification system [12]. The overall accuracies of benign/malignant and

lung cancer type classifications were 79% and 71%, respectively. To further enhance this per-

formance, it would be necessary to increase the number of images used to train the CNN.

However, in cytology, manual manipulation of a microscope is still one of the most typical

techniques used for the assessment of three-dimensional cell morphology, yet digitized imag-

ing is still under development. In cytology, it is necessary to focus on individual cells of inter-

est. Hence, planar scans, such as those used for histological diagnosis, cannot convey the

necessary information. Therefore, it is not realistic yet to automatically acquire a large number

of images—including depth information—digitally. To improve the discrimination perfor-

mance, it is necessary to consider a method that can obtain good classification performance

with fewer data.

For this purpose, we employ a generative adversarial network (GAN), a deep-learning-

based image generation technology comprising a generator and discriminator that work in a

competitive manner [13]. The generator tries to generate synthetic images which are misinter-

preted by the discriminator as real images, while the discriminator trains to distinguish real

images from synthetic images. By repeating these processes, the generator can generate syn-

thetic images that are quite similar to real images. This technology is often applied to medical

image processing [14].

Wang et al. proposed metal artifact reduction in CT images by using conditional GAN

[15]. Guibas et al. developed a method to output fundus images and segmented blood vessel

images using two GANs [16]. Frid-Adar et al. generated small computer tomography (CT)

images (64 × 64 pixels) of the liver by using a DCGAN and applied it to the classification,

and showed that a CNN using GAN-generated images improved the accuracy of lesion clas-

sification by 7% [17]. Han et al. generated 256 × 256 pixel brain MR images by using

PGGAN and applied them to automated brain tumor detection, consequently improving

the overall classification accuracy by 1% [18]. Previously, our group generated lung nodule

patterns in CT images with a GAN and used them to train a DCNN to classify benign and

malignant patterns. This showed that this method was effective for the improvement of clas-

sification [19,20].
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Regarding the application of GANs to pathological images, Song et al. proposed a method

to generate histopathological images of bone marrow cells to improve the performance of

automated bone marrow cell classification [21]. However, applications to cytology and image

generation (in which multiple cells exist) have not been successful. It is difficult to generate

images with complex configurations of many objects with a conventional GAN, and it is thus

also very difficult to obtain high-resolution images.

Recently, Kerras et al. proposed progressive growing of GANs (PGGAN) to solve the prob-

lems encountered with conventional GANs, and succeeded in generating high-resolution

images [22]. PGGAN may be able to generate high-resolution images of multiple cells. There-

fore, this study aims to generate cytological images using PGGAN, and to improve the classifi-

cation performance using the generated images.

Materials and methods

Outline of proposed method

The cell classification method proposed in this study is shown in Fig 1. Patch images were seg-

mented from images of cytological specimens acquired with a microscope, and a DCNN classi-

fied these images as benign or malignant. DCNN training was conducted in two steps: First,

many cytological images were generated by PGGAN, and the DCNN was pretrained on them

as shown in Fig 1(A). Subsequently, the DCNN was fine-tuned using actual images, as shown

in Fig 1(B).

Materials

Lung cells of 60 patients were collected with interventional cytology using either bronchoscopy

or CT-guided fine-needle aspiration cytology, and comprised 25 benign and 35 malignant

cases according to a combined histopathological and immunohistochemical diagnosis. Specifi-

cally, biopsy tissues were simultaneously collected with cytological specimens, fixed in 10%

formalin, dehydrated, and embedded in paraffin. In some cases, the 3 μm tissue sections were

subjected to immunohistochemical analysis. The cytological specimens were prepared with

liquid-based cytology using the BD SurePathTM liquid-based Pap test (Beckton Dickinson,

Franklin Lakes, NJ, USA) and were stained based on Papanicolaou’s method. Using a digital

camera (DP20, Olympus Corporation, Tokyo, Japan) which was attached to a microscope

(BX53, Olympus Corporation) with a 40× objective lens, 244 microscopic images of benign

cells and 267 images of malignant cells were acquired in a JPEG format with a size of

1280 × 960 pixels per image. This study was approved by an institutional review board and

informed consents were obtained from patients subject to the condition of data anonymization

(No. HM16–155).

Fig 1. Schematic of the study outline.

https://doi.org/10.1371/journal.pone.0229951.g001
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Image preparation

The matrix sizes of the acquired microscopic images were too large for direct input to a

DCNN. Therefore, the acquired images were divided into nonoverlapping 256 × 256 pixel

patches, as shown in Fig 2. The patch images included various cells, which did not necessarily

contain malignant cells, even when the images were obtained from a patient with a malignant

tumor. Therefore, two cytopathologists evaluated the presence or absence of malignant cells in

patch images from all cases of malignant tumors. A total of 793 patch images (391 benign and

402 malignant cells) were obtained. Given that the number of images was still too small to

train a GAN and DCNN, rotation (90˚, 180˚, and 270˚), flipping, and color correction, were

employed to increase the number of images.

In cytological images, cells often overlap, so they are thicker than the histology. Because we

need to focus on each target cell, blurry and sharp places are mixed within the microscopic

images. Additionally, because the focus adjustment is performed manually, the image sharp-

ness varies. Therefore, to reproduce the variation in focus, two spatial filters (edge enhance-

ment and a Gaussian filter) were also introduced for data augmentation. Thus, 10,000 benign

and 10,000 malignant cell images, including the original images, were generated. This augmen-

tation method was described in detail in one of our previous publication [11].

Image generation based on PGGAN

A GAN—a new deep learning framework used to estimate generative models via an adversarial

process—can be introduced to generate images for training a DCNN. The GAN generator

takes a variable extracted from a specific distribution—such as the Gaussian distribution—as

input, and synthesizes data based on a multilayer network. In the GAN’s discriminator, either

generated or actual data are given to a multilayer network that classifies whether the given data

were synthetically generated or real. Deep convolutional generative adversarial networks

(DCGANs) are often used when images are generated with a GAN [23]. However, given that

the final output image is generated directly from random values, network training becomes

unstable, and it is often difficult to generate high-resolution images. Many methods have been

developed for the improvement of the quality of GAN-generated images. PGGAN, proposed

by Kerras et al., is a method that gradually increases the network layers of the GAN’s generator

and discriminator and increases their resolutions. In this study, we introduced PGGAN to

generate high-resolution images.

As shown in Fig 3, PGGAN initially generates small 4 × 4 pixel images from 128 random

values (latent vectors) using a generator with two convolutional layers. The discriminator

Fig 2. Generation and augmentation of patch images.

https://doi.org/10.1371/journal.pone.0229951.g002
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classifies these images as real or synthetic (i.e., generated). By adding similar networks to the

initial networks, PGGAN can then generate and discriminate images that are larger with sizes

equal to 8 × 8 pixels. By repeating this addition, high-resolution images will eventually be gen-

erated. In this study, PGGAN generated images with sizes equal to 256 × 256 pixels, which are

equal to the size as the actual patch images. The PGGAN network structure used in this study

was based on the original paper by Kerras et al. [22]. In the convolutional layer, 512 feature

maps were used to generate the images with the sizes of 8 × 8 and 16 × 16 pixels. Accordingly,

256, 128, 64, and 32 feature maps were used to generate images with the sizes of 32 × 32,

64 × 64, 128 × 128, and 256 × 256 pixels, respectively. The PGGAN structure was based on

WGAN [24], the evaluation functions of the two networks were sliced Wasserstein distances

[22]. We adopted the Adam optimizer [25], and set the learning rate to 0.001, β1 to 0.0, and β2

to 0.999 for 100 training epochs in each scaling step while ensuring that the training pro-

gressed stably. We designed two PGGANs to generate benign and malignant cells.

Fig 3. Progressive growing of generative adversarial network (GAN) (PGGAN) training.

https://doi.org/10.1371/journal.pone.0229951.g003
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Two-step DCNN training

A DCNN was used to discriminate between benign and malignant cytological images. In this

study, we used the VGG-16 DCNN architecture [26]. VGG-16 is a simple and deep network

structure which was released by the Visual Geometry Group at Oxford University in 2014, and

ranked second in the 2014 image classification contest [27]. Our previous study confirmed

that VGG-16 classified cytological images better than other well-known network architectures,

such as AlexNet [5], Inception V3 [28], ResNet-50 [29], and DenseNet [30]. To introduce the

VGG-16 network into our study task, we eliminated the fully connected layers from the origi-

nal network, and new fully connected layers which comprised 1024, 256, and 2 units, were

added after the final VGG-16 pooling layer, as shown in Fig 4.

Network training was divided into two steps. First, the image generated by PGGAN was

assigned to the DCNN and the weights of the entire network were updated (pretraining). Sub-

sequently, the actual images were input to the trained network, and only the weights of the

fully connected layers were updated (fine-tuning).

For these processes, we created an original program using Keras and Tensorflow, we

adopted a minibatch size of 32, the Adam optimization algorithm, a learning coefficient equal

to 10−6, a β1 value equal to 0.9, and a β2 value equal to 0.999. In the pretraining and fine tuning

of DCNN, the same parameters for training were used. The behavior of the training of DCNN

for classification was confirmed by using the validation images (173 images), and the common

hyperparameters were used thrice.

Evaluation metrics

This study aimed to a) generate cytological images with a GAN, and b) use them to train a

DCNN to improve cytological image classification. To confirm the effectiveness of the pro-

posed method, we analyzed the generated images and the network’s classification perfor-

mance. First, to confirm the effectiveness of PGGAN, we compared the quality of images

generated by PGGAN and by DCGAN, which is a conventional method that has no progres-

sive structure. The DCGAN used in the evaluation consisted of a generator with five convolu-

tional and four scaling layers, and a discriminator with six convolutional and one output

layers. The generator generated 256 × 256 pixel images from 128 random values (latent vector).

We adopted the Adam optimizer and set the learning rate to 0.00002, β1 to 0.5, and β2 to 0.999

Fig 4. Network architecture used for classification.

https://doi.org/10.1371/journal.pone.0229951.g004
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for 5000 training epochs with a minibatch size of 32 while ensuring that the training pro-

gressed stably. Subsequently, we evaluated the DCNN’s classification performance. The final

classification performances of the three pretraining methods were compared: a) one was the

case in which only images from the ImageNet database were used to pretrain the DCNN, b)

the second was the case in which PGGAN-generated images were used, and c) the third was

the case in which conventional DCGAN-generated images were used. We created a confusion

matrix which compared the network output with the known actual classification. The matrix

was calculated by setting a cut-off value of 0.5 for the output of the malignancy of DCNN.

Moreover, a cut-off was provided with respect to the DCNN output, classification sensitivity

and specificity were calculated, and the receiver operating characteristic (ROC) curves were

drawn based on the three conditions to compare the areas under the curves (AUCs).

Results

Synthesized cytological images

Fig 5 shows examples of actual cytological images, images generated by a conventional

DCGAN, and images generated by PGGAN.

Classification of benign and malignant cells

The pretraining of VGG-16 using the PGGAN-generated images and the classification perfor-

mance of the DCNN fine-tuned by actual images were evaluated. Table 1 shows the confusion

matrix for the classification with threefold cross-validation for a total of 620 images. The total

accuracy was 85.3%. Fig 6 shows the ROC curve outcomes. The ROC curves of the DCNN

Fig 5. Real and synthesized images.

https://doi.org/10.1371/journal.pone.0229951.g005
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pretrained using PGGAN were better than those using of DCNNs pretrained using ImageNet

or with a DCGAN.

Table 2 compares the discrimination sensitivity, specificity, overall accuracy, and the AUC of

the three methods. The proposed PGGAN method yielded better results than the other two

methods. To compare the classified results, Fig 7 shows images correctly identified by both the

conventional and proposed methods, images newly identified correctly by the proposed method,

and images correctly identified using neither the conventional nor the proposed methods.

Discussion

In this study, we improved lung cell classification using GAN-generated images of benign and

malignant cytological images. We introduced PGGAN, a GAN-related technology capable of

Table 1. Confusion matrix of the proposed method.

Estimated Overall accuracy

Benign Malignant

Actual Benign 261 45 0.853

Malignant 46 268

https://doi.org/10.1371/journal.pone.0229951.t001

Fig 6. Receiver operating characteristic (ROC) curves of the three pretraining methods.

https://doi.org/10.1371/journal.pone.0229951.g006
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generating high-resolution images, as well as a two-step learning pretraining process with

GAN-generated images, which was fine-tuned with actual images.

In the cytology, the size of the nucleus, the proportion of the nucleus in the cell, the amount

of chromatin, and the nucleolus are cleary observed to evaluate the degree of cell atypia. Addi-

tionally, the shape of the cell clump and the color of the cell are observed for cell type classifica-

tion. From these perspectives, the generated images of PGGAN and DCGAN were subjectively

evaluated by a pathologist. In the image generated by DCGAN, which is a conventional

method, the shapes of the cell clump were mostly reproduced; however, the outline and inter-

nal structure of the cells were unclear. Therefore, it is very difficult to obtain the image for the

evaluation of malignancy using the conventional DCGAN. On the other hand, the images gen-

erated by PGGAN reproduced the shape of the cell clumps and the texture of the nucleus and

cytoplasm. However, more detailed cell morphology is required to determine the atypism of

cells in the diagnosis. The color reproducibility of the images obtained by both PGGAN and

DCGAN was acceptable.

As described above, although the image generated by PGGAN does not have sufficient

quality for use in the evaluation of malignancy and cell types, the image quality was better than

Table 2. Comparison of pretraining methods.

Pretraining method Sensitivity Specificity Overall accuracy Az

ImageNet 0.850 0.768 0.810 0.872

DCGAN 0.793 0.797 0.795 0.867

PGGAN 0.854 0.853 0.853 0.901

https://doi.org/10.1371/journal.pone.0229951.t002

Fig 7. Cells correctly classified and misclassified by the previous and proposed methods.

https://doi.org/10.1371/journal.pone.0229951.g007
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that of the image generated by DCGAN; the basic structure and sequence were reproduced to

withstand for the pretraining of DCNN.

Use of PGGAN-generated images to pretrain a DCNN improved the classification specific-

ity by approximately 8.5% while it retained the detection sensitivity as compared with the use

of the conventional method of pretraining with the ImageNet database. The detection sensitiv-

ity and the overall classification accuracy of the DCNN, which was pretrained using DCGAN-

generated images, were the lowest of the three pretraining methods possibly because the

DCGAN-generated images did not contain sufficient shape and color information. The AUC

of the proposed PGGAN method was the highest and confirmed the effectiveness of pretrain-

ing the DCNN using GAN-generated images. Images synthesized by DCGAN had insufficient

quality in the cell nucleus, and the edge and contrast information constituting the cell mor-

phology was poor. Therefore, pre-training using DCGAN generated images is considered to

be inferior to pre-training using ImageNet. On the other hand, images synthesized by PGGAN

had a good representation of cell nuclei and layout, as well as cell patterns not included in the

training image; they are used effectively for pretraining the DCNN.

Deep learning using a DCNN requires many images to evoke a good performance. How-

ever, it may be difficult to obtain a sufficient amount of medical image data. Experimental

results indicate that our scheme will be useful for the classification of medical images even

when only limited data are acquired. In this study, cytological images were classified as benign

or malignant. However, many atypical cells have intermediate characteristics. Therefore, in the

future, it will be necessary to consider methods that classify cells into three types, including

atypical cells.

Conclusions

In this study, we developed a method to automatically generate cytological images with the use

of a GAN and performed a two-step learning process with the use of a DCNN to improve the

classification of benign and malignant cytological images with the use of a DCNN. In the pro-

posed method, patch images were segmented from the original microscopic images which

allowed the generation of numerous high-resolution images with PGGAN. We also pretrained

a VGG-16 DCNN with the use of the synthesized images and fine-tuned the DCNN with

actual patch images. In an experiment with 793 patch images, the proposed method improved

the classification specificity by 8.5% and the total classification accuracy by approximately

4.3% compared to a network which was fine-tuned with ImageNet. These findings confirmed

the effectiveness of the use of PGGAN-generated images.
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