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Abstract
MicroRNAs (miRs) contribute to different aspects of cardiovascular pathology, among others cardiac hypertrophy and atrial 
fibrillation. The aim of our study was to evaluate the impact of miR-221/222 on cardiac electrical remodeling. Cardiac miR 
expression was analyzed in a mouse model with altered electrocardiography parameters and severe heart hypertrophy. Next 
generation sequencing revealed 14 differentially expressed miRs in hypertrophic hearts, with miR-221 and -222 being the 
strongest regulated miR-cluster. This increase was restricted to cardiomyocytes and not observed in cardiac fibroblasts. Addi-
tionally, we evaluated the change of miR-221/222 in vivo in two models of pharmacologically induced heart hypertrophy 
(angiotensin II, isoprenaline), thereby demonstrating a stimulus-induced increase in miR-221/222 in vivo by angiotensin II 
but not by isoprenaline. Whole transcriptome analysis by RNA-seq and qRT-PCR validation revealed an enriched number of 
downregulated mRNAs coding for proteins located in the T-tubule, which are also predicted targets for miR-221/222. Among 
those, mRNAs were the L-type Ca2+ channel subunits as well as potassium channel subunits. We confirmed that both miRs 
target the 3′-untranslated regions of Cacna1c and Kcnj5. Furthermore, enhanced expression of these miRs reduced L-type 
Ca2+ channel and Kcnj5 channel abundance and function, which was analyzed by whole-cell patch clamp recordings or 
Western blot and flux measurements, respectively. miR-221 and -222 contribute to the regulation of L-type Ca2+ channels 
as well as Kcnj5 channels and, therefore, potentially contribute to disturbed cardiac excitation generation and propagation. 
Future studies will have to evaluate the pathophysiological and clinical relevance of aberrant miR-221/222 expression for 
electrical remodeling.
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IgG	� Immunoglobulin G
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Kcnj5	� Potassium voltage-gated channel subfamily J 

member 5
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miR	� MicroRNA
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pAT1R	� Human angiotensin II receptor type 1 con-

taining plasmid
PBS	� Phosphate buffered saline
PVDF	� Polyvinylidenfluorid
p27	� Cyclin-dependent kinase inhibitor 1B
qRT-PCR	� Quantitative reverse transcription PCR
RNA-seq	� RNA-sequencing
RT	� Reverse transcription
RMSSD	� Square root of the mean of the sum of the 

squares of differences between adjacent NN 
intervals

SDδ	� Standard deviation of averages of normal 
R–R intervals

SEM	� Standard error of mean

SDNN	� Standard deviation of R–R interval of 
normal-to-normal

TGFβ1	� Transforming growth factor β1
TI+	� Thallium ion
TL	� Tibia length
TQ	� Tertiapin Q
VSMC	� Vascular smooth muscle cell
WT	� Wild type
18S	� 18S ribosomal RNA
3′-UTR​	� 3′-untranslated region

Introduction

According to the World Health Organization, cardiovas-
cular diseases are the leading causes of death worldwide, 
with functional and structural heart changes (“remodeling”) 
playing a major role. Cardiac remodeling is defined as a 
group of molecular, cellular, and interstitial changes that 
manifest as changes in size, shape, and function of the heart, 
resulting from cardiac injury or stress [1]. The pathophysi-
ological processes result in hypertrophy or atrophy, fibrosis, 
and inflammation as well as changes in electrophysiology, 
affecting generation, duration, and propagation of action 
potentials. Ultimately, these changes cause heart dysfunc-
tion [1]. However, the underlying mechanisms are not suf-
ficiently understood. Remodeling is often associated with 
a dysfunction of cardiomyocytes, alterations in their ion 
handling, metabolism and gene expression, including ion 
channel genes.

Cardiomyocytes, although quantitatively being not the 
major cardiac cell type [2], they are functionally the most 
relevant cell type. To allow an appropriate temporal and spa-
tial propagation of the action potential and thereby contrac-
tion, the interaction of several ion channels and transport-
ers is needed. Among the ion channels influencing action 
potential generation, duration and propagation are the L-type 
Ca2+ channel (Cav1.2), the voltage-gated potassium chan-
nel Kv4.2 or the G-protein-activated inwardly rectifying 
potassium channel (GIRK1/4). Changes in expression pat-
tern, channel density or conductance contribute to electrical 
remodeling.

MicroRNAs (miRs) are among  the differentially 
expressed DNA transcripts during cardiac remodeling [3, 4]. 
miRs are short non-coding, conserved RNAs with a size of 
20–22 nucleotides regulating gene expression by post-tran-
scriptional processes [5]. They bind mainly to the 3′-untrans-
lated region (3′-UTR) of target mRNAs, and thereby repress 
either translation or induce degradation of mRNA [6, 7]. 
miRs with the same seed sequence belong to the same miR 
family, although the targets of the family members might dif-
fer [7]. From the known miRs, at least 200 are expressed in 
the cardiovascular system [8]. As it has been proposed that 
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each miR family has at least 300 targets [7], these small non-
coding RNAs might have a major impact on the remodeling 
processes occurring during heart hypertrophy. The necessity 
of miR expression in the heart for proper heart develop-
ment and function has been demonstrated by cardiac-specific 
deletion of the miR-processing enzyme Dicer. Animals that 
lack cardiac Dicer during embryogenesis die shortly after 
birth [9, 10]. Additionally, inducible deletion of Dicer in the 
adult heart leads to biventricular enlargement and myocyte 
hypertrophy [11].

The contribution of miRs to structural and electrical 
remodeling has been studied in animal models, revealing 
that among others, miR-1, -21, -26, -133, -208, and -499 
are associated with cardiac remodeling [12, 13]. Addition-
ally, some miRNAs are described to regulate ion channel 
subunits involved in arrhythmias, like miR-1, miR-26 or 
miR-328 [14–16]. Yet, in contrast to structural remodeling, 
miR-mediated alteration of cardiac electrophysiology has 
not been evaluated to a comparable breadth.

We analyzed miR expression in a genetic mouse model 
with severe cardiac hypertrophy [17] that is accompanied by 
electrophysiological changes [18]. The electrophysiologi-
cal changes in this model are not due to increased fibrosis. 
Among the upregulated miRNAs, the miR 221/222 cluster 
was the most prominent. As an impact of this cluster on heart 
function has been suggested before [19], we decided to focus 
on these two miRNAs. Upregulation of miR-221 and -222 
in the diseased hearts and cardiomyocytes was accompanied 
by the downregulation of predicted mRNA targets coding 
for proteins located in T-tubules. Further analysis revealed 
that miR-221 and -222 bind to the 3′-UTRs of the Cacna1c 
subunit of the L-type Ca2+ channel and of the Kcnj5 subunit 
of the GIRK1/4 channel. Finally, miRs-221/222 reduce the 
Cav1.2 expression and ICa,L current density as well as the 
GIRK4 protein content and ion flux through GIRK1/4 in 
HL-1 cells.

Materials and methods

Animal procedures

All mouse experiments described in this manuscript were 
approved by the local government (Landesverwaltungsamt 
Sachsen-Anhalt, Germany, permit number: 42502-2-1124 
and -1201 MLU) and were performed according to the 
guidelines of the directive 2010/63/EU. Mice were kept in 
the facilities of the University of Halle-Wittenberg at a room 
temperature of 20 ± 1 °C and with a 12 h/12 h light/dark 
cycle. All animals were 6 month of age when included in the 
experiments. Generation, genotyping, and the cardiovascular 
phenotype of EGFR KO animals were described before [17]. 
Mice with a deletion of the EGFR in vascular smooth muscle 

cells and a strong reduction in cardiomyocytes are termed 
either EGFRΔ/ΔVSMC&CM or knockout (KO). Electrocardiog-
raphy recordings were obtained from isoflurane-anesthetized 
animals as described before [18].

For angiotensin II (AII, 1000  ng/kg BW/min over 
3 weeks) or isoprenaline (iso, 30 mg/kg/day for 2 weeks) 
treatment, male animals were anesthetized with isoflurane 
(~ 2% v/v in 100% O2, 1 l/min) and Alzet minipumps (1004) 
were implanted subcutaneously in the back of the animals. 
5–10 animals per group were included into the study. Car-
profen (5–10 mg/kg BW, Rimadyl, Pfizer, New York, USA) 
was injected subcutaneously immediately before pump 
implantation. If necessary, pain relief was repeated every 
8 h. Mice were sacrificed by cervical dislocation in isoflu-
rane anesthesia. Hearts were removed and the weight was 
normalized to tibia length (HW/TL). Subsequently, the heart 
was divided for biochemical and histological analysis. Cardi-
omyocytes and cardiac fibroblasts were isolated as described 
before [20] from whole hearts. Fibroblasts were isolated by 
incubation of the supernatant from the cardiomyocyte iso-
lation overnight in Petri dishes. The degree of interstitial 
fibrosis in hearts as well as cross-sectional diameter of car-
diomyocytes was determined by evaluation of Sirius red or 
hematoxylin/eosin-stained slices as described before [21] 
from ventricular slices.

Gene expression analysis

For all analyses, total RNA was isolated either from whole 
hearts or isolated cells using the InviTrap spin tissue RNA 
mini kit (STRATEC, Berlin, Germany) or the TRIzol Rea-
gent (Invitrogen, Darmstadt, Germany). 1 µg of total RNA 
was treated with DNase I (RNase-free) (NEB, Frankfurt, 
Germany) and reverse transcription (RT) was performed 
with random primers using SuperScript II reverse tran-
scriptase (Invitrogen, Darmstadt, Germany), according to 
the manufacturer’s instructions.

Gene expression was analyzed via real-time RT-PCR and 
mRNA amount was normalized to 18S rRNA or Gapdh. 
Sequence of primers, as well as annealing temperature and 
RefSeq accession number/id are given in Supplementary 
Table S1.

To determine the absolute copy number of RNA, droplet 
digital PCR (ddPCR) was performed using the QX200 sys-
tem of BioRad (Munich, Germany). cDNA was prepared as 
described above and used in ddPCR at the same conditions 
as in real-time RT-PCR.

For TaqMan™ ddPCR, a primer pair and a FAM-labeled 
probe specific for either miR-221 or miR-222 were used 
simultaneously with a primer pair and a HEX-labeled probe 
specific for U6 (Applied Biosystems, Karlsruhe, Germany). 
The list of TaqMan™ assays purchased from Applied Bio-
systems is given in Supplementary Table S2.
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Next generation sequencing of mRNA and cluster 
analysis

Sequencing was performed with an Illumina HiScanSQ at 
the Core Unit DNA Technologies of the Medical Faculty, 
University Leipzig, Germany. Libraries were prepared with 
indexed adapters, and clusters were generated on the cluster 
flow cells. cDNA fragments were hybridized to the lawn of 
complementary primers followed by “bridge amplification”. 
Paired-end sequencing was performed by synthesis (SBS) 
via reversible terminator-based method. Deep sequencing 
data of 101 bp reads from each lane were de-multiplexed and 
data of each sample were analyzed using FastQC, cutadapt, 
TopHat2, samtools, featureCounts, TMM, FPM. Differential 
expression was tested by Poisson exact test [22]. Significant 
differential expression was determined by a significance 
level of 0.05 (FDR ≤ 0.05). mRNA enrichment analysis was 
performed by g:Profiler [23] and GOrilla [24].

Next generation sequencing of microRNA

Sequencing was performed as described previously [25]. 
500  ng of RNA from each sample was used with the 
TruSeq™ Small RNA sample prepkit v2 (Illumina). The 
barcoded libraries were size restricted between 140 and 165 
base pairs (bp) for additional enrichment of miRs, purified 
and quantified using the Library Quantification Kit-Illumina/
Universal (KAPA Biosystems, Woburn, USA). Sequenc-
ing of 50 bp was performed with an Illumina HighScan-
SQ sequencer using version 3 chemistry and flow cell. All 
procedures were performed according to the instructions of 
the respective manufacturer. The R packages DESeq2 and 
EdgeR were used for normalization and to calculate differ-
ential expression of miRs.

HL‑1 cell line

HL-1 cells were maintained in Claycomb medium (Sigma, 
Munich, and Germany) with the following supplements: 
10% FCS (Biochrom, Berlin, Germany), 2 mM l-glutamine 
(Sigma), 100 µM noradrenaline (Sigma), 100 µ/ml penicil-
lin, and 100 µg/ml streptomycin (Sigma).

HL-1 cells were transfected with 30 nM of miRCURY 
LNA miR-221 or miR-222 mimics or mimic negative con-
trol (Exiqon, Vedbaek, Denmark) using 5 µl Lipofectamine 
(Thermo Fisher Scientific, Waltham, USA) in 1.5 ml DMEM 
(Biochrom, Berlin, Germany; without FCS) following manu-
facturer’s instructions. After 24 h, the medium was changed 
and cells were kept on Claycomb medium with supplements 
for further 48 h.

For Western blot analysis, HL-1 cells were washed with 
PBS and lysed in RIPA buffer and sonicated (UP100H; 
Hielscher, Teltow, Germany). Cell lysates were matched for 

protein content. After separation, the proteins were trans-
ferred to a PVDF membrane (Thermo Fisher Scientific, 
Waltham, USA) for p27 or a nitrocellulose membrane (GE 
Healthcare, Buckinghamshire, UK) for GIRK1, GIRK4, and 
HSP90 detection. The membrane was incubated with pri-
mary antibodies (p27: 1:500, ab137736, Abcam, Cambridge, 
UK; GIRK1: 1:1000, ab129182, Abcam, Cambridge, UK; 
GIRK4: 1:750, ab113699, Abcam, Cambridge, UK; HSP90: 
1:1000, 4874, Cell Signaling Technology, Danvers, USA) 
at 4 °C overnight. The bound primary antibody was visual-
ized using horseradish peroxidase-conjugated secondary IgG 
(anti-rabbit, 1:10,000 for p27, 1:20,000 for GIRK1/4 and 
HSP90, Rockland, Limerick, USA) and the ECL™ system 
(Amersham, Freiburg, Germany). Densitometry analysis was 
performed with Quantity One software (BioRad, Munich, 
Germany).

Electrophysiology

Single HL-1 cells were plated for 24 h on gelatin/fibronec-
tin-coated 35-mm Petri dishes in 2 ml of Claycomb medium. 
The cells were transfected with miR-221/222 mimics as 
described above. 48 h after transfection, current record-
ings were performed in the whole-cell configuration of the 
patchclamp technique using an Axopatch 200A patch-clamp 
amplifier (Axon Instruments, Inc., Burlingame, CA, USA). 
Patch pipettes were fabricated from thick wall (2-mm OD) 
borosilicate glass capillaries (Hilgenberg, Malsfeld, Ger-
many) and filled with an internal solution of the following 
composition (in mmol/L): 130 CsCl, 20 TEACl, 10 EGTA, 5 
Na2ATP, 6 MgCl2, 10 HEPES (pH was adjusted with CsOH 
to 7.2). Electrical resistances of the fire-polished electrodes 
were 3–4 MΩ when filled with internal solution. L-type 
Ca2+ currents were recorded in a Na+-free and K+-free bath 
solution containing (in mmol/L): 150 Tris–Cl, 10 CaCl2, 
10 glucose, 10 HEPES (pH was adjusted with Tris–OH 
to 7.4). Current signals were sampled at 16–40 kHz and 
low pass filtered at 5 kHz with a four-pole Bessel filter and 
stored for off-line analysis (ISO2, MFK, Germany). Series 
resistance was partially compensated (> 70%). By integrat-
ing the capacitive current at the end of 10 ms long voltage 
step (− 80 to − 70 mV), the input capacitance of the cells 
was obtained. The peak amplitude of the inward current 
was normalized to the input capacitance to obtain the cur-
rent density (pA/pF) to compensate for differences in cell 
size. All experiments were carried out at room temperature 
(20–24 °C). HL-1 cells express both T-type and L-type Ca2+ 
currents [26–28]. Since in this study we sought to investigate 
the effect of miR-221/222 solely on the activity of L-type 
Ca2+ channels, we used a voltage clamp protocol to separate 
the two currents from each other. T-type Ca2+ channels—
recorded with 10 mmol/L Ca2+ as the charge carrier—were 
inactivated using a holding potential of − 35 mV without 
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affecting the availability of L-type Ca2+ channels. Initially, 
we performed current density measurements by depolariz-
ing the cells from a holding potential of − 40 or − 35 mV to 
various test potentials in 10 mV increments (from − 40 to 
65 mV). As we observed a reduction in peak density but not 
a shift in current density–voltage relationship (Supplemen-
tary Figure S1), in further experiments only peak inward 
current was determined. To obtain the maximal peak inward 
current (peak ICa,L), HL-1 cells were depolarized every 8 s 
for 100 ms from a holding potential of − 35 mV to various 
test potentials (15–30 mV in 5 mV increments).

Dual luciferase reporter assay

Reporter constructs (pEZX-MT06 dual luciferase reporter) 
contained the 3′-UTRs of murine ion channel mRNAs listed 
in Supplementary Table S3 downstream of the firefly lucif-
erase. 3′-UTRs longer than 3.5 kb were divided into frag-
ments. The vectors were transfected into HEK293 cells, 
10 ng each. Additionally, the cells were transfected either 
with 30 nM of miRCURY LNA miR-221 mimics, miR-222 
mimics or mimic negative control using 1.5 µl Polyfect (Qia-
gen, Germantown, USA). After 24 h, the supernatant was 
removed, and after further 48 h, cells were lysed and the 
luciferase activity in the lysate was measured using the Dual 
Luciferase Assay System (Promega, Madison, USA). The 
firefly luciferase activity was normalized to the renilla lucif-
erase activity. After that, values were normalized to mimic 
negative control as well as empty vector.

FluxOR assay

HL-1 cells were transiently incubated with miR-221/222 
mimics for 24 h as described above. 48 h after start of trans-
fection, cells were seeded onto a 96-well plate and incubated 
for another 24 h. FluxOR™ II Green Potassium Ion Chan-
nel Assay (Invitrogen™) was performed according to the 
manufacturer’s instructions using the Operetta CLS High-
Content Analysis System (Perkin Elmer, Krakow, Poland) 
with a thallium ion (Tl+) concentration of 1 mM. To confirm 
that carbachol-induced (CCH, 10 µM final concentration, 
Sigma-Aldrich, Munich, Germany) thallium ion flux was 
indeed carried out by GIRK4, we performed initial experi-
ments with tertiapin q (TQ, 100 nM final concentration, 
Alomone Labs, Jerusalem, Israel), an inhibitor of GIRK1/4. 
After obtaining the baseline fluorescence (F0), a buffer con-
taining Tl+ alone (control) or additionally carbachol with 
or without tertiapin q was added and the fluorescence was 
measured every 15 s (30 time points after stimulation, Sup-
plementary Figure S2).

Fluorescence data were normalized to baseline fluores-
cence (F/F0). The time course of F/F0 was integrated to 
obtain the area under the curve (AUC). Carbachol effect 

(CE) was calculated as AUC (carbachol)-AUC (control) for 
each individual experiment and afterward normalized to the 
mean CE of the corresponding mimic control (scramble).

Statistical analysis

Data are presented as mean ± standard error of mean (SEM). 
ANOVA followed by post hoc testing, Student’s t test or 
Mann–Whitney rank sum test were used as applicable 
according to pre-test data analysis by Sigma Plot 12.5. A p 
value < 0.05 was considered significant. Biometrical plan-
ning was performed with α = 0.05 and β = 0.8, resulting in 
sample sizes between five and 15 samples/group depending 
on the experimental setting. For next generation sequencing 
(NGS) either for miRNAs or mRNAs, DEseq analysis was 
performed. Graphics were prepared using Sigma Plot 12.5.

Results

Differential miR expression

To investigate the impact of miRNA on electrical remod-
eling, we analyzed differential miR expression (NGS; wild 
type and knockout animals from the EGFRΔ/ΔVSMC&CM 
mouse line N = 6 per group) in hearts of a genetic model with 
extensive hypertrophy (HW/TL: WT 7.4 ± 0.3 mg/mm and 
KO 20.5 ± 1.6 mg/mm, N = 19–23 animals/group) without 
major signs of fibrosis or heart failure [17]. Previous ECG 
analysis of this mouse strain revealed that EGFRΔ/ΔVSMC&CM 
mice showed prolonged p-duration (14 ± 1 ms in wild type 
versus 17 ± 1 ms in knockouts; p < 0.05; N = 8), QRS inter-
vals (15 ± 1 ms in wild type versus 22 ± 2 ms in knockouts; 
p < 0.05; N = 8), as well as QTc intervals (61 ± 3 ms in wild 
type versus 82 ± 6 ms in knockouts; p < 0.05; N = 5) indi-
cating disturbed excitation propagation [18]. Parameters for 
heart rate variability did not differ between the genotypes 
(SDNN: WT 10.9 ± 2.5 ms and KO 9.2 ± 1.5 ms; SDδNN: 
WT: 13.1 ± 4.2 ms and KO 9.0 ± 1.5 ms; RMSSD: WT: 
13.1 ± 4.2 ms and KO 9.0 ± 1.5 ms, N = 6–8 animals/group).

For NGS analysis of miRNAs, whole-heart samples 
where used. In a first step, we compared the reads per million 
between WT and KO animals. From 1908 miRs annotated in 
the mouse genome, only a minority showed an abundance of 
more than one read per million in WT (610) and KO (543) 
animals (Supplementary File S1). These miRNAs were allot-
ted according to their reads per million to different groups. 
The distribution of miRNAs in these groups was evaluated. 
Because neither absolute counts nor gross distribution of 
miRs in the different groups was different between WT and 
KO animals (Fig. 1a), we excluded substantial alteration in 
overall miR generation and processing in the hypertrophied 
hearts. Supplementary File S1 shows the data for all miRs. 
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For the analysis of differential expression of single miR-
NAs, we used the following thresholds: only miRNAs with 
a RPM ≥ 100 in WT for downregulated or ≥ 100 RPM in 
KO for upregulated miR were taken into account. miRNAs 
were considered to be significantly changed when the fold 
change was ≥ |1.5| and the p value between WT and KO sam-
ples was < 0.01. According to these parameters, 14 miRs 
were differentially expressed between WT or KO animals 
(Fig. 1b).

Validation of differential microRNA expression

As the impact of mmu-miR-208b-3p on structural and elec-
trical heart remodeling [29] and as a marker for an increased 
risk for death after myocardial infarction [30] has already 
been reported, we focused on miR-221/222, the second and 
third most upregulated miR. The changes in miR content 
were validated via TaqMan qRT-PCR (Fig. 2a) and ddPCR 

(Fig. 2b) from a separate cohort of whole-heart samples 
from WT and KO mice and confirmed the data from NGS. 
As the fibroblasts outnumber the cardiomyocytes in the heart 
[2], freshly isolated cardiomyocytes from adult WT and KO 
mice were analyzed. Cardiomyocytes from hypertrophied 
hearts also showed an increased amount of miR-221 and 
miR-222 (Fig. 2c), corresponding to the results from whole 
hearts of adult mice. Additionally, we observed an increased 
expression of pri-miR-221/222 (Fig. 2d). Cardiac fibroblasts 
showed no change in miR-221/222 expression (Fig. 2e).

We also determined miR-221/222 expression in the 
hearts of newborn knockout animals (1 week of age) that 
displayed a 27% increase in heart weight compared to wild-
type animals (6.2 ± 0.4 versus 8.0 ± 0.4 mg/g body weight; 
N = 8 animals/group), but observed no significant difference 
(− ΔΔct = 0.34 ± 0.16; N = 8 animals/group).

We investigated miR-221/222 expression in two other 
models of pathological heart hypertrophy: AII infusion as 

Fig. 1   miRNA expression in 
hearts of mice with severe 
heart hypertrophy. a miRNA 
expression was analyzed by 
next generation sequencing in 
hearts of WT and KO mice. b 
In the hearts of KO animals, 
14 miRNAs were differentially 
expressed compared to WT 
animals (thresholds: ≥ 100 
RPM in WT for downregu-
lated miR; ≥ 100 RPM in KO 
for upregulated miR; fold 
change ≥ |1.5|; p < 0.01, for 
detailed information see Supple-
mentary File S1, N = 6 animals/
group)
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a model for pressure overload-induced heart hypertrophy 
[31] and isoprenaline infusion as a model for ischemic 
heart failure [32]. Neither AII nor isoprenaline caused 
heart failure, as lung weight/tibia length was not altered 
by substance infusion. In contrast, while AII had no impact 
on interstitial fibrosis, the percentage of Sirius red-stained 
tissue was increased in isoprenaline-treated animals (Sup-
plementary Figure S3). Infusion of AII as well as isoprena-
line caused a significant and comparable increase in HW/
TL and an increase in cardiomyocyte diameter (Fig. 3a–d). 
In contrast, while the expression of both miRs was ele-
vated in the AII-treated animals, there was no biologically 
relevant increase in isoprenaline-treated mice (Fig. 3e–h).

Assessment of reduced miR‑221 target expression 
(p27)

Additionally, we analyzed if the increase in miR-221/222 
resulted in the reduction of a validated target, p27 (cyclin-
dependent kinase inhibitor 1B) [6]. There was no alteration 
of p27 mRNA in whole-heart lysates between WT and KO 
animals as determined by ddPCR, but a reduction in protein 
content (protein: WT: 100.00 ± 6.9%, KO: 78.52 ± 6.8% of 
WT, p < 0.05, N = 19–20 animals/group, Fig. 2f). Further-
more, comparison of miR-221/222 and p27 mRNA copy 
number (Fig. 2b, f) shows that the amount of both is in the 
same range; therefore, an impact of these two miRNAs on 

Fig. 2   Altered miR-221/222 expression in hearts of mice with severe 
heart hypertrophy is due to enhanced miRNA expression in cardio-
myocytes. miR-221 (right panels) and miR-222 (left panels) expres-
sion were evaluated by TaqMan qRT-PCR (a, relative change com-
pared to WT) and droplet digital PCR (b) in hearts of wild type and 
knockout animals in an additional cohort. N = 30 animals/group. The 
increase in miR-221 and -222 could be observed in isolated cardio-
myocytes (c, N = 18 animals/group relative change compared to WT). 
Pri-miR-221/222 was increased in mice with heart hypertrophy (d, 
whole heart samples N = 30 animals/group, relative change compared 

to WT). No significant difference in the amount of miR-221 and -222 
could be detected in cardiac fibroblasts from wild type or knockout 
animals (e, N = 10 animals/group, relative change compared to WT). 
To evaluate if the increase in miR-221 and -222 expression correlates 
with the expression of a validated cardiac target for these miRNAs, 
we analyzed p27 mRNA amount (N = 30 animals/group, relative 
change compared to WT) and protein content in hearts from WT and 
KO animals (f, N = 19–20 animals/group). Panel f shows a representa-
tive Western blot image
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protein content without additional supporting factors seems 
to be reasonable. In summary, we conclude that miR-221 
and miR-222 are upregulated in hypertrophied hearts of 
mice and that this upregulation leads (1) to a functionally 
relevant increase in the copy number of the miRs and (2) 
a reduction of a relevant, confirmed cardiac target of these 
miRs indicating a post-transcriptional regulation.

Transcriptome determination and enrichment 
analysis

To identify potential targets that may be downregulated by 
miR-221/222 and contribute to electrical remodeling before 
heart failure in the hypertrophied heart, transcriptome analy-
sis by RNA-seq of hearts from EGFRΔ/ΔVSMC&CM and their 
wild-type littermates was performed and compared with 
predicted miR-221/222 targets (Fig. 4a). Of 22,026 anno-
tated genes, 460 protein coding genes were detectable and 
downregulated (Supplementary File S2) in KO animals. We 
compared these genes with the target genes for miR-221/222 
predicted by miRWalk 2.0. 261 genes were identified as 
miR-221/222 targets by ≥ 3 data bases (Supplementary 

File S2). Cluster analysis of those genes with g:Profiler and 
GOrilla revealed an enrichment of genes coding for proteins 
localized either to the T-tubule and/or involved in cation 
channel complex (Supplementary File S3). In Table 1, a list 
of genes included in the two clusters is given. For further 
analysis, we chose only genes with an FPM > 10 in wild-
type animals, namely the three subunits of the L-type Ca2+ 
channel (Cacna1c, Cacnb2, Cacna2d1) as well as the potas-
sium channel subunits, Kcnd2 and Kcnj5. The expression 
of these subunits was validated by qRT-PCR in whole-heart 
lysates from EGFRΔ/ΔVSMC&CM mice. The downregulation 
of all three L-type Ca2+ channel subunits as well as the 
two potassium channel subunits on mRNA level could be 
confirmed in an additional animal cohort (Fig. 4b). To test 
the hypothesis that a ~ twofold miR-221/222 upregulation 
might impact mRNA amounts of the three ion channels, the 
copy numbers of Cacna1c, Kcnd2, and Kcnj5 mRNAs were 
analyzed by ddPCR. Analysis revealed a copy number of 
399 ± 66 copies/ng RNA for Cacna1c, 43 ± 7 copies/ng RNA 
for Kcnd2, and 89 ± 13 copies/ng RNA for Kcnj5 (N = 9–10 
animals/analysis). These copy numbers are in a similar range 
as miR-221/222 copy numbers (Fig. 2b).

Fig. 3   Heart hypertrophy alone is not sufficient to increase cardiac 
miR-221/222 expression. Infusion of AII or iso induced a compara-
ble increase in HW/TL (a, b) and cardiomyocyte diameter (c, d) com-
pared to control animals. While AII treatment increased miR-221 (e) 

and miR-222 (f) amount in the hearts of the animals, iso induced no 
biological relevant change in those miRNAs (g, h) (AII: N = 12–15 
animals/group, iso: 5–6 animals/group, relative change compared to 
control)
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miR‑221/222 leads to a downregulation of L‑type 
Ca2+ channel and GIRK4

To test if miR-221/-222 might directly target the five afore-
mentioned ion channel subunits in the heart, 3′-UTR lucif-
erase assays were performed. As isolated adult cardiomyo-
cytes dedifferentiate rapidly in culture, further analyses of 
ion channel regulation by miR-221/222 were performed in 
HL-1 or HEK293 cells. Due to the length of the Cacna1c 
and the Cacna2d1 3′-UTR, the sequence was divided into 
three or two fragments, respectively. Figure 5a, b shows 
the effect of miR-221 or miR-222 on the luciferase activ-
ity of the 3′-UTR of Cacna1c, Cacnb2, Cacna2d1, Kcnd2, 
and Kcnj5 in HEK293 cells. Neither miR-221 nor miR-222 
mimics reduced the luciferase activity of the 3′-UTRs from 
Cacna2d1, thereby indicating that these two miRs might not 
target this mRNA by direct binding to its 3′-UTR in the 
heart. miR-221 mimics reduced the luciferase activity of 
the 3′-UTR for Cacna1c and Kcnj5 (Fig. 5a), while miR-
222 reduced the luciferase activity of the 3′-UTR of Cac-
na1c, Cacnb2, Kcnj5, and Kcnd2 (Fig. 5b). This indicates 
that the miR-221/222 cluster targets L-type Ca2+ channel 
subunits and potassium channel subunits, namely Cacna1c, 
Cacnb2, Kcnj5, and Kcnd2, via their 3′-UTR. As a proof 
of principle, we evaluated the effect of miR-221 mimics in 
HL-1 cardiomyocytes. While Cacna2d1 and Kcnj5 mRNA 
levels were not altered, miR-221 mimic reduced the mRNA 
amount of Cacnb2 and Cacna1c (Fig. 5c). To demonstrate 

that increased miR-221 and -222 amounts might have a func-
tional impact, ion currents and protein content were ana-
lyzed. As the Cacna1c subunit represents the pore forming 
α subunit of the L-type Ca2+ channel, we analyzed the effect 
of miR-221 and -222 mimics on L-type Ca2+ current (ICa,L) 
density by whole-cell patch clamp recording. Transfection 
with mimics for both miRNAs decreased the current den-
sity of the L-type Ca2+ channel in HL-1 cells significantly 
(Fig. 5d). Furthermore, miR-221 mimics reduced the pro-
tein expression of GIRK4 but not of GIRK1, determined 
by Western blot analysis (miR-221 mimic 64.2 ± 2.1% of 
control, N = 3 independent experiments, Fig. 5e). To deter-
mine if the change in GIRK4 protein content results in a 
reduced ion flux through GIRK1/4, we analyzed HL-1 cells 
transfected with either scrambled, miR-221 or -222 mimics 
with a digital high-content fluorescence microscope and a 
thallium-sensitive dye. Upon stimulation with carbachol, the 
increase in thallium-dependent fluorescence was reduced by 
miR-221 and -222 but not by control mimics (Fig. 5f). As 
this current is tertiapin q-sensitive (Supplementary Figure 
S2), we conclude that Kcnj5 or GIRK4 is a target for miR-
221 and -222. Together, these data suggest that miR-221 and 
-222 may impair action potential generation in cardiomyo-
cytes of the sinoatrial node, electromechanical coupling in 
the working myocardium, and reduce the influence of the 
parasympathetic nervous system on the heart rate. Addition-
ally, we could confirm that in mice treated with AII, where 
cardiac miR-221 and -222 were upregulated, the mRNA for 

Fig. 4   GO-term cluster analysis revealed an enrichment of mRNAs 
being downregulated and a target for miR-221/222 involved in cation 
channel complexes and T-tubule function. a Comparison of genes 
determined by whole transcriptome sequencing, being downregu-
lated in mice with heart hypertrophy to target genes for miR-221/222 

revealed an enrichment of genes involved in cardiac action potential 
(p = 5.30E − 8, g:Profiler, N = 6/group), with a threshold of p ≤ 0.01, 
FDR < 0.05. b Real-time qRT-PCR with heart samples from an addi-
tional cohort of mice w/o heart hypertrophy confirmed these findings 
(N = 30 animals/group, relative change compared to WT)
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Fig. 5   miR-221/222 reduce L-type Ca2+ channel current and Kcnj5 
(GIRK4) protein amount by targeting Cacna1c or Kcnj5 3′-UTR. a 
To evaluate if the miRNAs bind to the 3′-UTR dual luciferase con-
structs containing the 3′-UTR from the L-type Ca2+ channel subunits, 
the potassium channel subunits, the seed sequence or an empty vec-
tor was transfected in HEK293 cells either with or without scramble 
or miR-221 mimic. miR-221 mimic reduced the luciferase activity of 
the Cacna1c-II, Cacna1c-III, and the Kcnj5 construct. b While miR-
222 mimic reduced the luciferase activity for Cacnb2, Cacna1c-I, 
Cacna1c-III, Kcnj5, and Kcnd2 significantly (N = 4–9 experiments/
group). c HL-1 cells were transfected either with scrambled or mim-
ics for miR-221. After 48 h, the mRNA for Cacnb2 and Cacna1c was 
reduced (N = 5–6 wells/group, relative change compared to scramble). 

d To confirm the effect on L-type Ca2+ channel, we performed patch 
clamp analysis in HL-1 cells transfected with scramble, miR-221 or 
miR-222 mimics. miR-221 and -222 mimic reduced the ICa,L current 
(n = 19–46 cells/group, N = 3–5 experiments). Representative cur-
rent tracings for control and mimic are given. e Western blot analysis 
for GIRK1, GIRK4, and Kcnd2 was performed in HL-1 cells treated 
either with scrambled (control) or miR-221 mimics (N = 3 per group). 
f HL-1 cells were transfected either with scramble, miR-221 or miR-
222 mimics and GIRK4-dependent ion flux was measured by fluores-
cence changes of a thallium-sensitive dye. In HL-1 cells transfected 
with miR-221/222 mimics, the area under the curve and thereby the 
ion flux over time were significantly reduced compared to control 
cells. (N = 4 experiments, n = 3 wells)
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Cacna1c was reduced (Fig. 6a). In contrast, no change in 
Cacna1c or Kcnj5 mRNA could be observed in mice with 
heart hypertrophy but without upregulation of the two miRs 
(isoprenaline treatment, Fig. 6b). 

Discussion

Although an impact of miRNAs on cardiac excitation gen-
eration and propagation is widely accepted [29, 33], the 
knowledge is still incomplete. In the present study, we 
provide evidence for a role of the clustered miR-221 and 
miR-222 in cardiac electrophysiology with potential patho-
physiological relevance. These miRs have been reported 
to be altered during cardiac diseases (for review see [19]) 
without further information regarding a potential causal role. 
In this study, we took advantage of a mouse model with 
severe heart hypertrophy but preserved ejection fraction. No 
signs of decompensation or ischemia were observed in these 

hearts [17], in contrast to studies that were performed at the 
stage of heart failure [9, 34].

The increase in miR-221 expression in our mouse model 
is in good agreement with data from human patients with 
hypertrophic cardiomyopathy after myocardiectomy, where 
miR-221 expression also increased twofold [6]. Additionally, 
we demonstrate that in the pathological highly relevant situa-
tion of an over-activated renin–angiotensin–aldosterone sys-
tem (AII-induced heart hypertrophy), the increase in heart 
hypertrophy is associated with an increase in miR-221 and 
-222. In contrast, adrenergic stimulation and the subsequent 
increase in heart weight do not induce a substantial rise in 
miR-221/222 expression. Taken together, these data indi-
cate that hypertrophy alone is not sufficient to increase miR-
221/222 expression but that increased miR-221/222 levels 
are associated with certain forms of hypertrophy, e.g., an 
over-activated renin–angiotensin–aldosterone system. The 
molecular mechanisms leading to an increase in the expres-
sion of these miRs need to be evaluated in a further study. 
In the study of Verjans et al. [31], incubation of fibroblasts 
with TGFβ1 decreases the expression of miR-221/222, while 
in tumor cells the EGFR seems to increase the expression of 
these miRNAs [35]. From our findings, we conclude, at the 
moment, that in cardiomyocytes, angiotensin II increases 
the expression of those miRNAs in an EGFR-independent 
way. If this increased expression of miR-221/222 is due to 
an alteration of TGFβ1 by angiotensin II in fibroblasts needs 
to be evaluated in further studies.

Additionally, we were able to confirm that the observed 
increase in miR-221/222 amount is accompanied by reduced 
expression of a known target, namely p27 [6]. Although this 
does not prove a direct interaction, it supports the functional 
relevance of the miR-221/222 expression changes. Compar-
ing the copy numbers of the miR-221/222, p27 as well as 
Cacna1c, Kcnd2, and Kcnj5 mRNA by ddPCR shows that 
the change in protein levels of the mentioned genes might 
be caused by those two miRNAs without supporting factors. 
But this has to be evaluated in more detail. Furthermore, 
the doubling in copy number for the miRs in the hypertro-
phied heart does not lead to a decreased copy number of 
p27 mRNA, arguing for a post-transcriptional mechanism 
leading to the decrease in p27 protein levels. Of note, the 
reduced amount of p27 could at least partially explain the 
cardiac hypertrophy, as it has been demonstrated that mice 
with deletion of p27 develop heart hypertrophy with increas-
ing age [36]. And miR-221 as well as miR-222 has been 
reported to reduce cardiomyocyte autophagy by reduction 
of p27 [37, 38].

miR-221 and -222 share the same seed sequence and 
derive from a single pri-miR [39], but there are hints that 
the regulation of both miRs differs [40, 41]. miR-222 was 
described as mainly expressed in cardiac fibroblasts [31, 34]. 
In contrast to the above mentioned studies, we could not 

Fig. 6   Cacna1c mRNA correlates with the change in miR-221/222 
expression in AII-treated animals. To test if the increase in miRNAs 
is correlated to the changes in Cacna1c and Kcnj5 expression, we 
performed real-time qRT-PCR in the two mouse models with phar-
macologically induced heart hypertrophy. While in AII-treated ani-
mals, Cacna1c was downregulated, there was no change in Cacna1c 
in isoprenaline-treated animals (a) AII: N = 12–15 animals/group, b 
isoprenaline: 5–6 animals/group (relative change compared to con-
trol)
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observe an increase in miR-221 or miR-222 in cardiac fibro-
blasts of mice with genetic heart hypertrophy. This might be 
due to the fact that in our mouse models, no signs of heart 
failure could be observed, e.g., lung weight per tibia length, 
a measure for lung congestion, was not altered [17, 42].

Comparison of downregulated mRNAs with predicted 
targets of miR-221 and -222 revealed 261 protein coding 
RNAs that are predicted as potential targets of miR-221 and 
-222. Of 460 downregulated protein-coding mRNAs, this 
would be ~ 57%, a very high fraction. To test if this might be 
an unspecific correlation, we tested how many of the upregu-
lated, protein-coding RNAs are predicted targets of miR-
221/222. This applies only for 24 out of 399 protein-coding 
RNAs, a fraction of about ~ 6%. Therefore, we think that our 
strategy can serve as a first approach to identify targets for 
further validation. Among the downregulated protein-coding 
RNAs, an enriched subset was related to excitation genera-
tion and conduction according to G:profiler and GOrilla. 
Included in the group of enriched genes were the subunits of 
the L-type Ca2+ channel (Cacna1c, Cacnb2, Cacna2d1), the 
G-protein-activated inwardly rectifying potassium channel 
4 (Kcnj5), and a voltage-gated potassium channel (Kcnd2). 
These three ion channels are involved in the electrical poten-
tial generation and propagation of the heart. The L-type Ca2+ 
channel is important for electromechanical coupling in the 
working myocardium and underlies the slow upstroke of the 
sinoatrial node potential. A decrease in the expression of 
this ion channel, most probably, would reduce the heart rate, 
cardiac force development, and action potential duration. 
Kcnj5 belongs to the G-protein-activated inwardly rectify-
ing potassium channel family and mediates the parasym-
pathetic stimulation via the muscarinergic M2-receptor in 
the electrical conduction system of the heart, and thereby 
a reduction in heart frequency. Kcnd2 is part of the potas-
sium voltage-gated channel subfamily D. It contributes to 
the early repolarization of the action potential in the working 
myocardium. A reduction in the current would most prob-
ably increase action potential duration. However, one has 
to take into account, as the heart beat is of viable impor-
tance, compensatory mechanisms will most probably mask 
the pure electrophysiological properties of the reduced ion 
channel currents, therefore making it highly complicated 
to deduce ion currents from ECG recordings. As our mice 
showed alterations in the ECG, we chose to evaluate this 
subgroup of genes. While miR-221 binds to the 3′-UTR of 
Cacna1c and Kcnj5, miR-222 reduces the luciferase activity 
for the reporter plasmids for Cacna1c, Cacnb2, and Kcnj5. 
The L-type Ca2+ channel is the main Ca2+ channel of the 
conduction system and the working myocardium. This cur-
rent is responsible for the slow upstroke in the sinoatrial 
node and the generation of the plateau in the working myo-
cardium [43, 44]. In the heart, this channel is composed 
of three subunits: (1) the pore-forming subunit α1, which 

regulates the main biophysical and pharmacological proper-
ties and is encoded by the Cacna1c gene, and two auxiliary 
subunits, including (2) a cytoplasmic β subunit, encoded 
by Cacnb2 and (3) α2δ encoded by Cacna2d [43]. From the 
β-subunits, the β2 isoform, encoded by Cacnb2 is the domi-
nant one in the heart [45]. The β subunit as well as the α2δ 
subunit is required for anchoring, trafficking, and regulatory 
functions [43]. We were able to demonstrate that both miR-
NAs bind to the 3′-UTR of the Cacna1c subunit and lead to 
a reduced L-type Ca2+ current density in cardiomyocytes 
as demonstrated in HL-1 cells by whole-cell patch clamp-
ing. Additionally, in the hearts of EGFRΔ/ΔVSMC&CM, mice 
the mRNA amount for Kcnip2 (NGS) is downregulated. 
It has been demonstrated that the corresponding protein 
increases the L-type Ca2+ channel density [46] in murine 
cardiomyocytes. As this mRNA is also a predicted target for 
miR-221/222, future studies will have to detect a possible 
molecular interaction.

Activation of the L-type Ca2+ channel enhances Ca2+ 
influx from the extracellular space supporting the action 
potential generation in the conduction system of the heart 
[44]. Antagonizing the L-type Ca2+ channel has been shown 
to prevent pathological cardiac remodeling and hypertrophy 
in animal models [47, 48]. But a reduction of ICa,L can also 
be detrimental. Homozygous deletion of the α1 subunit of 
the L-type Ca2+ channel causes embryonic death before day 
14.5 in mice [49] and even heterozygous deletion results in 
cardiac hypertrophy and ventricular dilatation by pathologi-
cal or physiological cardiovascular stress [44, 50]. There is 
increasing evidence that miRs might be involved in the regu-
lation of this ion channel. It has been suggested that besides 
miR-221 and -222, also miR-208b [29], miR-29a-3p [51], 
and miR-21 [52] bind to the 3′-UTR of Cacna1c, and thereby 
reduce ICa,L. From these miRs, only miR-208b was altered 
in EGFRΔ/ΔVSMC&CM mice. Additionally, Cacnb2 is a con-
firmed target for miR-21 [52], miR-132, and miR-222 [53]. 
As the dysfunction of the L-type Ca2+ channel is involved in 
different human forms of arrhythmia, like the Brugada syn-
drome with or without short QT interval, Timothy syndrome 
and even in arrhythmias of patients with myotonic dystro-
phy one and two [44, 54], the regulation of its subunits by 
miRs is of clinical importance. As mentioned in “Materials 
and methods” section, after verifying that miR-221 does not 
change the current density–voltage relationship, we obtained 
maximum peak inward current by stepping from a holding 
potential to various test potentials (15–30 mV). To increase 
the current amplitude and to facilitate patch formation, we 
raised the extracellular calcium concentration in our experi-
ments to 10 mM. As a consequence of the high extracellular 
calcium concentration, the maximum peak inward current 
is shifted from 0 mV to the potential range identified by us 
in former experiments (15–30 mV). Similar observations 
have been published in the literature, e.g., [27, 55]. Since 
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we were only interested in the maximal peak ICa,L to confirm 
the functional relevance of reduced channel expression and 
not primarily in discrete alterations of the voltage depend-
ence, we restricted our current measurements mainly to this 
potential range. In our hands, HL-1 cells do not tolerate 
repeated depolarizations very well, therefore we reduced 
the “normal” I–V curve, starting at about − 20 mV, to four 
depolarizations between 15 and 30 mV as described. We 
abstained from using nifedipine as L-type channel blocker, 
because at 10 mM [Ca2+]o, a high concentration of nifedi-
pine would have to be applied leading to non-specific effects 
of the drug [56, 57].

Kcnj5 provides one subunit of the G-protein-activated 
inwardly rectifying potassium channel GIRK1/4 or IK,ACh 
channel (Kir3.1/3.4). The Kir3.x ion channel family consists 
of four members: Kcnj3 (GIRK1), Kcnj5 (GIRK4), Kcnj6, 
and Kcnj9 [58]. They form homo- or hetero-tetramers in 
various combinations. All combinations are activated by βγ-
subunits of G-proteins. In the heart, the main hetero-tetramer 
is GIRK1/4 but also homo-tetramers of GIRK4 have been 
described in the atria [59]. Without GIRK4 in the heart, a 
functional IK,Ach channel cannot be built [60, 61]. Because 
the open probability of this channel is increased by binding 
of acetylcholine to the muscarinergic M2-receptor, it medi-
ates a part of the parasympathetic effects in the heart. Mice 
with deletion of GIRK4 lose the parasympathetic induced 
heart rate variability [62]. Herein, we demonstrate that miR-
221/222 target the Kcnj5 3′-UTR, and thereby reduce the 
protein amount and the ion current in HL-1 cells. GIRK1 
(Kcnj3) is also a predicted target of miR-221/222, but we 
were not able to induce a protein reduction of this ion chan-
nel by transfection of HL-1 cells with miR-221. But further 
studies with, e.g., longer incubation periods have to validate 
this finding.

In summary, alteration of miR-221 and -222 expression 
can contribute to changed L-type Ca2+ channel density, 
GIRK1/4 density, and, perhaps, Kir2.1 density resulting 
in slower excitation propagation and possibly disturbed 
electromechanical coupling, prolonging the QT interval, 
and thereby making the heart more vulnerable to arrhyth-
mias. We do not provide direct evidence for the alteration 
of the electrical properties of the heart by miR-221/222, 
but with the in vitro data from the HL-1 cells, we dem-
onstrate that miR-221/222 impact the ion channels in the 
cardiomyocytes. As these miRNAs are mainly produced in 
the fibroblasts [31, 34], the question remains if the miR-
NAs from the fibroblasts, as described for miR-21-3p by 
the working group of Thomas Thum [63], impact the ion 
channels in the cardiomyocytes. In the genetic model for 
heart hypertrophy, we did show that in the isolated adult 
cardiomyocytes, the miRNAs were increased but not in 
the fibroblasts. If this is also true for model of pressure 
overload induced by angiotensin II needs to be analyzed 

further. Verjans et al. [31] did show that in their model 
of pressure overload, heart fibrosis and heart failure were 
induced and that miR-221/222 in fibroblasts increased the 
expression of mRNAs leading to cardiac fibrosis. In our 
model, we used a reduced amount of angiotensin II and 
a shorter time period to prevent heart failure. Therefore, 
it is possible that in the non-failing heart, miR-221/222 
promote electrical remodeling, inhibit cardiac fibrosis by 
influencing the protein expression in cardiomyocytes, and 
thereby might preserve cardiac function. This has to be 
evaluated in further studies. As well as the overall effect 
of miR-221/222 on action potential generation and propa-
gation in cardiomyocytes with respect to the integrated 
reduction of at least L-type Ca2+ channel and GIRK4 have 
to be further studied. One of the limitations of our study is 
the lack of action potential recordings in HL-1 cells. In our 
hands, this approach encounters major difficulties for three 
reasons: (1) only a subpopulation of HL-1 cells are contin-
uously beating, and therefore spontaneous action potential 
recordings can be measured only from a fraction of cells. 
(2) L-type Ca2+ channel is heterogeneously expressed in 
HL-1 cells. (3) Only about 10–20% of HL-1 cells express 
Kcnj5 channels. Therefore, we believe that HL-1 cells are 
not a suitable tool to record action potentials and electro-
mechanical coupling. We are currently establishing the 
neonatal cardiomyocyte preparation of mice and will in 
the future work with freshly isolated cardiomyocytes from 
adult mice treated with antagomirs.

In summary, our findings and the findings from Ver-
jans et al. [31] as well as Su et al. [37, 38] indicate an 
autophagy- and electrical remodeling-supporting effect in 
cardiomyocytes but fibrosis-inhibiting effect in fibroblasts 
of miR-221/222, whereby the effect could be overall sup-
portive for heart function, as left ventricular dysfunction 
and dilatation are aggravated in the angiotensin II model 
by inhibiting the miRNAs.
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