
The development of real-time bioluminescence recording 
using firefly luciferase as a reporter of clock gene expres-
sion has fundamentally revolutionized studies on circadian 
clocks [1,2]. This technique became a powerful tool and a 
common technique used in non-invasive and long-term assays 
of mammalian circadian rhythms in living cells, cultured 
tissues, and whole organisms [1-17].

The mammalian retina harbors many physiological and 
functional circadian rhythms, including photoreceptor disc 
shedding and phagocytosis by the retinal pigment epithelium, 
the expression of immediate early genes and opsin genes in 

photoreceptors, and dopamine/melatonin synthesis [18-26]; 
for a review, see also [27,28]. To investigate the core func-
tioning and light properties of the mammalian retinal clock, 
Ruan and colleagues developed an in vitro retinal explant 
culture protocol using the Per2Luc reporter mice [13]. In 
these mice, the luciferase coding sequence is inserted before 
the endogenous Per2 stop codon. The expression of the 
PER2::Luc fusion protein is then driven by the Per2 promoter 
[2]. It allows direct monitoring of molecular rhythms of 
the protein PER2 as a real-time reporter of circadian gene 
dynamics. This protocol was then used in several retinal 
studies [7-10,15,17,29-31]. However, to replicate experimental 
conditions and to enable meaningful comparisons between 
findings from different studies, the establishment of a stan-
dardized procedure is an essential prerequisite.

The objective of this study is to highlight the impor-
tant parameters that inf luence the retinal circadian 

Molecular Vision 2020; 26:106-116 <http://www.molvis.org/molvis/v26/106>
Received 17 May 2019 | Accepted 2 March 2020 | Published 4 March 2020

© 2020 Molecular Vision

106

A standardized method to assess the endogenous activity and the 
light–response of the retinal clock in mammals

H. Calligaro,1 C. Kinane,1,2 M. Bennis,2 C. Coutanson,1 O. Dkhissi-Benyahya1

(The first two author contributed equally to this study.)

1Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500 Bron, France; 
2Laboratory of Pharmacology, Neurobiology and Behavior (URAC-37), Cadi Ayyad University, Marrakech, Morocco

Purpose: The bioluminescence reporter PER2::Luciferase (PER2::Luc) provides a powerful tool to study the regula-
tion of biological clocks in explant tissues, including the retinal clock. However, the establishment of a standardized 
procedure to replicate experimental conditions and to enable meaningful comparisons between findings from different 
studies is still lacking. In addition, different parameters may affect the retinal circadian bioluminescence signal and its 
dynamic in in vitro assays. In the present study, we first evaluated the effect of sex and age on the main parameters of 
the mouse retinal clock. We then examined the impact of medium change on PER2::Luc rhythm and compared two light 
stimulation protocols of the retinal clock.
Methods: In a first set of experiments, retinal explants from both male and female Per2Luc mice of different ages (1 to 8 
months) are cultured and the period, phase, amplitude, and rhythmic power of PER2::Luc oscillations are analyzed. In 
a second set of experiments, we quantified the effect of a medium change done after 4, 6, 8, 9, or 10 days of culture on 
the phase and period of retinal explants. Finally, we compared the phase shift and the period change resulting from two 
methods of light stimulations of retinal explants: the first involved the transfer of the cultured tissues from the Lumicycle 
into a light stimulation chamber, while the second used a light delivery apparatus embedded in the Lumicycle.
Results: We do not observe any sex-dependent effects on the amplitude, period, phase, and rhythmic power of the in vitro 
retinal PER2::Luc oscillations in animals aged of 2 to 3 months. The most remarkable effect of age is on the amplitude of 
PER2::Luc oscillations that significantly decrease from 1 to 4–5 months, whereas the endogenous period and rhythmic 
power increase slightly until 2 to 3 months and then do not change until 8 months. The phase is not affected by age. 
We then show that a medium change occurring after 4 days of culture does not alter the phase of PER2::Luc rhythm 
by comparison with day 0, whereas a medium change done after 6, 8, 9, or 10 days in culture advances the phase and 
lengthens the period. Finally, we observe that the physical displacement of the culture dishes containing retinal explants, 
even in complete darkness, induces a strong phase shift of PER2::Luc oscillations.
Conclusions: Our work shows that the retina cultures are particularly sensitive to some aspects of the culture procedure, 
and it provides an accurate standard protocol to avoid biases due to artifactually induced phase shifts resulting from the 
medium change or physical displacement.
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bioluminescence signal and its dynamic. While animals from 
both sexes and different ages are commonly used in retinal 
bioluminescent studies, their effects on the endogenous func-
tioning of the retinal clock have not been characterized. Only 
one recent study investigates how aging affects the circadian 
rhythm of PER2::Luc bioluminescence in the retina and in 
other ocular tissues [8]. In addition, in in vitro assays, the 
culture procedure, such as medium change or composition 
[3,5,13,14], culture time [32], serum shock [33], and tempera-
ture variation [34] have been shown to modify clock gene 
rhythms by initiating or resetting tissue rhythmicity in a clock-
dependent manner [30]. The robustness of the retinal clock 
also strongly depends on culture conditions [14]. Because 
retinal explants can be maintained several days in culture 
before a medium change [7,9,10,13-15,17,30], we analyzed the 
effect on the phase and period of PER2::Luc oscillations of 
the number of days in culture before the medium change. 
In previous studies, the phase of PER2::Luc oscillations was 
either arbitrarily established using the projected zeitgeber 
time (ZT) time of the light-dark cycle to which animals were 
exposed [13,17,35] or was based on the phase of Per2 mRNA 
rhythm in vivo [10], which do not consider the delay between 
the transcription and translation of clock gene expressions. 
Here, we propose a standardized procedure to establish in 
vitro the phase of PER2::Luc oscillations.

Determining the phase of the retinal clock is also 
important to study the resetting effect of light in vitro, a 
core property of the retinal clock. Indeed, light entrainment 
of the retinal clock is gated in a phase-specific manner, 
with maximum phase delays occurring at circadian time 16 
(CT16) and phase advances during the late subjective night 
[9,10,13,17]. The classical procedure commonly employed 
to assess light-induced phase shifts involves a transfer of 
the cultured tissue from the Lumicycle into a light stimula-
tion chamber at the same temperature. Subsequently, after 
light stimulation, the tissue is returned to the Lumicycle to 
continue the bioluminescence recording. We verified whether 
the physical displacement of retinal culture dishes changes 
the phase or period of the retinal clock.

METHODS

Animals: Homozygous C57BL/6J Per2Luc mice are housed in 
a temperature-controlled room (23±1 °C), under 12 h:12 h 
light-dark cycle (light intensity around 200 lux) with food 
and water ad libitum. All animal procedures are in strict 
accordance with current national and international regula-
tions on animal care, housing, breeding, and experimentation 
and are approved by the regional ethics committee CELYNE 
(C2EA42–13–02–0402–005). All efforts are made to 

minimize suffering. In the sex experiment, 12 males and 12 
females are used. In the age experiment, animals are divided 
as follows: 1 month (n = 8), 2–3 months (n = 12), 4–5 months 
(n = 12), and 6–8 months (n = 12).

Retinal explant culture and bioluminescence recording: Mice 
are killed by cervical dislocation 1 h before light offset (ZT11; 
Figure 1). The light intensity in the dissection room is around 
200 lux (white fluorescent bulbs). Eyes are enucleated and 
placed in Hank’s balanced salt solution (HBSS; Invitrogen) 
on ice. The retinas are cultured as described previously [13]. 
Briefly, a small incision is performed under the ora serrata, 
and the cornea is dissected out using fine microscissors. 
The lens is then removed, and the retina is separated from 
the sclera. Finally, the retina is flattened on a glass slide, 
ganglion cell layer up, and transferred to a semi-permeable 
(Millicell, Millipore ref-PICMORG50) membrane in 35-mm 
culture dishes (Nunclon) containing 1.2 ml Neurobasal-A 
(Life Technologies) with 2% B27 (Gibco), 2 mM L-Glutamine 
(Life Technologies), and 25 U/ml antibiotics (Penicillin/Strep-
tomycin, Sigma), incubated at 37 °C in 5% CO2 for 24 h. 
From this step, all manipulations of explants are performed 
under dim red light. The total duration necessary to dissect a 
retina and put the tissue in culture is around 10 min. After 24 
h, at the projected ZT12, retinas are transferred to 1.2 ml of 
199 medium (Sigma), supplemented by 4 mM sodium bicar-
bonate (Sigma), 20 mM D-glucose (Sigma), 2% B27, 0.7 mM 
L-Glutamine, 25 U/mL antibiotics (Penicillin/Streptomycin, 
Sigma), and 0.1 mM Luciferin (Perkin). Culture dishes are 
sealed and then placed in a Lumicycle (Actimetrics, Wilmette, 
IL) to record the global emitted bioluminescence. All medium 
changes are done at projected ZT12.

Determination of the biological time of the retinal clock in 
vitro: The biological time of troughs and peaks of PER2::Luc 
oscillations is determined as previously described [17]. 
Briefly, retinal explants are dissected at ZT11 and cultured 
just before light offset (ZT12; Figure 1). The projected ZT12, 
at which point the medium is changed and the recording is 
started, is then considered CT12, and it is used as a time refer-
ence. The time of occurrence of the trough and the peak of 
the first complete PER2::Luc oscillation is determined using 
this CT12 reference time corrected by the endogenous period. 
After the medium change, the biological time of PER2::Luc 
oscillations is determined using the same procedure with the 
time of medium change considered to be CT12. The number 
of retinal explants used in the medium change experiment is 
as follows: day 0 (n = 8), 4 days (n = 7), 6 days (n = 8), 8 days 
(n = 6), 9 days (n = 7), and 10 days (n = 6).

Light stimulations using the classical method: We first 
established a 4-day baseline bioluminescence signal for each 
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sample in the Lumicycle (Actimetrics). The phase of the third 
peak is used to calculate the timing of the stimulation (CT12 
to CT22). Then, retinal explants are cautiously transferred 
from the Lumicycle to a nearby incubator including a light 
stimulation chamber with or without light stimulation. Subse-
quently, the tissue is returned to the Lumicycle and the phase 
shift is measured. This is the classical procedure commonly 
employed to assess light-induced phase shifts of the retinal 
clock. All the displacements of retinal culture dishes are done 
in complete darkness.

Light stimulations using the embedded light-setup: To avoid 
displacing the retinal explants when exposing them to light, 
we developed a new light delivery apparatus embedded 
within the Lumicycle (Figure 2). This apparatus consists 
of an opaque matrix that fits the shape of the five exposed 
dishes on the turntable and by a black cylinder with reflec-
tive white paint inside containing the light-emitting diodes 
(LEDs, SuperBright LEDs). For more details, see also [17]. 
We first established a 4-day baseline bioluminescence signal 
for each sample in the Lumicycle. The phase of the third peak 

is then used to calculate the timing of the stimulation (CT12 
to CT22; Figure 1). Retinal explants are then exposed to 
465-nm monochromatic light (30 min, 1015 photons/cm2/s, n = 
7). Subsequently, the apparatus is removed, and the recording 
is performed for 4 supplementary days. Radiometric 
measurements are made using an International Light model 
IL1700 photometer (International Light Technologies) and a 
spectrophotometer (Specbos 1211, JETI). The temperature is 
monitored by placing a temperature data logger (HOBO data 
logger, ONSET) inside the light delivery apparatus. Retinal 
explants only exposed to a temperature change identical to 
the one obtained with the light stimulation (0.57±0.01 °C) do 
not present a phase shift in PER2::Luc oscillations (see also 
[17]).

Physical displacement effects on the retinal clock phase: To 
evaluate the effects of the displacement of retinal culture 
dishes on the phase of PER2::Luc, retinal explants are 
divided into two groups: in the first group, retinal explants 
are cautiously transferred from the Lumicycle to a nearby 
incubator, including the light stimulation chamber, and then 
returned to the Lumicycle after 30 min (classical light-setup 
procedure). For the second group, retinal explants are not 
moved from the Lumicycle (embedded light-setup procedure). 
Phase shifts are then calculated. All the displacements of 
retinal culture dishes are done in complete darkness.

Data analysis: Phase shifts are calculated as the differ-
ence between the predicted phase and the measured peak 
of PER2::Luc based on the 3 days, respectively, before and 
after light/movement stimulation (Figure 1). The rhythmic 
power of the oscillations, a hallmark of clock robustness, is 
determined using the periodogram function of Lumicycle 
Analysis, as previously described [8,14,30,36].

Parameters of PER2::Luc oscillations are determined 
with SigmaPlot (Systat Software), as described in [15]. 
Brief ly, we fitted a linearly detrended sinusoidal curve 
oscillating around a polynomial baseline to the first three 
complete oscillations from each sample. The equation used is
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Where a is the amplitude, τ the period (days), and φ the 
phase (days) of the fitting curve.

Statistical analysis: Results are expressed as mean ± stan-
dard error of the mean (SEM). Statistical analysis has been 
done using Statistica (StatSoft) and R (The R Foundation). 
Statistical analyses are performed using the Kruskal–Wallis 

Figure 1. Schematic representation of the culture protocol and phase 
shift calculation. Retinal explants are dissected one hour before 
light off (ZT11) and cultured at ZT12. After 24 h in a dark incu-
bator at 37 °C, the culture medium is changed, and retinal explants 
are placed in the Lumicycle for recording. The projected ZT12, at 
which time the medium is changed and recording is started, is then 
considered to be CT12 and used as a time reference. The time of 
occurrence of the trough and peak of the first complete PER2::Luc 
oscillation are determined by using this CT12 reference and by 
correcting the time for the endogenous period. After 4 days of 
baseline, the stimulation time (CT16) is determined using the peak 
of the third oscillation (green asterisk). The phase shift is calculated 
as the difference between the observed phase (blue asterisk) after 
the stimulation and the predicted phase (black asterisk) without 
stimulation of the same retinal explant.
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one-way ANOVA followed, when significant (p≤0.05), by the 
Mann–Whitney U test.

RESULTS

Effect of sex and age on PER2::Luc bioluminescence signal: 
To analyze the effect of sex, we compared the clock param-
eters of PER2::Luc oscillations from 2-month-old male and 
female retinal explants (n = 12 for both groups; Figure 3A). 
No difference in the endogenous period (female: 25.08±0.14 
h; male: 25.11±0.13 h; p = 0.954), peak phase (female: CT 
20.26±0.45; male: 20.49±0.50; p = 0.603), amplitude (female: 
135.47±24.91 cps; male: 134.91±15.88; p = 0.954), and 
rhythmic power (female: 433.92±2.56; male: 437.67±2.51; p 
= 0.326) of PER2::Luc oscillations was observed. Because 
we did not find significant sex differences, we then compared 
the same parameters from mice of both sexes at different 
ages, from 1 month up to 6–8 months (Figure 3B). A length-
ening of the endogenous period is observed between 1- and 
2–3-month retinas (respectively, 24.46±0.18 h and 25.19±0.12 
h, p<0.05). No difference in the period is found between 2–3- 
and 4–5-month retinas (25.16±0.27 h, p=0.181) and between 
4–5- and 6–8-month retinas (25.37±0.25 h, p = 0.160). We 
did not observe a significant modification in the peak phase 
of PER2::Luc rhythm (1 month: CT 20.47±0.73; 2–3 months: 
CT 19.84±0.53; 4–5 months: CT 19.77±0.61; 6–8 months: 
CT 20.35±0.28, p = 0.931), whereas the amplitude progres-
sively decreased during aging: from 1 (802.82±107.79 cps) 

to 2–3 months (160.08±23.00 cps, p<0.01) and from 2–3 to 
4–5 months (79.68±32.90 cps; p<0.01), and it then reached a 
steady-state value between 4–5 and 6–8 months (91.47±13.78 
cps; p = 0.219). The rhythmic power increased from 1 month 
(405.13±7.53) to 2–3 months (435.50±2.44, p<0.05) and then 
stabilized at 2–3 months up to 6–8 months (4–5 months: 
433.42±2.55; 6–8 months: 436.55±4.41; p>0.05). No signifi-
cant differences between males and females are observed at 
all ages (Appendix 1). Based on these results, we used both 
males and females aged 2–3 months in further experiments.

Effect of medium change on the phase and the period of 
PER2::Luc rhythm: Retinas from Per2Luc knock-in mouse are 
dissected at ZT11 and cultured just before light offset (ZT12) 
to maintain the previous light-dark cycle in vivo (Figure 1). 
The projected ZT12 is then considered to be CT12 and used 
as a time reference to predict the circadian time of the retinal 
clock in vitro. We determined the CT of the first peak and 
trough of the retinal explants after a medium change was real-
ized 4, 6, 8, 9, or 10 days after the beginning of the culture 
(Figure 4A-B), and we compared them to the CT of the trough 
and peak calculated on the first oscillation after the start of 
the culture (day 0). We find that a medium change affects 
differently the phase of PER2::Luc depending on the number 
of days in culture. When a medium refresh is done after 4 
days in culture, the phase of PER2::Luc is similar to day 0 
(day 0: trough = CT 7.13±0.46, peak = CT 19.94±0.48; 4 days: 
trough = CT 8.46±0.79, peak = CT 19.17±0.43; p = 0.231). 

Figure 2. Schematic representa-
tion of the light delivery apparatus 
embedded within the Lumicycle. 
The device is composed of an 
opaque matrix (below panel) that 
fits the shape of the five exposed 
dishes on the turntable and by a 
black cylinder ref lective white 
inside containing the LEDs (Super-
Bright LEDs, top panel). Light 
intensity is controlled by a dimmer 
and neutral density filters. To avoid 
any light diffusion to the photo-
multiplier tubes during the light 
stimulation, the bottom edge of the 
cylinder was sealed to the contours 
of the matrix with light-imperme-
able seals inside the Lumicycle.
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A medium refresh done after 6, 8, 9, or 10 days in culture 
induces a significant phase advance of PER2::Luc (6 days: 
trough = CT 3.17±0.86, peak = CT 14.61±0.81; 8 days: trough 
= CT 4.30±1.21; 9 days, peak = CT 15.71±1.00; 9 days: trough 
= CT 0.4±0.79, peak = CT 14.74±1.04; 10 days: trough = CT 
3.19±0.50, peak = CT 13.45±0.49; n = 6–8: p<0.05). In addi-
tion to phase modifications, we observe a shortening of the 
endogenous period when the medium change is done at 4 days 
(−0.57±0.26 h), whereas the period is similarly lengthened 
when the medium change occurs after 6, 8, 9, or 10 days in 
culture (6 days = 0.38±0.14 h; 8 days = 0.40±0.34 h; 9 days = 
0.88±0.31 h; 10 days = 0.61±0.18 h; n = 6–8; p<0.05; Figure 
4C). These results suggest that using the projected CT12 as a 
time reference to determine the biological time of the retinal 
clock is not a valuable marker, as the phase of PER2::Luc 
oscillations is not uniformly reset after a medium change. We 
previously proposed using the first complete PER2::Luc oscil-
lation after starting the recording as a time marker, and we 

found that the trough and peak of the oscillation occurred in 
a consistent manner, respectively, around CT8 (CT 7.65±0.21) 
and CT20 (CT 19.94±0.44; n = 42) in a circadian cycle (Figure 
1) [17].

Establishment of an experimental procedure to measure 
light-induced phase shift of PER2::Luc expression: We first 
used the classical procedure to expose retinal explants to a 
light stimulation from CT12 to CT22 (Figure 5 left). Both 
light-stimulated and dark-controlled (DC) retinal explants 
showed important and highly variable phase shifts of 
PER2::Luc oscillations ranging from −4.46 h to 4.73 h for 
the light-stimulated retinas and from −2.09 h to 2.35 h for the 
DC, with no statistical difference between both groups (p = 
0.457). This result suggests that the phase shift observed is 
not correlated to the light stimulation.

To determine whether the phase shift is due to the 
physical displacement of the culture dishes, we repeated the 

Figure 3. Effect of sex and age on 
the expression of PER2::Luc in the 
retina. The endogenous period, 
amplitude, phase, and rhythmic 
power are calculated at 3 days 
baseline in retinal explants from 
A: 2-month-old male and female 
Per2Luc mice and B: male and 
female Per2Luc mice divided into 
four groups and aged 1 month, 
2–3 months, 4–5 months, or 6–8 
months. Bars represent mean ± 
SEM n = 12 for each group, except 
1 month: n = 8. Statistical differ-
ences are indicated by *: p<0.05 or 
**: p<0.01.
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same experiment using the light stimulation device (Figure 
5) directly embedded into the Lumicycle (Figure 2), which 
allows exposing retinal explants to light from CT12 to CT22 
without moving the culture dishes. We observed a decrease in 
the variability in both DC and stimulated retinas, with phase 
delays ranging from −0.28 h to −2.96 h from CT12 to CT22. 
We then focalized on CT16 without exposing retinal explants 
to light. With the classical procedure, we observed phase 
modifications ranging from −4.4 h to 1.24 h with a mean 
value of −0.91±0.46 h (n = 12), whereas, with the embedded 
light-setup, phase shifts are between −0.92 h and 0.84 h with 
a mean value of −0.13±0.13 h (n = 17; Figure 6A). In the two 

experimental procedures, retinal explants exhibited a similar 
lengthening of the period of PER2::Luc oscillations (classical 
light setup: 0.38±0.16 h; embedded light setup: 0.42±0.11, p 
= 0.647).

Finally, and to confirm that the embedded setup is suit-
able for light stimulation, retinal explants are exposed to 
light (30 min, 1014 photons/cm2/s) at CT16. With the classical 
light setup, we observed phase modifications ranging from 
−0.80 h to 3.60 h with a mean value of −0.42±0.73 h (n = 
9), whereas, with the embedded light setup, phase shifts are 
between −2.96 h and −0.96 h with a mean value of −2.05±0.28 
h (n = 7; Figure 6B). In addition, retinal explants showed 

Figure 4. Effect of medium refresh on the phase and endogenous period of PER2::Luc oscillations after 4, 6, 8, 9, and 10 days in culture. A: 
Representatives curves of PER2::Luc oscillations after changing the medium of the retinal explants after 4 (black line) or 9 days (red line) 
in culture. Red and black arrows correspond to troughs and peaks of the first complete PER2::Luc oscillation for each condition. B: Phase 
of the first troughs (black circles) and first peaks (white circles) after changing the medium of the retinal explants after 4, 6, 8, 9, or 10 days 
in culture. Day 0 corresponds to the first complete oscillation after the beginning of the culture. C: Variation in the endogenous period of 
PER2::Luc oscillations before and after the medium change. Data are represented as mean±SD (day 0: n = 8; 4–10 days: n = 6–8).

Figure 5. Light-induced phase-shift of PER2::Luc rhythms using the embedded device or the classical procedure of light stimulation of 
retinal explants. Each symbol corresponds to an individual retinal explant. Blue symbols correspond to retinal explants exposed to light 
stimulation (480 nm, 30 min, 1015 photons/cm2/s) using the classical procedure (left graph) or the embedded device (right graph). Black 
symbols correspond to retinal explants that were identically handled but not exposed to light (DC).
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only lengthening of the endogenous period of PER2::Luc 
oscillations with the embedded light setup, whereas, with 
the classical light setup, we observed both shortening and 
lengthening of the endogenous period. These results suggest 
that the physical displacement of retinal explants produced 
a random, robust effect on the phase of PER2::Luc rhythm 
and that using a light stimulation device embedded within 
the Lumicycle prevents non-photic phase-shifting effects and 
experimental bias.

DISCUSSION

Although bioluminescence monitoring of PER2::Luc retinal 
explants has been used in several studies, a standardized 
procedure to analyze the core functioning and light response 
properties of the mammalian retinal clock in vitro was 
still lacking. In the present study, we described a method 
measuring circadian rhythmicity and resetting the effect of 
light on the mouse retinal clock and then we examined the 
impact of different culture parameters on PER2::Luc rhythm.

Age and biological sex are two important factors that 
have been shown to influence circadian rhythmicity [37-46]. 
While only male mice are used in behavioral experiments to 
avoid the interactive effects of the female estrous cycle [47-52], 
for in vitro studies, retinas are usually isolated from young 
mice (2–3 months old) of an unspecified sex [8-10,13,30] or 
from both males and females [15]. Sex differences have been 

reported for different responses of circadian timing system 
(for review [45]); however, no data are available for the retinal 
clock. In the present study, we did not observe any sex-depen-
dent effects on the amplitude, period, and phase of the in vitro 
retinal PER2::Luc oscillations with similar rhythmic power in 
animals aged 2–3 months. However, we cannot exclude that 
across the lifespan, the retinal clock gene expression became 
sexually divergent [53]. The effect of aging was recently 
investigated on the circadian rhythm of the retina, the retinal 
pigment epithelium, and the cornea [8]. In our study, the most 
severe effect of age is on the amplitude of PER2::Luc oscilla-
tions, which significantly decreases from 1 to 4–5 months. We 
also observed a slight lengthening of the endogenous period 
and an increase in rhythmic power from 1 to 2–3 months that 
do not increase further at older ages (6–8 months), whereas 
the phase was unaffected. These results are consistent with 
the study of Baba and colleagues [8]. However, they reported 
a phase advance in PER2::Luc rhythms occurring during 
aging that can be linked to the older stage used in their study 
(12 months). Taken together, these results suggest that the 
age-related decline in the amplitude of PER2::Luc oscillations 
could be related to cell survival in culture, which has been 
tested only in adult animals with no morphological changes 
to the main retinal cells [13,14]. However, we cannot exclude 
that the intrinsic pacemaking mechanisms within retinal cells 
are still intact, but age may rather induce desynchronization 
between cells [8,54-57].

Figure 6. Comparison of the phase 
shif t and endogenous period 
lengthening of PER2::Luc oscil-
lations obtained with the classical 
procedure or the embedded device. 
A: Mean and individual values of 
phase shift (left) and endogenous 
period change (right) of DC retinal 
explants obtained with each proce-
dure. The retinal explants are not 
exposed to any light stimulation. 
Bars represent the mean±SEM. 
Classical method: n = 12 , 
Embedded setup: n = 17. B: Mean 
and individual values of phase 
shift (left) and endogenous period 
change (right) of light-stimulated 
retinal explants obtained with each 
procedure. The retinal explants 
are exposed to 30 min of 480 nm 

(classical light-setup) or 465 nm (embedded light-setup) light stimulation at 1015 photons/cm2/s. Bars represent the mean±SEM. Classical 
method: n = 9, Embedded setup: n = 7.
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Culture conditions have been previously shown to affect 
the coupling and robustness of expressed circadian rhythms. 
In particular, a medium change and a serum shock are able 
to induce the clock gene expression in peripheral oscillators, 
such as cultured liver slices or fibroblasts [3,33,58-63]. In 
addition, preparation time has been reported to induce phase 
shifts of clock gene rhythms in the suprachiasmatic nucleus 
(SCN) [5,32,64-66]. To avoid this effect in our experiment, 
mice are sacrificed at ZT11, and all retinal explants are 
cultured at ZT12. Somewhat surprisingly, we showed that a 
medium change occurring after 4 days of culture did not alter 
the phase of PER2::Luc by comparison with day 0 (begin-
ning of culture), whereas a medium change on a later day 
advanced the phase by around 4 h and lengthened the period. 
The retinal clock is composed of at least three coupled clocks 
localized in different retinal layers [13,15,67-69] in which 
individual cell types harbor distinct oscillators with specific 
phases [67,70-72]. In this context, the differential effect on 
both the phase and period observed after at least 6 days of 
culture may likely be due to gradual desynchrony among 
individual oscillators located within the retina. To test this 
hypothesis further, a spatial cellular bioluminescence reso-
lution is required to visualize the kinetics of the different 
clocks after a medium change. A similar phase effect after a 
medium refresh has been described in the SCN of Bmal1-luc 
pups, but not in adults [5], and it has been correlated with the 
immaturity of the SCN network, weakly coupled in pups. 
Accordingly, even if a medium change has been reported to 
restore the amplitude of bioluminescence oscillations [13,14] 
and contribute to the survival and health of the explants, we 
thus preconize the culture of retinal explants under static 
conditions (i.e., without changing the medium), particularly 
in experiments assessing the phase and period of the retinal 
clock.

These phase and period changes also suggest that using 
the projected CT12 as a reference to determine the biological 
time of the retinal clock is not a valuable marker. Instead 
of arbitrarily defining the phase of PER2::Luc oscillations, 
as previously [8-10], we used the first complete oscillation 
after the start of recording as a time marker and found that 
the trough and peak occurred in a consistent manner in a 
circadian cycle. This phase reference is used to determine, in 
particular, CT16 to apply light stimulation using the classical 
method [9,10,13]. The most striking observation that emerges 
from our study is that the displacement of retinal explants to 
a light stimulation chamber produced random, robust effects 
on the phase of PER2::Luc activity in comparison with the 
embedded light setup. This effect on the phase can be due 
to the re-homogenization of the culture medium during the 

physical displacement that is absent in the embedded light 
setup device we developed. This effect was not studied before, 
but a similar important phase shift has also been observed 
with a retinal pigmented epithelium culture [7] both in DC 
and light-stimulated explants. This result suggests a biased 
estimation of the light-induced phase shifting response of the 
retinal clock in previous studies.

In conclusion, organotypic cultures constitute an appro-
priate model for investigating the endogenous functioning of 
the retinal clock and its light response. Our study underlines 
the importance of carefully specifying the techniques and 
conditions for a meaningful interpretation of such in vitro 
experiments, and it provides an accurate standard protocol 
to avoid artifactual biases inducing phase shifts and resulting 
from a medium change or physical displacement.

APPENDIX 1.

To access the data, click or select the words “Appendix 1.” 
Summary of mean, standard deviation of the mean (SEM) 
and number of sample (n) for male and female at 1 month, 
2–3 months, 4–5 months and 6–8 months.
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