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Abstract
Oligodendrocytes (OLs) generate myelin membranes for the rapid propagation of electrical signals along axons in the central 
nervous system (CNS) and provide metabolites to support axonal integrity and function. Differentiation of OLs from oligo-
dendrocyte progenitor cells (OPCs) is orchestrated by a multitude of intrinsic and extrinsic factors in the CNS. Disruption of 
this process, or OL loss in the developing or adult brain, as observed in various neurological conditions including hypoxia/
ischemia, stroke, and demyelination, results in axonal dystrophy, neuronal dysfunction, and severe neurological impairments. 
While much is known regarding the intrinsic regulatory signals required for OL lineage cell progression in development, 
studies from pathological conditions highlight the importance of the CNS environment and external signals in regulating 
OL genesis and maturation. Here, we review the recent findings in OL biology in the context of the CNS physiological and 
pathological conditions, focusing on extrinsic factors that facilitate OL development and regeneration.
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Introduction

The central nervous system (CNS) integrates and processes 
an immense amount of information leading to complex 
behavior. This multilevel process requires an extensive net-
work of neural cell types to be established and maintained. 
During embryonic CNS development, progenitor pools of 
neuronal and glial cells expand and differentiate to acquire 
relevant functions. Oligodendrocytes (OLs) are glial cells 
whose terminal processes generate myelin and enwrap CNS 
axons. Myelin is crucial for saltatory propagation of electri-
cal impulses down the axon, enabling rapid communication 
between networks of neurons in the CNS [1]. In addition 
to increasing axonal conduction speed through generating 
myelin, OLs secrete metabolic factors and maintain energy 

homeostasis to support axonal integrity and promote neu-
ronal survival [2]. Thus, establishing proper numbers of OLs 
during brain development, as well as during their regenera-
tion in neurological disorders that involve OL and myelin 
loss, is crucial for normal CNS function.

During CNS development, oligodendrocyte progenitor 
cells (OPCs) are generated from neural stem/progenitor 
cells (NSPCs) in several regions in a precise spatiotemporal 
manner [3–5]. Multiple transcriptional regulators cooperate 
to orchestrate changes in gene expression leading to OPC 
fate selection and subsequent differentiation to oligodendro-
cytes. One of the most important regulators of OL lineage 
cell development is oligodendrocyte transcription factor 2 
(Olig2), which acts as a central node upon which numerous 
pathways converge and from which foundational intrinsic 
signals arise to drive OPC genesis and maturation [3, 4, 
6–8]. For example, the Wnt/β-catenin and bone morphogenic 
protein (BMP) pathways inhibit Olig2 gene function [9–11], 
while fibroblast growth factor (FGF), sonic hedgehog 
(SHH), retinoic acid (RA), and Notch1 signaling increase 
Olig2 expression, facilitating OPC production, prolifera-
tion, and maturation [9, 12–14]. Once generated, transcrip-
tional regulators such as Myrf, Myt, RXRs, are required for 
the differentiation of OPCs into oligodendrocytes [15–19]. 
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Details of intrinsic signals regulating oligodendrocyte lin-
eage cell specification and progression are well described 
elsewhere [4, 15, 16, 20] and will not be discussed further 
here. However, since OLs are part of an exquisitely complex 
CNS environment containing neurons, astrocytes, microglia, 
and vascular/perivascular cells, control of OL lineage cell 
proliferation and differentiation likely relies on multiple 
extrinsic cues and cell–cell interactions during development 
or regeneration. Here we will discuss the role of extrinsic 
factors in regulating the progression of OL lineage cells 
from immature, migrating precursors to fully differentiated, 
myelinating oligodendrocytes in development, aging, and 
disease (Fig. 1).

Neuronal Regulation of OL Development

Since activity-dependent myelination was proposed over five 
decades ago [15], research focusing on neuronal regulation 
of OL development and function has revealed various path-
ways that might affect oligodendrocyte lineage progression 
from OPC proliferation to the terminal myelinating stage 
[15, 21–24]. Increasing evidence shows that neuronal activ-
ity and glutamate signaling can promote OPC migration, 
proliferation, differentiation, and myelination during devel-
opment [21, 25–30]. OPCs receive synaptic inputs from 
neurons and express voltage-gated ion channels (such as 
voltage-gated sodium and potassium channels) and vari-
ous neurotransmitter receptors [25, 27, 28, 31, 32]. Activa-
tion of voltage-gated sodium channels on OPCs leads to an 
increased number of proliferating OPCs and mature OLs 
[21, 33, 34], while potassium channel currents are known to 
enhance proliferation but may delay differentiation [32, 35, 

Fig. 1   Extrinsic regulators of oligodendrocyte lineage cell progression from immature, migrating precursors to fully differentiated, myelinating 
oligodendrocytes
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36]. Glutamate released by excitatory neurons may serve as 
a chemoattractant, stimulating the migration of OPCs toward 
their target destination in the developing brain [26]. Activa-
tion of glutamate receptors on OPCs accelerates integrin-
mediated OPC motility via mechanisms that involve AMPA 
receptors [26]. Glutamate signaling in OPCs also leads to 
potassium channel inhibition and decreased OPC prolifera-
tion [32]. The molecular mechanisms underlying glutamate 
signaling in OPCs involve elevated levels of the cell cycle 
inhibitors p27Kip1 and p21Cip1 [37–39], both of which natu-
rally rise with continued OPC proliferation, constituting an 
“internal clock” or timing component of OL lineage cell pro-
gression and leading to stalling at the G1-S phase transition 
by dissociating cyclin-cdk complexes [35, 40–42]. These 
cell cycle inhibitors require thyroid hormone for their func-
tion and may, in turn, facilitate OPC maturation by trig-
gering histone deacetylase-mediated changes in OPC gene 
function [42–46].

Activation of glutamate receptors on OPCs can also ini-
tiate local translation of myelin basic protein (MBP) and 
increase calcium transients in OPC/OL [47–49]. This pro-
cess aligns with the observation that functionally active 
neurons are preferentially myelinated, while inhibition of 
glutamate release from a given axon decreases its likelihood 
of becoming myelinated [50–53]. It appears that some myeli-
nated tracks rely on glutamatergic signals to induce myelina-
tion, while others do not. For instance, loss of vesicular glu-
tamate release from reticulospinal neurons decreases their 
myelination, but similar loss in commissural ascending fib-
ers has no impact on myelin [54]. This heterogeneity in the 
requirement of glutamate for myelination is not completely 
surprising, however, because while some myelinated regions 
contain exclusively glutamatergic projections (e.g. the cor-
pus callosum), others contain a mixture of glutamatergic 
and GABAergic neurons. In addition to glutamate, OPCs 
can also respond to GABA. The impact of GABA signal-
ing on OPCs depends on the type of GABA receptors that 
the cells express. For example, GABAA receptor activa-
tion slows OPC proliferation and the extent of myelination, 
though curiously, the myelinated internodes formed by the 
GABA-stimulated cell are longer than those of non-GABA-
stimulated cells [55]. Conversely, activation of GABAB 
receptors stimulates OPC proliferation and migration [56]. 
The dynamics of axonal neurotransmitter release and recep-
tor activation in OPCs are still largely unknown and further 
research is needed to fully uncover neuronal regulation of 
OL development.

Activity-dependent regulation of OL recruitment, line-
age progression, and de novo myelination is evident from 
behavioral paradigms of motor learning. It has been shown 
that in mice learning to run on the complex wheel there is 
rapid differentiation of OPCs in the motor cortex, followed 
by a subsequent increase in compensatory proliferation to 

return to homeostatic OPC density [57–59]. Blocking OPC 
differentiation impedes motor learning and performance on 
the complex wheel [58]. Similarly, improvements in rodent 
spatial learning parallel increasing levels of OPC prolif-
eration, myelination, and corpus callosum volume, and 
this effect is amplified by environmental enrichment [60]. 
Conversely, it has been demonstrated that social isolation 
of adult or early postnatal mice results in significant behav-
ioral, transcriptional, and ultrastructural changes in OLs of 
the prefrontal cortex [61, 62]. Interestingly, these changes 
can be reversed by social reintegration in adult mice, how-
ever, the lack of social experience in juvenile mice during 
the critical period of prefrontal cortex development cannot 
be reversed by social reintroduction at later time points [61, 
62]. These studies imply that activation of various neuronal 
circuits play an important role in white matter development 
(Fig. 1), while inhibition of neuronal activity may lead to 
myelin deficits [63].

Role of Astrocytes in OL Maturation

Astrocytes precede OL in early postnatal development and 
regulate OPC proliferation, migration, survival, and dif-
ferentiation through secreted factors such as PDGF, FGF, 
leukemia inhibitory factor (LIF), and a member of the inter-
leukin (IL)-6 cytokine family [64–69]. When astrocytes fail 
to mature, i.e. in Gfap null mice, the lack of released growth 
factors cause white matter dysplasia and altered myelination 
[70], demonstrating that normal white matter development 
requires astrocytes. Mice with global PDGF deletion have a 
reduced number of OPCs and subsequent hypomyelination 
[71], whereas overexpression of PDGF in astrocytes of the 
mouse optic nerve leads to OPC hyperplasia [72]. Although, 
factors released by astrocytes often work in cooperation, 
they may also differentially regulate certain processes in OL 
development. For instance, PDGF applied in vitro prevents 
morphological maturation of OPCs, but cannot keep the cell 
in a constant proliferative state [73]. In contrast, FGF alone 
allows morphological maturation, but keeps the OPC in the 
cell cycle, albeit with a much-lengthened cell cycle time 
[73]. However, when both growth factors are present, OPCs 
can maintain an immature morphology and sustain prolifera-
tive capacity [73]. Similarly, the combination of PDGF and 
LIF promotes OPC survival, and while decrease in PDGF 
α-receptor signaling seems to be required for differentiation, 
continued LIF signaling in OLs stimulates myelination [68, 
69].

Another soluble astrocyte-derived signal is endothelin-1 
(ET-1), which has been shown to regulate OPC migration 
and differentiation [74]. Several isoforms of endothelins 
(ET-1, 2, and 3) are present in many tissues, including the 
brain at varying levels, and are also secreted by endothelial 
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cells of microvasculature [75]. ETs induce their signaling 
through activation of their specific receptors (ETHRA and 
ETHRB), which are expressed by OPCs [74, 76]. Activation 
of ETHRs by ET-1 was found to play a dual role in early 
developmental stages in OL lineage progression by promot-
ing OPC migration, while inhibiting their differentiation 
[74]. Interestingly, ET-1 alone did not promote OPC migra-
tion; instead it augmented the stimulatory effects of PDGF 
and FGF, possibly by facilitating the intracellular pathways 
activated by these growth factors in OPCs [74]. In contrast, 
ET-1 alone inhibited OPC progression to mature OLs by 
reducing differentiation of OPCs in the postnatal brain [74]. 
This observation is consistent with OL lineage progression, 
since OPC migratory potential decreases as they differentiate 
into mature myelin-producing OLs.

Astrocytes have also been shown to influence OL biology 
through secretion of extracellular matrix (ECM) proteins 
such as fibronectin and laminin [77]. Early in vitro studies 
demonstrated that fibronectin stimulated the migration and 
proliferation of OPCs via interaction with integrin receptors 
αvβ1 and αvβ3, respectively [78, 79]. Subsequent studies 
revealed an important role of a crosstalk between fibronectin 
and growth factor signaling by demonstrating that activa-
tion of the αvβ3 integrin receptor via fibronectin binding 
can potentiate the proliferative response elicited by the 
mitogenic growth factor PDGF-A [80, 81]. Moreover, both 
ECM proteins, fibronectin and laminin, have been shown to 
promote oligodendrocyte process extension by potentiating 
FGF2 [81, 82] in a protein kinase C (PKC)-dependent man-
ner [83]. Taken together these and other studies demonstrate 
the importance of multiple astrocyte-derived factors on all 
aspects of OL biology (Fig. 1).

Effect of Microglia on OPCs

Microglia are traditionally considered the resident immune 
cell population of the CNS, able to survey the tissue and 
attack pathogens and clear debris from normal, develop-
mental apoptosis. We are just beginning to understand the 
integral role of microglia in brain development and function 
throughout life, specifically in the context of OL biology. A 
recent study shows that depletion of microglia ex vivo and 
in vivo does not affect OPC number in adult tissues, suggest-
ing that microglia are not essential for OPC viability postna-
tally [84]. However, microglia activation, i.e. under injury 
conditions, appears to influence oligodendrocyte lineage cell 
progression [85]. Following activation with a proinflamma-
tory stimulus, application of microglia-conditioned media 
(MCM) to myelinating co-cultures, while less effective at 
sustaining OPC viability than astrocyte-conditioned media, 
greatly increases the number of mature CC1+, MBP+ OLs 
and myelinated fibers [86, 87]. However, it is not possible 

to discern whether these pro-differentiation changes result 
from direct interactions of OPCs with microglial secreted 
factors or from indirect effects downstream of changes in 
other cell types such as astrocytes and neurons. The secreted 
factors in MCM that influence OPC development directly 
or through other cell types (such as astrocytes) appear to 
be largely cytokines and vary depending on the microglial 
activation state. For example, IL-1b, IL-6 family cytokines, 
and TNFa act through astrocytes to enhance OPC differ-
entiation, by stimulating LIF transcription and secretion 
[88, 89]. Additionally, loss of TNFR signaling decreases 
CXCL12-CXCR4 interactions between astrocytes and OPCs, 
respectively, thereby decreasing OPC proliferation and dif-
ferentiation [90].

In vivo, high numbers of activated microglia are observed 
in the SVZ between postnatal day 1 (P1) and P10, which 
corresponds to peak OPC specification from SVZ-resident 
NPSCs [91]. Similar observations were made in the post-
natal corpus callosum (CC), where peak microglial num-
bers coincided with peak OPC turnover in the CC and many 
microglia were found to contain myelin debris [92], sug-
gesting a role for microglia in subcortical white matter OPC 
homeostasis.

Role of Vascular and Perivascular Cells 
in Oligodendrogenesis

Angiogenesis in the brain begins around embryonic day 10 
(E10), when pericytes and other fibroblast-like cells and 
blood vessels penetrate the brain parenchyma, with the for-
mer developing into heterogeneous perivascular cell popu-
lations found in the postnatal brain [93–96]. Interestingly, 
angiogenesis in the CC continues well into the first two 
weeks of postnatal life, suggesting a connection between 
OPC development and the vasculature [97]. Indeed, there is 
a possibility that endothelial cells in the perineural vascular 
plexus surrounding the neurogenic niches of the forebrain 
[98] interact with neural precursors to drive OPC specifi-
cation [99]. Similarly, endothelial cell-conditioned media 
provides trophic and pro-OPC specification cues for neural 
precursors and OPCs in vitro [100, 101]. The CNS vascular 
niche is composed of endothelial cells as well as perivascu-
lar cells that adhere to the blood vessels. It has been shown 
that pericyte-conditioned media applied to neurospheres 
increases Olig2 mRNA and decreases transcription of the 
astrocyte-determinant Id2, ultimately favoring OPC speci-
fication over the astrocyte lineage [102]. Intriguingly, recent 
studies have found that OPCs use blood vessels as a scaffold 
for migration in the developing CNS [103]. The vascular and 
perivascular cells are located in close proximity to OPCs and 
can influence OPC proliferation and migration through both 
contact-dependent signals and secreted factors [103–105]. 
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It was found that internalization of microvessel-derived 
extracellular vesicles promotes OPC survival, migration, and 
proliferation [106, 107]. This mechanism requires binding 
of vesicular protein fibronectin to heparan sulfate proteo-
glycan on OPCs [107]. Similarly, PDGF-dependent effects 
on OPC proliferation requires the expression of chondroitin 
sulfate proteoglycan 4/neural-glial antigen 2 (CSPG4/NG2) 
on the OPC cell surface [108–112]. Mice lacking NG2 fail 
to expand their OPC population [113, 114]. The epidermal 
growth factor (EGF) and vascular endothelial growth factor 
A (VEGFA) bind to their receptors on OPCs, EGFR, and 
VEGFR, respectively, and activate intracellular signaling, 
driving OPC migration [115–118]. Interestingly, there is a 
mutually beneficial relationship between OPCs and the vas-
cular/perivascular population: OPCs regulate angiogenesis 
and pericyte colonization of the vasculature, while blood 
vessels and their associated cells support OPC proliferation, 
survival, and migration [97, 104, 117]. These studies also 
suggest that mild hypoxia in the perinatal white matter is not 
categorically detrimental, but rather may be a necessary part 
of OPC development and myelination, since loss of hypoxia-
inducible factor signaling in OPCs leads to angiogenic fail-
ure and loss of white matter integrity in the developing brain 
[97].

Following demyelinating injury, OPCs are recruited 
into the lesion site via single cell perivascular migration 
on microvessels [119], similar to their developmental route, 
where OPCs require a vascular scaffold for their dispersal 
through the CNS. Recently, it has been shown that in multi-
ple sclerosis (MS) lesions with active inflammation, OPCs 
can be found clustered on vasculature, representing a defect 
in single cell perivascular migration and inability to detach 
from blood vessels [119]. Interestingly, OPC perivascular 
clusters themselves can cause endothelial disruption and 
defects in blood–brain barrier integrity, triggering a sub-
sequent CNS inflammation and contributing to pathology 
[119]. These findings suggest that oligodendroglial–vascu-
lar interaction is an important component regulating OPC 
migration and recruitment in developing and adult brain.

Effect of Hypoxia on OPCs

Alterations in white matter development due to neonatal 
brain damage are often associated with significant delays and 
disruption of myelination, correlating with a period of matu-
ration-dependent vulnerability of OPCs immediately before 
progressing to OLs [120–122]. One of the most common 
developmental impairments caused by hypoxia–ischemia in 
premature neonates is diffuse white matter injury (DWMI), 
which is associated with permanent neurological disabilities 
[123]. Identification of molecular mediators of OL regenera-
tion in neonatal white matter following hypoxia is essential 

for developing therapeutic strategies to prevent neurodevel-
opmental deficits associated with this pathology in prema-
ture infants. Several studies using animal models of neonatal 
hypoxia–ischemia induced brain injury, which reproduce 
morphological and structural brain abnormalities found 
in DWMI, demonstrate biphasic changes in white matter, 
which start with OL death by apoptosis, followed by OPC 
proliferation during the first week after hypoxia, and result-
ing in delayed OL differentiation and abnormal myelination 
[123, 124]. The cellular and molecular mechanisms essential 
for the regenerative OPC responses after hypoxia involve 
activation of the Cdk2 signaling pathway, which promotes 
OPC proliferation [42, 125]; and reduction in expression 
level of p27Kip1 and its regulator FoxO1, resulting in delayed 
differentiation of OPCs [124]. In agreement with these find-
ings in animal model, p27Kip1 was also reduced in OPCs 
found in human infant white matter lesions after hypoxia 
[124]. Later studies identified the histone deacetylase Sirt1 
as a Cdk2 regulator of OPC proliferation in response to 
hypoxia [126]. Sirt1, which is specifically upregulated in 
proliferating OPCs after hypoxic insult, targets members of 
the Cdk2 pathway, causing epigenetic changes that drive 
Cdk2-mediated OPC proliferation [126].

Other studies have shown that signaling via epidermal 
growth factor receptor (EGFR) play important roles in OL 
development and regeneration [110, 118]. In mouse models 
of chronic neonatal hypoxia, a significant increase in the 
endogenous EGF levels was observed in the white matter 
[127]. Moreover, in these models, enhanced EGFR signal-
ing stimulates the endogenous response of OPCs during a 
critical period after brain injury and promotes cellular and 
behavioral recovery in the developing brain [127]. Overex-
pression of human EGFR in oligodendrocyte lineage cells 
or the administration of intranasal EGF immediately after 
injury decreased oligodendroglia death, enhanced genera-
tion of new OLs, diminished ultrastructural myelin defi-
ciency, and promoted functional recovery [127]. Since there 
are no clinically relevant treatments available to improve 
neurological outcomes of neonates with DWMI, molecular 
manipulations of the pathways that selectively enhance OL 
regeneration during a critical developmental time window 
after DWMI may serve as promising targets for promoting 
timely repair.

Role of Inflammation in Oligodendrocyte 
Cell Lineage Progression

One of the most common demyelinating disorders of the 
adult CNS is multiple sclerosis (MS). In MS, damage to 
the white matter, caused by repeated immune-mediated 
attacks and destruction of myelin, results in neurodegen-
eration and progressive disability [128–132]. In the early 
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stage of MS, endogenous CNS repair through remyelina-
tion takes place following demyelination and involves the 
recruitment, proliferation, and differentiation of oligoden-
drocyte precursor cells (OPCs) into myelin-producing oli-
godendrocytes [133, 134]. However, in the later, progres-
sive stage, this regenerative process fails and most lesions 
remain demyelinated, leading to chronic axonal dysfunc-
tion and clinical deterioration [133–138]. The mechanisms 
that lead to remyelination failure in MS remain unknown. 
However, it has been shown that stalled OPC differentia-
tion is caused by inhibitory signals present in the patho-
logical lesion environment in patients with progressive MS 
[133, 135, 139]. Identification of these signals is essential 
to promote OPC differentiation and lesion repair.

The ability of progenitor cell populations to repair 
damaged tissue is modified by various growth factors, 
cytokines, and other intracellular signaling molecules, 
produced by many cell types present at the lesion site 
after demyelinating injury. During initial stages of demy-
elination, the highly inflammatory environment consists 
of reactive astrocytes, T-cells, pro-inflammatory mac-
rophages and activated microglia, which secrete factors 
that promote OPC recruitment and proliferation [132]. 
At later stages of lesion progression, the inflammatory 
responses subside, resulting in OPC differentiation and 
myelin production [133, 134]. It is essential to understand 
how specific signals, produced by different cell types in 
the lesion, impact repair processes for further development 
of targeted approaches to enhance the beneficial responses 
that favor remyelination, while preventing the deleterious 
ones which inhibit it [139].

In addition to the previously discussed functions of astro-
cytes in OL development, astrocytes, depending on their 
activation state, can play an opposing role in OL remyelinat-
ing potential under injury conditions [77, 140]. Astrocytes 
display a continuum of phenotypes, ranging from the qui-
escent to more activated or reactive state, which can modu-
late myelination positively or negatively. For instance, in 
myelinating culture system, the presence of quiescent astro-
cytes, induced by tenascin C through CXCL10, results in 
less myelinated fibers [141], while activation of astrocytes 
through treatment with the cytokine, ciliary neurotrophic 
factor (CNTF), promotes myelination [141]. Conversely, 
astrocytes that have a severe reactive phenotype, induced 
by proinflammatory cytokines and CNS tissue damage, 
may secrete cytokines and chemokines that lead to myelin 
and oligodendrocyte damage, suppress remyelination, and 
delay disease recovery in animal models of demyelination 
[77, 140]. These studies demonstrate a direct correlation of 
astrocyte phenotypes with their ability to support remyelina-
tion and might have important implications with respect to 
the development of therapeutic strategies to promote CNS 
remyelination in demyelinating diseases.

Previous studies have shown that in addition to regulating 
OL development, astrocyte-derived factor, ET-1, also played 
an important role in OL repair responses after demyelinating 
insult, by inhibiting OPC differentiation and remyelination 
through activation of Notch signaling [142]. Previous stud-
ies have also shown that Notch1 inhibits OPC differentia-
tion during both development and remyelination [143, 144]. 
Although astrocytes are not the only cells that produce and 
express ET-1, the largest increase in ET-1 expression was 
found in astrocytes following lysolecithin-induced focal 
demyelination and in MS lesions [142]. Moreover, infusion 
of exogenous ET-1 in mice during remyelination limited 
OPC differentiation, while selective genetic ablation of ET-1 
in astrocytes significantly increased the number of mature 
OLs in focal demyelinated lesions and shifted the OL ratio 
from an immature to mature phenotype [142]. These findings 
indicate that astrocyte-derived ET-1 acts as an inhibitor of 
OPC differentiation and remyelination.

Endothelin receptors, EDNRA and EDNRB are upregu-
lated after demyelination and are expressed by both reactive 
astrocytes and OPCs [74, 145]. However, it has been shown 
that ET-1 signaling through EDNRB, but not EDNRA, 
accelerates remyelination [146]. Moreover, selective 
EDNRB loss in astrocytes accelerated OPC differentiation, 
OL regeneration, and increased myelin production, whereas 
deletion of Ednrb in OPCs had no effect [146]. Together, 
these results demonstrate that reactive astrocytes indirectly 
inhibit OPC differentiation through ET-1 signaling.

The innate immune response to demyelination in the CNS 
that is comprised of peripherally derived macrophages and 
CNS residing microglia can potently influence OL differ-
entiation and remyelination in the lesion [85]. The impor-
tance of macrophages/microglia is demonstrated by impaired 
remyelination following their depletion [147]. Two possi-
ble mechanisms, by which macrophages/microglia enhance 
remyelination are known: the clearance of myelin debris 
which is known to inhibit repair or secretion of regenera-
tive factors such as cytokines [86, 148, 149]. Notably, mac-
rophages/microglia can be polarized to distinct functional 
phenotypes: proinflammatory (M1) or anti-inflammatory/
immunoregulatory (M2) [85, 86]. M1 ‘classically acti-
vated’ phenotypes are associated with enhanced antigen 
presentation properties and secretion of pro-inflammatory 
cytokines and reactive oxygen/nitrogen species, while M2 
are thought to secrete anti-inflammatory cytokines/growth 
factors [150]. It has been proposed that as remyelination 
begins in the lesion, the switch from dominant M1 to M2 
can occur within microglia and peripherally-derived mac-
rophages. It has been shown that M2 macrophages/microglia 
are an essential part of an effective remyelination response, 
driving oligodendrocyte differentiation during lesion repair 
[86]. This M2-driven regenerative response is mediated, at 
least in part, by secretion of the TGFβ superfamily member, 
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activin-A, and activates the mammalian target of rapamycin 
(mTOR) pathway, which has been previously implicated in 
positively regulating oligodendrocyte differentiation and/or 
myelination [85, 86, 151]. However, the M1 and M2 pheno-
types represent a very simplistic view of macrophage/micro-
glial phenotypes. More recent studies using newly developed 
technologies such as RNAseq, quantitative proteomics, and 
epigenetic approaches, have identified diverse populations 
of macrophages and microglia in health and disease, redefin-
ing our view of the complexity of immune cells in the CNS 
in physiological and pathological conditions [152–154]. 
These studies have characterized unique signature profiles 
of homeostatic and disease-associated subpopulations of 
tissue-derived macrophages and CNS microglia, uncovering 
their transcriptional identity and highlighting shifts in these 
population contributions in various neurological disorders.

Several macrophages/microglia populations have been 
shown to secrete the enzyme interleukin-four induced one 
(IL4I1), which is upregulated at the onset of inflammation 
resolution and remyelination [155]. Mice lacking Il4i1 or 
its receptor show increased proinflammatory macrophage 
density, remyelination impairment, and axonal injury in the 
CNS lesions. Conversely, recombinant IL4I1 administration 
reduces proinflammatory macrophage density, enhances 
remyelination, and rescues remyelination impairment [155]. 
Remarkably, intravenous injection of IL4I1 into mice with 
experimental autoimmune encephalomyelitis (a widely used 
inflammatory mouse model of MS) at disease onset signifi-
cantly reversed disease severity, resulting in motor function 
recovery [155]. These studies suggest that manipulating M2 
polarization and secretion of pro-myelinating factors in the 
CNS lesion may present a complementary regenerative strat-
egy to support remyelination and clinical recovery in MS.

Increasing evidence suggests that the immune cytokine 
interferon-gamma (IFN-γ), secreted by activated T-lympho-
cytes, plays a deleterious role in immune-mediated demyeli-
nating disorders including MS. Although, normally excluded 
from the CNS, T cells enter the CNS through a compromised 
blood–brain barrier in these disorders and have been shown 
to inhibit OL differentiation and remyelination through 
cytokine receptors expressed by OPCs [156–159]. Recent 
study demonstrates that IFNγ induces expression of the 
MHC class I antigen presentation pathway in OPCs [160]. 
When exposed to IFNγ, OPCs switch from the constitutive 
proteasome to the immunoproteasome and are able to acti-
vate CD8+ T cells, which can in turn kill the OPCs as target 
cells, both in vitro and in vivo [160]. In addition, several 
other reports show that OPCs and oligodendrocyte lineage 
cells in MS express transcripts associated with inflamma-
tion and antigen presentation [161, 162]. These findings 
reveal that under inflammatory conditions OPCs respond-
ing to local cues may not only fail to differentiate, but could 
actually propagate chronic inflammation. Thus, strategies 

targeting the aberrant immune activation pathways in OPCs 
may allow more efficient remyelination in MS.

Effect of Aging

Like the rest of the CNS, OLs and OPCs undergo pheno-
typic and functional changes with age. White matter volume 
begins to decline at ~ 45 years of age and aged OPCs in both 
humans and mice lose all or most of their ability to sponta-
neously remyelinate following demyelination [163–166]. As 
OPCs age, their excitability declines as a result of reduced 
NMDARs and voltage-gated sodium channel densities [167]. 
Markers of aging and senescence have also been reportedly 
localized to oligodendroglia in normal aging [163, 167] and 
in age-related neurodegenerative diseases [138, 164, 168]. 
These changes have been implicated to have a significant 
pathogenic role in diseases, including MS, Alzheimer’s 
Disease (AD), dementia, and amyotrophic lateral sclerosis 
(ALS) [2, 163, 164, 169]. In ALS, a recent study has shown 
an energetic dysfunction in oligodendrocyte-axonal coupling 
and failure of new oligodendrocytes to mature, resulting in 
demyelination [170]. In AD, Zhang et al. demonstrated that 
senescent cells associated with the amyloid-β plaques in AD 
patients were almost exclusively OPCs [168]. Interestingly, 
in a mouse model of AD treated with senolytic therapy that 
removed the senescent OPCs, they were able to amelio-
rate the amyloid-β associated inflammation and cognitive 
deficits.

Several studies implicated intrinsic regulators governing 
OPC aging, which is thought to be partially due to altered 
epigenetic modifications [165, 171–174]. While others 
strongly suggest the environment as the primary driver of 
oligodendroglial aging [63]. Like most cells, OL lineage 
cells are sensitive to different signaling factors that may 
change with age. Indeed, in vivo exposure of aged OPCs to 
youthful growth factors through parabiosis experiments has 
been found to significantly improve their ability to remyeli-
nate after experimental demyelination [149]. Similarly, aged 
OPCs transplanted ex vivo to synthetic scaffolds mimick-
ing the mechanical stiffness of young extracellular matrix’s 
(ECM) led to markedly increased proliferation and differen-
tiation, while young OPCs transplanted to stiffer scaffolds 
mimicking aged ECM’s resulted in the loss of their capacity 
to proliferate and differentiate [175]. Additionally, dysfunc-
tional protein aggregation and clearance within the aged 
environment has also been shown to induce senescent OPC 
phenotypes, which then directly contribute to disease patho-
genesis [168]. Recent studies have shown that disruption 
of myelin debris uptake from young macrophages impairs 
the rate of remyelination similarly to those seen in older 
mice [176]. Indeed, aged phagocytes accumulate exces-
sive amounts of myelin debris, owing to cholesterol crystal 
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formation, which results in maladaptive immune responses 
downstream that limit OPC differentiation [166, 177]. Inter-
estingly, by using a heterochronic parabiosis model, Ruckh 
et al. was able to facilitate enhanced remyelination in older 
mice to that comparable to their younger counterparts by 
recruitment of younger macrophages that enhanced the 
clearance of myelin debris following demyelination [149]. 
Since aged OL lineage cells are implicated in many neu-
rodegenerative diseases, determining and reversing their 
aging mechanisms has tremendous therapeutic potential in 
the repair of demyelinating diseases like MS.

Concluding Remarks

As we reviewed here, recent advances in OL biology have 
provided mechanistic insights into how OLs develop and 
regenerate in response to extrinsic signals. Heterogeneity in 
the OPC and OL populations adds another layer of complex-
ity to the intricate, finely tuned regulation of myelination, 
which may have profound impacts on our brain function. The 
intrinsic differences in OPC populations may derive from 
their origins and include distinct transcriptomic profiles, ion 
channel expression and activity, varying across space and 
time [167, 171]. In the adult CNS, the survival of OLs is 
region specific and remyelination properties of OPCs are 
functionally diverse [171, 178]. Moreover, the contribution 
of putative subpopulations of oligodendrocyte lineage cells 
identified in the adult brain is shifted in MS [161, 162]. A 
recent study using snRNA-seq demonstrated a depletion of 
OPCs and the intermediate OL population, but increased 
expression of myelin genes in mature OL in MS, which may 
suggest that specific subsets of mature OLs contribute to 
remyelination [162]. This finding is further corroborated 
by recent work examining the retrospectively carbon (14C)-
dated mature oligodendrocytes from post-mortem human 
brain tissue of healthy and MS patients [179]. The results of 
this study suggest that in MS lesions myelin may be regener-
ated by pre-existing, and not new oligodendrocytes. How-
ever, the contribution of mature oligodendrocytes to remy-
elination in animal models is still debated, most likely due to 
the degree of oligodendrocyte survival after demyelinating 
injury induced by different conditions [180, 181].

Our understanding of the complexity of OL biology in the 
developing and adult brain is likely to increase in the near 
future, as techniques for the analysis of differences in cell 
type and function evolve and improve. Precise and distinct 
regulation of important steps in remyelination, with con-
sideration of the diversity of regenerative abilities among 
oligodendrocyte populations, will be essential for future 
strategies that aim to repair and restore brain function in 
neurological disorders.
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