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Abstract
The cerebellum is a brain region that undergoes extremely dynamic growth during perinatal and postnatal development which 
is regulated by the proper interaction between glial cells and neurons with a complex concert of growth factors, chemokines, 
cytokines, neurotransmitters and transcriptions factors. The relevance of cerebellar functions for not only motor performance 
but also for cognition, emotion, memory and attention is increasingly being recognized and acknowledged. Since perturbed 
circuitry of cerebro-cerebellar trajectories can play a role in many central nervous system pathologies and thereby contribute 
to neurological symptoms in distinct neurodevelopmental and neurodegenerative diseases, is it the aim with this mini-review 
to highlight the pathways of glia–glia interplay being involved. The designs of future treatment strategies may hence be 
targeted to molecular pathways also playing a role in development and disease of the cerebellum.
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Introduction

The involvement of the cerebellum in higher processes of 
cognition and emotion [1, 2] and its relevance as a locus 
for a range of disorders and diseases make this simple yet 
elusive structure an important model in a number of fields. 
Cellular and anatomical dysfunction of the cerebellum 
has been associated with psychological disorders, such as 
autism, attention deficit, hyperactivity or schizophrenia 
[3–8]. In recent years, our understanding of some of the 
more familiar aspects of cerebellar growth, such as its ter-
ritorial allocation and the origin of its various cell types, has 
undergone major recalibration. Furthermore, owing to its 

conserved circuitry across species, insights from compara-
tive studies have contributed an increasingly rich picture of 
how this system develops. During fetal and postnatal devel-
opment, the cerebellum undergoes dramatic morphological 
and structural changes, manifested as increased mass and a 
30-fold increase of its surface area during the last trimester 
of pregnancy [9]. The regulation of its complex and dynamic 
development is driven by glial–glial and glia–neuron interac-
tions, which produce a high variety of factors and molecules 
for interactive signal transmission [10]. Proliferation and 
migration of neural progenitor cells in the external granular 
layer (EGL) as well as the proliferation of immature glial 
cells are characteristic of late fetal and early postnatal devel-
opment of the cerebellum. All of these processes are largely 
influenced or directed by the activity of the Purkinje cells 
[11–13] together with Bergmann Glia [14–16], by glia–glia 
[17–19], as well as by glia–neuron interactions [20–22], 
mainly through signaling via growth factors, chemokines 
and cytokines, transmitters and transcription factors. This 
review seeks to highlight shared mechanisms of glial cell 
regulation that are relevant for development and disease of 
the cerebellar white matter that may serve to design future 
strategies for protection.
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Glial Cell Function in Cerebellar White 
Matter Development

Astrocytes

Astrocytes have a central role as supporting cells for 
neurons and oligodendroglia during brain development. 
Moreover, they represent a highly reactive cell population 
in numerous central nervous system (CNS) pathologies. 
Because of their importance in repair and recovery in neu-
rological diseases, it has been suggested to use stem cell 
and progenitor cell derived astroglia for cell based therapy, 
e.g. in patients suffering from stroke, Alzheimer Disease, 
spinal cord disease, and others [23]. The structural and 
functional integrity of myelinated axons is critical for their 
reliable and efficient transmission of information. White 
matter injury has been associated with the development 
of many demyelinating diseases. Despite a variety of sci-
entific advances aimed at promoting re-myelination, their 
benefit has proven at best to be marginal. Research sug-
gests that the failure of the re-myelination process may be 
the result of an unfavorable microenvironment. Astrocytes 
are the most abundant and diverse type of glial cell in CNS 
which regulate cells of the oligodendrocytes lineage in 
diverse ways. As such, much attention has recently been 
drawn to astrocyte function in terms of white matter mye-
lin repair. White matter astrocytes are different from those 
in gray matter in specific regards to development, mor-
phology, location, protein expression and other supportive 

functions. During the process of demyelination and re-
myelination, the functions of astrocytes are dynamic in 
that they are able to change functions in response to dis-
tinct stimuli or reactive pathways resulting in vastly differ-
ent biologic effects. Their effects on oligodendrocytes and 
other cell types in the oligodendrocyte lineage include: 
serving as an energy supplier, a participant of immunolog-
ical and inflammatory functions, a source of trophic fac-
tors and iron and a sustainer of homeostasis. As such, the 
ability to manipulate astrocyte function represents a novel 
therapeutic approach that can repair the damaged myelin 
that is known to occur in a variety of white matter-related 
disorders [23]. The properties of astroglia that are useful 
for neuroprotection are largely attributed to anti-oxidative 
properties, stabilization of glutamate homeostasis, and 
growth factor synthesis. In the cerebellum, astroglial cells 
are classified into four main groups based on morphol-
ogy: fibrous astrocytes located in the white matter, stellate 
multipolar astrocytes or protoplasmic astrocytes located in 
the granular cell layer, and Bergmann’s glia (BG) located 
between the Purkinje cell layer and the molecular layer 
and that are specialized astrocytes derived from radial glia 
(Fig. 1). Developmental roles of astrocytes, particularly 
involving interactions with neurons, have been the subject 
of a recent review [24].

Oligodendrocytes

Oligodendrocytes development is strongly dependent on 
proper interaction with other types of glial cells, i.e. astroglia 
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Fig. 1   Cell types in the layers of cerebellar folia. BC Bergmann glial cell, PC Purkinje cell, PPC protoplasmic cell, VC velate cell, FA fibrous 
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and microglia [17]. The establishment of the glial network 
represents an important step for healthy brain development 
[25]. Specifically, glial-derived growth factors regulate the 
survival, proliferation and maturation of glial cells, strongly 
influence the maturation and development of oligodendro-
cytes as well as myelination [26–28]. Cell culture experi-
ments show that oligodendroglial cultures in astrocyte-
conditioned medium survive and proliferate considerably 
longer than in microglial-conditioned medium [29]. In con-
trast, microglial-conditioned medium was reported to pro-
mote oligodendroglial differentiation and myelination due 
to its different pattern of cytokines and growth factors in 
the individual media [29]. The specific composition and the 
timing of certain cytokine and chemokine signaling appear 
essential for inducing either proliferation in order to expand 
the cellular pool during growth or maturation and network 
establishment (Fig. 2).

Microglia

Microglia are the cells of the immune system in the CNS 
that make up about 10% of the total glial cells within the 
nervous tissue [30]. In the cerebellum, they distribute over 
white matter and the cortical layers during development. 
In the human embryo, colonization of the forebrain with 
microglia occurs at around 5 gestational weeks, while in 
rats this event takes place at embryonic day 11 [31]. Rami-
fication as a process of microglial maturation occurs in 
the human mesencephalon between 11 and 22 gestational 
weeks, whereas in the cerebellum, the immature ameboid 
shape remains a predominant microglial phenotype [32]. 
Cerebellar microglia–Purkinje neuron interactions demon-
strate properties distinct from cortical microglia [33]. Recent 
insight underline a role(s) of microglia for neurite growth, 
synaptic pruning, spinogenesis, and neuronal apoptosis 
during brain development [34–36]. Following experimental 

demyelination in rodents, oligodendrocyte precursor cells 
(OPCs) proliferate and differentiate into myelin-producing 
oligodendrocytes which effect robust remyelination. In con-
trast, remyelination in multiple sclerosis, the major human 
demyelinating disease, is generally limited and transient. 
Rodent OPCs have been well characterized in vitro and their 
response to growth factors documented. Several growth fac-
tors known to affect rodent OPCs were tested and found to 
have similar effects on human cells. PDGF, neurotrophin 3 
(NT3), and glial growth factor 2 (GGF2) promoted prolifera-
tion, while insulin-like growth factor-1 (IGF-1), exerted a 
maturational effect [28]. Microglia can induce apoptosis of 
Purkinje neurons in vitro [37]. In the cerebellum, microglial 
functionality is needed for the elimination of excess climb-
ing fibers and for proper GABA transmission by Purkinje 
cells [38].

Microglia has important functions in the maturation 
and development of oligodendrocytes. They secrete IGF1 
and thus support the proliferation and maturation of OPCs 
[17, 28]. In addition, increased IGF1 stimulation protects 
immature oligodendroglia against damage triggered by 
inflammatory processes [29]. Pro-inflammatory, activated 
microglia interferes with the development of oligodendro-
cytes. Immature oligodendrocytes and OPCs are vulnerable 
to inflammatory processes induced by microglia. The sur-
vival of immature oligodendroglia and OPCs is reduced by 
activated microglia. In contrast, survival of mature OLs is 
enhanced by activated microglia and reduced apoptosis [39].

In the immature brain, exposure to IL1β can cause acute 
white matter injury [26] and lead to persistent hypomyelina-
tion [40]. Microglial contribution to white matter damage 
via pro-inflammatory responses is also described in models 
of inflammatory neonatal brain injury and in multiple scle-
rosis models [41, 42]. IL1β has also been demonstrated to 
interfere with transmission of GABA and of glutamate in 
Purkinje cells [43].

Fig. 2   Pathways of glial–neu-
ronal interaction in diseases 
triggered by inflammation, 
demonstrated by autism spec-
trum disorders and ataxia as 
examples

Inflamma�on

Bergmann 
glial cell
reac�vity

NF-κB 

Purkinje cell
degenera�on

ATAXIA

Il-1,Il-6, 
MIF, 

PDGFα
Glial cell
reac�vity

Au�sm spectrum disorder  



646	 Neurochemical Research (2020) 45:643–655

1 3

Like neurons, glial cells are also vulnerable to non-phys-
iological glutamate concentrations. All three types of glial 
cells express different glutamate receptors and transporters. 
Oligodendrocytes are very sensitive to excessive activity of 
the glutamate signaling pathway. Microglia is stimulated at 
elevated glutamate concentrations, leading to the synthesis 
of inflammatory cytokines. Astrocytes are responsible for 
glutamate uptake in synaptic and non-synaptic areas and 
represent the most important regulators of glutamate home-
ostasis [44]. In addition, they produce 90% of the brain-
derived lactate [45], which is an important source of energy 
for oligodendrocytes during myelination [46].

Cerebellar Pathologies as a Result 
of Disrupted Glial–Neuronal Interaction

For brain development, the interaction between glial cells 
and neurons is essential. This is reflected in the secretion 
and degradation of neurotransmitters, stimulation by growth 
factors and also by cell–cell contact, all influencing prolif-
eration, maturation, migration and survival of glial cells and 
neurons [11, 47–52]. In the developing and also in the adult 
brain, it has been described that the function of glial cells 
can influence and regulate neuronal activity [53].

In the development of neurons, astrocytes are assigned 
an important partner role. In addition to the maintenance 
of homeostasis by the uptake and breakdown of neurotrans-
mitters [44] and the supply of nutrients to the neurons [54], 
they are crucially involved in the formation and maturation 
of synapses [55]. They also support the outgrowth of axons 
and dendrites as well as the migration of immature neurons 
[56]. This mutual interaction can be controlled by neurons 
through the release of growth factors and of neurotransmit-
ters [57].

During development, Bergmann glia, Purkinje cells (PC) 
and granule cells contribute to the formation of the cerebel-
lar cortex. An average of eight Bergmann glia are in close 
contact with a PC, thus promoting differentiation, synaptic 
training, and the transmission of neurotransmitters [58]. 
The maturation of Bergmann Glia is in turn influenced by 
PCs: the expression of SHH by Purkinje cells stimulates the 
maturation and differentiation of the Bergmann glia [59]. In 
addition, SHH influences the secretion of gliotransmitters by 
astrocytes [22] and thus indirectly influences the stimulation 
of other cell populations by astrocytes.

In agreement with this, ablation of astrocytes and Berg-
mann glia leads to malalignment of Purkinje cells, and 
moreover to diminished outgrowth of the dendrites and 
increased apoptosis of granule cells. BDNF, e.g., secreted 
by astrocytes, is difficult to diffuse over long distances, 
so local secretion is crucial [60]. Studies have shown that 
astroglia express both BDNF and the BDNF receptor [19]. 

BDNF production by Bergmann glia is directly involved in 
the migration of immature GCs from EGL into the IGL [61].

In addition to astrocytes, microglia also express BDNF 
during brain development [21]. Microglia of the cerebel-
lum can modulate synaptic circuitry and synaptic activity 
between GCs and Purkinje cells through the secretion of 
BDNF [62]. Microglia may exert neuroprotective properties 
for cerebellar neurons, however, activation of microglia can 
also be toxic to immature and mature neurons [63].

It has been proposed that synergy between GABAergic 
synapses and astrocytic processes is limited to Bergmann 
glia in the cerebellum [64]. Indeed, microglia expresses the 
GABA B receptor. GABA has a modulating effect on micro-
glia and can attenuate or block their activation with concur-
rent release of pro-inflammatory cytokines and phagocytic 
actions [65].

A fundamental and almost symbiotic co-existence of two 
distinct cell types of the brain can be seen in the intimate 
interaction between oligodendrocytes and neuronal axons. 
The formation of a myelin sheath around nerve fibers by 
oligodendrocytes is critical for an efficient and low-energy 
stimulus transmission [66]. Electrical transmission itself 
represents a key signal for oligodendroglia to initiate and 
enhance the wrapping of axon with myelin [67, 68]. In addi-
tion to myelin synthesis, oligodendroglia (OLs) have fur-
ther influences on the axons of the neurons. It is assumed 
that OLs provide neurons with additional nutrients via their 
axons. Inhibition of nutrient transport by oligodendrocytes 
leads to the degradation of axons and neurons [69].

During development, the interaction of neurons and oli-
godendrocytes and their precursors plays an important role. 
Only through contact with an axon is the final maturation of 
the OLs initiated [66]. Oligodendrocytes express receptors 
for various neurotransmitters, such as the AMPA receptor 
[70], the NMDA receptor [71], and GABA A and the GABA 
B receptor [51, 72]. The blockade of the release of synaptic 
vesicles and neurotransmitters leads to impaired myelina-
tion [67]. In particular, stimulation with GABA is impor-
tant for the development of OLs [50, 73]. The proliferation, 
maturation and migration of immature oligodendrocytes is 
regulated by GABA, in the first postnatal weeks, stimulation 
with GABA may be crucial for the development of OLs [74].

Decreased myelination has a major impact on the function 
and maturation of neurons. In a model for the ablation of 
oligodendrocytes with no myelination, there is a disrupted 
interaction in the cerebellum between Purkinje cells and the 
immature progenitors of the granule cells in the EGL. The 
reduction is also associated with an altered maturation and 
morphology of PC dendrites [75]. Hence, impairment of one 
factor relevant to neuron–glia crosstalk may in fact lead to 
dysregulation of multiple signaling pathways between neu-
rons and glial cells, disrupting development of the cerebel-
lum in multiple ways.
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Cerebellar Glial Cell Alterations in Diseases

There are many diseases in which glial changes in the 
cerebellum are involved, such as ataxia, leukoencephalop-
athy, autism and attention-deficit/hyperactivity disorder 
(ADHD), multiple sclerosis, as well as hypothyroidism 
which characteristically involve severe glial dysfunction 
(Table 1).

Glial Inflammation Disorders

When glia are activated, inflammation is amplified by 
the secretion or expression of inflammatory cytokines, 
chemokines or inducible nitric oxide synthases (iNOS) 
[76]. The molecules that are released after glial activa-
tion, can promote inflammation or exert anti-inflamma-
tory properties. Astrocyte-specific changes analyzed by 
transcriptomics include decreased cholesterol biosynthe-
sis and increased immune pathway gene expression [77]. 
Astrocyte cell endfeet contain aquoporin (AQP4) that 
contributes to regulating the junctional exchange of ions 
with blood vessels [78]. Among proinflammatory mol-
ecules, AQP4 has an important role in controlling brain 
edema as it is one of the most abundant water channels 
controlling the water influx in the brain parenchyma [79]. 
Among anti-inflammatory molecules, TGFβ, responsible 
of controlling neuroinflammation, is one of the cytokines 
that is upregulated after glial activation [80] as well as 
some neurotrophic factors that are release by astrocytes 
and microglia after an inflammation and are responsible 
of neuron protection [81].

Multiple Sclerosis (MS)

AQP4 is one of the most important proinflammatory mole-
cule that is expressed in cerebellum and although its expres-
sion level is extremely low in the first postnatal week, it 
dramatically increases in the second week [82]. In progres-
sive MS, cerebellar lesions frequently present as demyeli-
nation in white and gray matter regions [83–85]. Reactive 
astrocytes are a common feature of MS demyelinating 
lesions, with observed damage to astrocyte endfeet [86]. 
In an experimental autoimmune encephalomyelitis (EAE) 
model relevant to multiple sclerosis (MS), it was observed 
that the AQP4 increase in the cerebellum is associated with 
BBB disruption by decreased tight junction proteins, like 
occludins [87].

In this acute phase of EAE model, in, there is a gluta-
mate-mediated synaptic excitability and neurotoxicity 
due to the astrocytic release of proinflammatory cytokine 
interleukin-1β (IL-1β) [88, 89]. This systemic cytokine 
exposure has been linked to hypomyelination and microglial 
activation in a perinatal inflammation model [90]. Hence, 
glial interleukin-1β may play a central role in microglial acti-
vation and glutamate excitotoxicity in inflammatory diseases 
of the cerebellum, too.

In a MOG-induced EAE model, increased release of INFβ 
by microglia induces demyelination, and increased density 
of IFNβ+ microglia are found around white matter lesions 
[91]. As a therapeutic agent, IFNβ represents a widely used 
treatment regimen for patients with relapsing–remitting 
MS (RRMS) [92] and shows treatment efficacy by reduc-
ing disease progression and also frequency of exacerba-
tion. In animal experiments, induction of endogenous IFNβ 
by polyinosinic:polycytidylic acid [poly(I:C)] treatment 

Table 1   Glial cells mechanism in cerebellar development and disease

Glial cells in the cerebellum Mechanism in celebellar development Mechanism in disease

Astrocytes Secrete cytokines and growth factors →  oligodendro-
cytes and myelin modulation

Bergmann glia →  provides a structure for cerebellar 
neuron migration and positioning

Glial inflammation disorders
EAE → proinflammatory cytokine release (IL-1β)
SCA1 → Bergmann glial cell reactivity through NF-Κβ
Neuron–glial interaction disorders
ADHD → increased GABA levels
SCA7 → GLAST function interference, cause Purkinje 

cell excitotoxicity
Oxidative stress disorders
Neonatal ischemia →  increased Ca2+ influx in Bergmann 

cells
Oligodendrocytes Cerebella cytoarchitecture maintenance

Oligodendrocytes–Neuron interaction maintains and 
forms Ranvier nodes and paranodal regions of Purki-
neje cell

Oxidative stress disorders
Postnatal hiperoxia → oligodendroglial maldevelopment
Postnatal hypoxia → hypomielinization and reduced 

oligodendroglial maturation
Microglia Regulate neurite growth, synaptic pruning, spinogen-

esis, neuronal apoptosis and oligodendrocyte matura-
tion and development

Inflammation disorders
EAE → increased INFβ release
SCA1 → inflammation (increase of TNFa)
SCA3 → upregulation of (MMP-2, IL-1 and SDF1alpha)
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diminished the severity of EAE, and genetic deletion of 
IFNβ or its receptor in contrast enhanced clinical score, 
with more extensive CNS inflammation and demyelination 
[93]. Treament with IFNβ also reduced axonal damage in 
a cerebellar slice culture assay with LPS stimulation [94].

Ataxia

One of the main conditions involving astroglial inflam-
mation of the cerebellum is ataxia or lack of coordination. 
Ataxia is associated with many neurological conditions, such 
as stroke, brain tumor, multiple sclerosis, traumatic brain 
injury, toxicity, infection or congenital cerebellar defects 
[95]. In particular, spinocerebellar ataxia (SCA) is a group 
of hereditary ataxias that are characterized by degenerative 
changes in cerebellum. Mutations in many different genes 
are known to cause the different types of spinocerebellar 
ataxias (SCA) [96].

Among the Spinocereberllar ataxias, type 1 (SCA1) is the 
best known autosomal dominant neurodegenerative disease 
caused by the abnormal expansion of CAG repeats in the 
coding region of Ataxin 1 gene [97]. Cvetanovic et al. [98] 
described astrocytic and microglial activities as an underly-
ing cause of SCA1 which is characterized by the loss of 
Purkinje neurons in the cerebellum. In that study, Cvetanovic 
et al. proposed that Bergmann glial cell reactivity signaling 
through NF-kB,, can be responsible for the pathogenesis of 
Purkinje cell during SCA1, because of their location and 
intimate interaction [99]. Furthermore Ferro et al. [97] found 
that the inhibition of NF-κB in microglia of SCA1 decreased 
the density of microglia and TNFα expression.

In spinocerebellar ataxia type 3 (SCA3), in which abnor-
mal CAG repeats are localized in the coding region of a gene 
encoding ataxin-3, there is upregulation of matrix metallo-
proteinase 2 (MMP-2), interleukin-1 and the cytokine stro-
mal cell-derived factor 1alpha (SDF1alpha) due to astroglial 
and microglial inflammation [100], causing abnormalities 
in the Purkinje cell. Recently, it has been suggested that 
antisense oligonucleotides (ASOs) may serve as a potential 
therapy technique for SCA3 [101].

Autism Spectrum Disorder

A psychiatric pattern that seems to be related to glial cell 
inflammation in the cerebellum is described in autism spec-
trum disorders (ASD), which begin during early childhood 
development and are influenced by genetic and environmen-
tal factors. The cerebellum has been described to be a brain 
region of particular relevance for ASD, and for some of the 
characteristical symptoms of the disorder. It has been sug-
gested that cerebro-cerebellar connectivity is aberrant in 
ASD patients [102, 103]. Available research studies suggest 
that chronic neuroinflammation may represent a substantial 

pathogenic influence in the disease. Altered expression of 
proinflammatory cytokines and chemokines, such as IL-1, 
IL-6, macrophage migration inhibitory factor (MIF) and 
platelet derived growth factor (PDGF) has been demon-
strated in ASD patients in the peripheral blood or in brain 
tissues [104]. The relevance of systemic inflammation for 
ASD symptoms is also revealed by successful treatment of 
children with diagnosis of ASD using autologous stem cell 
infusions, which resulted not only in impressive reduction of 
symptoms [105] but also in reduction of serum cytokine lev-
els [106]. Dysregulated inflammatory activity in glial cells 
of the CNS, and specifically in the cerebellum, may therefore 
represent a therapeutic target in ASD.

Neuron–Glia Interaction Disorders

The role of neuron–glia interaction in neurodegenerative 
disorders still remains unknown. The cerebellum, due to 
its simple anatomical organization and well-characterized 
circuitry, can be a useful tool to approach disorders of neu-
ron–glial interactions [107].

Attention-deficit/hyperactivity disorder (ADHD) is a 
behavioral and developmental neurological disorder char-
acterized by motor hyperactivity and loss of impulse control, 
combined with attention deficits and hampered academic 
performance [108]. A link to cerebellar pathologies has been 
revealed in clinical studies showing decreased cerebellar vol-
ume during in ADHD patients [109]. In G protein-coupled 
receptor kinase-Interacting protein-1 (GIP1) knockout mice, 
a genetically modified ADHD model, there is a decrease in 
GABA levels in astrocytes of the cerebellum that enhances 
the excitatory/inhibitory input ratio, leading to motor hyper-
activity in ADHD. However the mechanism of GABA reduc-
tion is still unknown [110, 111].

Spinocerebellar ataxia type 7 (SCA7) is an autosomal 
dominant inherited neurodegenerative disorder with a poly-
glutamine (polyQ) expanded protein in the nuclear inclu-
sions, and CAG trinucleotide repeats in the coding region 
of Ataxin-7 [112]. Indeed, it has been identified that polyQ 
expanded ataxin-7 interfered with the function of GLAST, a 
glia-specific glutamate transporter which is highly expressed 
in Bergmann glia, causing Purkinje cell excitotoxicity [106].

Oxidative Stress in Cerebellar Glial Cells

Cerebellar damage in very immature infants can range from 
the subtle—generalized delay of tissue development and 
maturation in response to oxidative stress and/or systemic 
perinatal inflammation,—to severe—bleeding after rupture 
of the immature vessels, hence leading to focal lesions and 
parenchymal cysts as sequel. In a newborn rodent model, the 
great vulnerability of the immature cerebellum in response 
to oxidative stress has been characterized by maturational 
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delay in oligodendroglial lineage cells, hypomyelination, and 
inflammatory changes in microglia [113].

Ischemia

After brain ischemia, as a response to inflammation, there 
is a generation of reactive oxygen species (ROS) in the neo-
natal and adult brain. Among the many ROS producers, 
the most important ones seem to be the NADPH oxidase 
(NOX) as the main superoxide producer [114], Xanthine 
oxidase (XO), that contributes to brain edema, and the intra-
cellular enzymes such as COX lipoxygenases (LOXs), and 
cytochrome P450 that are involved in the arachidonic acid 
metabolism, a major superoxide source during ischemic 
stroke in the brain [76]. Moreover, the mitochondrial elec-
tron transporter chain is another important ROS source 
in the neonatal and adult brain. During reperfusion after 
ischemia, a massive increase of intracellular Ca2+ influx 
may be induced, and Ca2+ accumulation in the mitochon-
dria can provoke free radical production, impairment in 
mitochondrial membrane permeability and inhibition of 
ATP production [115]. Particularly in the cerebellum, dur-
ing oxygen glucose deprivation (OGD), anoxic depolariza-
tion of Purkinje cell in cerebellar slices invokes glutamate 
release from AMPA receptor activation. Indeed, this gluta-
mate release has been proposed to be regulated by glial pH 
changes [116]. Moreover, after OGD, Bergmann glial cells, 
increased intracellular Ca2+ influx and membrane depolari-
zation due to the increase of extracellular K+ concentration 
with the outflow of anions through DIDS sensitive channels 
[117].

Postnatal Hyperoxia

In utero, arterial oxygen tension is maintained at low lev-
els but premature birth can provoke an increase in arterial 
oxygen tension upon exposure to the ex utero environment 
[118]. Scheuer et  al. in 2015 found increased levels of 
nitrotyrosine in the cerebellar lysates correlated to cerebel-
lar volume deficit, increases apoptosis in oligodendroglia 
precursor cells (OPCs) and a significant in vivo reduction 
of astroglial PDGFα, BDNF, FGF2 that may contribute to 
oligodendroglial maldevelopment. After hyperoxia, ultras-
tructure analysis by electron microscopy indicated thinning 
of the myelin sheath around the axon. In those experiments, 
markedly reduced PDGF-A expression was found in the 
cerebellum. The reduction of PDGF-A expression by high 
oxygen levels was confirmed in purified astrocyte cultures 
in vitro, suggesting the impairment of astroglia-oligoden-
droglia-crosstalk as a cause of cerebellar injury [118]. How-
ever, astroglial morphology and GFAP expression were not 
affected by hyperoxia. Consistent with delayed maturation 
of microglia in the cerebellum, most of the Iba1 microglia in 

the cerebellar white matter were of ameboid morphology in 
postnatal rats cerebella under control and hyperoxia condi-
tions. There were otherwise no obvious hyperoxia-induced 
changes in morphology or antigen presentation in microglia 
in the cerebelli of hyperoxia animals.

There are certain compounds that can also induce oxi-
dative stress in the cerebellum, such as Phytanic acid 
(3,7,11,15-tetramethylhexadecanoic acid, Phyt). Phyt is a 
chlorophyll derived acid that is obtained from daily products, 
such as milk, cheese or red meat. The accumulation of this 
fatty acid provokes many peroxisome disorders. Particularly 
in the cerebellum, it can induce histopathological abnormali-
ties, including Purkinje cells alteration with a cellular loss 
and delayed dendrite development and astrogliosis due to the 
disruption of redox homeostasis. Indeed, in a mouse model 
of Phyt intracerebellar administration reactive nitrogen spe-
cies were increased [119], indicating the potential risks to 
cerebellar integrity.

Postnatal Hypoxia

In a perinatal brain injury model, the application of chronic 
hypoxia within the first weeks of postnatal development 
leads to hypomyelination of the subcortical white matter 
[120]. Oligodendroglial damage has also been described 
in the cerebellum; altered development of the cerebellar 
white matter after chronic hypoxia has been described to be 
caused, at least partially, by the loss of GABAA receptor-
mediated synaptic input to cerebellar OPCs, which enhances 
OPC proliferation and reduces oligodendroglial maturation 
and myelin synthesis [73].

Targets for Potential Therapy

Brain diseases often involve inadequate homeostasis in 
neuronal and glial cells. In astroglia, pathogenic changes 
can be found in diverse processes e.g., glutamate uptake, 
neurotrophins, growth factors, transcription factors, anti-
oxidative capacity, transmitters, as aforementioned. Conse-
quently, these factors and pathways are offering treatment 
opportunities via prevention of toxicity or via activation of 
mechanisms of protection and repair.

Inflammation Regulation

NF-κB is a key transcription factor implicated in neuroin-
flammation which may mediate events in cerebellar astro-
gliosis. Indeed, during inflammation NF-κB is activated 
and IKK is phosphorylated [121]. This activation produces 
neurotoxic and inflammatory molecules that lead to differ-
ent diseases. With regard to SCA1, one of the main diseases 
related to astroglial inflammation in the cerebellum, it has 
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been suggested that NF-κB signaling is stage dependent and 
the activity in SCA1 and the of NF-κB occurs only in the last 
stages of the SCA1 [121]. Moreover, Kim and co-workers 
[99] performed selective inhibition of NF-κB in astroglial 
cells, which in early stages has in fact increased motor defi-
cits, higher Purkinje cell pathology and increased microglial 
density. With inhibition in late stages however, SCA1 motor 
deficits are ameliorated, accompanied by better rotarod per-
formance and decreased microglial density. Interestingly, 
GFAP expression was decreased during the inhibition of 
NF-κB in early stages while it was increased in late stages, 
indicating that astroglial NF-κB pathway is beneficial during 
early, pre-syntomatic stage of the disease and it´s inhibi-
tion during late stage has also beneficial outcomes in SCA1 
desease [121].

Minocycline

Neuroprotective properties of this antibiotic have been 
demonstrated in different brain injury models, including 
hypoxia–ischemia [122–124] perinatal inflammation/infec-
tion [125] and hyperoxia [113]. The mechanisms by which 
minocycline exerts its benefits have largely been ascribed 
to inhibition of microglia. In the immature brain, inhibi-
tion of microglia may in fact perturb neuronal development 
and survival [126]. Toxic effects have been reported to vary 
with species, i.e. in mice, minocycline enhances brain injury 
caused by hypoxia–ischemia [127]. Extensive safety tests are 
therefore required. In an oxidative stress challenge, protec-
tion by minocycline coincided with attenuation of oxidative 
stress and of apoptotic cell death [113], which is supporting 
previous results on anti-oxidant and anti-apoptotic effects 
of this drug [128].

Oxidative Stress Modulation

Glutamate neurotoxicity is directly associated with ROS 
production and consequently to oxidative stress [129, 
130]. The Amburana cearensis, a species of the family of 
Fabaceae, has been observed to have antioxidant proper-
ties in the cerebellum that increase the levels of glutathione 
reductase and glutathione peroxidase enzyme. These con-
trol the intracellular signaling cascade of glutamate exito-
toxicity that stimulates calcium influx and mitochondrial 
dysfunction, minimizing glial and neuronal cell death. In 
cerebellum astrocyte-derived cell culture, Amburana cea-
rensis antioxidant compounds increase glutamine syn-
thetase activity, which reduces glutamate neurotoxicity in 
astrocytes. Another compound important for redox balance 
in the cerebellum is the docosahexaenoic acid (DHA), the 
most abundant n-3 fatty acid in the brain derived from fish. 
DHA is essential for normal brain function and astrocytes 
are responsible for DHA synthesis [131, 132]. Indeed, it has 

been recently suggested that supplementation with DHA can 
be an effective treatment against spinocerebellar ataxia 38 
(SCA38) a syndrome characterized by the mutation in the 
ELOVL5 gene that encodes an elongase enzyme responsible 
for very low chain fatty acids in the cerebellum [133].

Growth Factors

The protection of cerebellar white matter development by 
minocycline was associated with improved PDGF-A expres-
sion in vivo and in astrocyte cultures in vitro, underlining 
a role for astroglial PDGF-A both in injury and protection 
in the cerebellum. Administration of PDGF-A intranasally 
after exposure to oxygen challenge moreover resulted in 
enhanced proliferation of oligodendroglial lineage cells in 
the cerebellar white matter [134], hence strengthening the 
view of growth factor synthesis as a target for protective 
treatment after postnatal insult.

In the chronic hypoxia model of white matter damage in 
the immature brain, overexpression of the human the recep-
tor of epidermal growth factor (EGF) in oligodendroglial 
lineage cells after injury attenuates oligodendroglia cell 
death, increases the generation of new oligodendroglia from 
progenitors, and initiates recovery [135]. Moreover, intrana-
sal administration of heparin-binding EGF during recovery 
after exposure to hypoxia enhanced OPC pool and oligo-
dendroglial maturation, and also diminished ultrastructural 
pathologies and behavioural deficits. Hence, targeting the 
EGF receptor in oligodendrocyte progenitor cells during a 
certain time window is potentially beneficial for treatment 
of preterm infants with white matter damage. Nonetheless, 
these investigations were performed in the cerebrum/fore-
brain, a similar therapeutic effect of EGF administration on 
oligodendroglial maturation during postnatal development 
can be assumed to occur in the cerebellum, too.

GABA Modulation

Balancing excitatory and inhibitory synaptic transmission 
is necessary for a proper brain function. Indeed, one of the 
main inhibitory neurotransmitter is the c-Aminobutyric acid 
(GABA) involved in neural tissue development. It has been 
suggested that mice treated with GABAA receptor antag-
onist mimics hypoxia effects, so the blockade of GABA 
uptake reduces NG2 progenitor cell numbers and increases 
the formation of mature oligodendrocyte [73, 136]. Recently 
Woo et al. [137] suggested that the manipulation of the levels 
of astrocytic tonic GABA in the cerebellum and in particu-
lar, in Bergmann glial cell, modulates neuronal excitability 
and synaptic transmission in the cerebellum. Moreover, the 
pharmacological inhibition of Bestrophin 1 (Best1), a pro-
tein that inhibit GABA release in Bergmann glial cells and 
the inhibition of mitochondrial enzyme monoamine oxidase 
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B (MAOB), a protein in charge of GABA synthesis in astro-
cytes, causes an increased neuronal excitability in cerebellar 
granule cells, synaptic transmission and motor performance 
on the rotarod test. Conversely, increased astrocytic GABA 
release resulted in reduced motor activity, indicating that the 
astrocytes are a key component modulating GABA function 
and consequently modulating motor activity [137].

Conclusions

The cerebellum is a brain region that is involved in many 
complex brain functions such as coordination, cognition, 
memory, emotion. In several neurodevelopmental and neuro-
degenerative diseases, damage of the cerebellum contributes 
to overall neurological symptoms. Given the fundamental 
role of glial cell types and glia–glia interactions for develop-
ment, disease, and repair in the cerebellum, it is reasonable 
to target specific properties and functions of these cells for 
therapeutic purposes. For future investigations, growth fac-
tors like PDGFA and EGF, homeostasis of transmitters such 
as GABA and glutamate, various anti-oxidants and inflam-
matory modulators altogether represent a promising list of 
candidates that may serve for cerebellar protection.
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