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Abstract
Multidrug-resistant (MDR) and extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae associated with
nosocomial infections have caused serious problems in antibiotic management with limited therapeutic choices. This study
aimed to determine the genotypic and phenotypic characteristics of K. pneumoniae strains isolated from a tertiary hospital in
Malaysia. Ninety-seven clinicalK. pneumoniae strains were analyzed for antimicrobial susceptibility, all of which were sensitive
to amikacin and colistin (except one strain), while 31.9 % and 27.8 % were MDR and ESBL producers, respectively. PCR and
DNA sequencing of the amplicons indicated that the majority of MDR strains (26/27) were positive for blaTEM, followed by
blaSHV (24/27), blaCTX-M-1 group (23/27), blaCTX-M-9 group (2/27), and mcr-1 (1/27). Thirty-seven strains were hypervirulent
and PCR detection of virulence genes showed 38.1 %, 22.7 %, and 16.5 % of the strains were positive for K1, wabG, and uge
genes, respectively. Genotyping by pulsed-field gel electrophoresis (PFGE) andmultilocus sequence typing (MLST) showed that
these strains were genetically diverse and heterogeneous. Sequence types, ST23, ST22, and ST412 were the predominant
genotypes. This is the first report of colistin-resistant K. pneumoniae among clinical strains associated with mcr-1 plasmid in
Malaysia. The findings in this study have contributed to the effort in combating the increase in antimicrobial resistance by
providing better understanding of genotypic characteristics and resistance mechanisms of the organisms.
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Introduction

Extended-spectrum β-lactamases (ESBLs) are enzymes pro-
duced by Gram-negative bacteria to confer resistance to
aminopenicillins, cephalosporins (first-, second-, third-, and
fourth-generation), and aztreonam which are inhibited by
clavulanic acid [1, 2]. Members of TEM, SHV, and CTX-M

groups are the common families of β-lactamases which are
found in Escherichia coli, K. pneumoniae, and other
Enterobacteriaceae worldwide [1, 2]. These resistance deter-
minants are usually plasmid-encoded. Among the ESBL en-
zymes, CTX-M type has been increasingly reported [1, 3]. In
Malaysia, Palasubramaniam et al. (2005) reported an associa-
tion of blaSHV-5 ESBL gene in K. pneumoniae with a nosoco-
mial outbreak, followed by several other reports [4–6].

Carbapenems have been used as the last-line antimicrobial
drugs to treat serious infections caused by ESBL-producing
Enterobacter iaceae ; however, the emergence of
carbapenemase-producing Enterobacteriaceae worldwide
have left clinicians with very limited therapeutic antibiotic
options [6, 7]. Therefore, early detection of ESBL- and
carbapenemase-producing pathogens is the first step towards
better infection control management [8]. ESBL-producing K.
pneumoniae causing nosocomial infections such as pneumo-
nia, urinary tract infections, septicemia, and soft tissue is a
worldwide problem [1, 2]. The clonal complex 258
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(CC258), which is the predominant sequence type 258
(ST258), and single-locus variants of ST258 such as ST340,
ST437, ST11, and ST512 have been reported to produce
ESBLs [9].

Since the increase in carbapenemase-producing K.
pneumoniae worldwide, colistin and tigecyclin have been
used for treating infections caused by these resistant organ-
isms [10, 11]. Unfortunately, the overuse of colistin has also
resulted in increased colistin-resistant strain worldwide [10].
The main cause of resistance to colistin and tigecyclin is lipo-
polysaccharide (LPS) modification and is associated with mu-
tations in mgrB and the two-component systems, phoPQ and
pmrAB [12].

The plasmid-mediated colistin resistance due to mcr-1 re-
sistance gene was first reported by Liu et al. (2016) from food
animals and patients recently in China which is followed by
several reports in animals and humans worldwide [13–15].

In addition, several virulence factors have been detected in
K. pneumoniae such as capsular serotypes, magA, K2, rmpA
(the mucoid phenotype regulator) genes, kfu (responsible for
an iron uptake system), wabG (responsible for biosynthesis of
the outer core lipopolysaccharide), uge (responsible for bio-
synthesis of the capsule and smooth lipopolysaccharide), and
allSwhich is associatedwith allantoin metabolism [16]. These
virulence factors are associated with the ability to cause severe
community-acquired infections such as liver abscesses, pneu-
monia, and meningitis in young healthy hosts and the ability
to cause metastatic infections [16].

There is a need to have a more comprehensive data on the
presence of ESBLs, virulence genes, and antimicrobial sus-
ceptibility trends of clinical K. pneumoniae strains in
Malaysia to improve treatment options for a wide range of
infections caused by this pathogen. Therefore, the objective
of this study was to determine the antimicrobial susceptibility,
resistance genes, virulence genes, and genetic diversity of
clinical strains of K. pneumoniae isolated from a hospital in
Johor Bahru, Malaysia.

Materials and methods

Ninety-seven non-repeat clinical K. pneumoniae strains
previously isolated from patients (males, n = 62 and fe-
male, n = 35) admitted to the hospital from September to
December 2014 were analyzed. These strains were ar-
chived laboratory cultures previously collected from the
hospital. There is no personal information about patients.
The only information are sources and gender. The strains
were cultured from blood (n = 25), bronchoscopic aspi-
rates (BBA) (n = 24), wound tissue (n = 9), swab sample
(n = 10), urine (n = 8), pus (n = 6), poc (n = 3), sputum
(n = 8), fluid (n = 2), slough (n = 1), and bone (n = 1).
Identification of K. pneumoniae was performed by PCR

using specific primers [17]. The species were confirmed
by PCR targetting the mdh housekeeping gene (http://
bigsdb.web.pasteur.fr/klebsiella/primers_used.html). All
strains were cultured in Luria-Bertani broth and kept in
50% glycerol at − 20 °C. The PCR amplicons were puri-
fied and sequenced for validation of their identity.

The susceptibility of the K. pneumoniae strains to 16 anti-
microbial agents, including cefoperazone (30 μg), ciproflox-
acin (5 μg), ampicillin (10 μg), aztreonam (30 μg),
piperacillin/tazobactam (10 μg), imipenem (10 μg), amikacin
(30 μg), ceftazidime (30 μg), gentamycin (10 μg), colistin
(10 μg), tetracycline (30 μg), cefotaxime (30 μg),
sulbactam-cefoperazone (150 μg), amoxicillin-clavulanate
(20/10 μg), meropenem (10 μg), and cefixime (5 μg)
(Oxoid Limited Basingstoke, Hampshire, England) were de-
termined by the disk diffusion method according to the
Clinical and Laboratory Standard Institute (CLSI) guidelines
[18].

ESBL production was confirmed using disk diffusion
method as described in the CLSI guideline [18] and E. coli
strain ATCC 25922 and K. pneumoniae ATCC 700603 were
used as quality control. Modified Hodge Test (MHT) was
carried out to detect carbapenemase production in K.
pneumoniae strains according to the CLSI guideline [19]
and ATCC® BBA-1705 and ATCC® BBA-1706 were used
as positive and negative controls, respectively. The minimum
inhibitory concentration (MICs) for ceftazidime, amoxicillin-
clavulanate, cefotaxime, meropenem, and imipenem
(BioMerieux) was determined by E-test according to the
CLSI guidelines and broth microdilution method (for
colistin-resistant strain; KP2014C56) was performed for co-
listin. E. coliATCC 25922 was used as a quality control strain
[18].

Genomic DNA of all MDR K. pneumoniae strains were
extracted by using DNA extraction kit (Yeastern Biotech
Co., Ltd.) and subjected to PCR detection of β-lactamase
genes including blaTEM, blaSHV, blaCTXM-1 group, blaCTXM-2

group, blaCTX-M-9 group, blaOXA-1, and blaOXA-9; carbapenem
resistance genes blaKPC, blaNDM, blaVIM, blaIMP, and blaOXA-
48; and colistin resistance genes mcr-1, mcr-2, mcr-3, mcr-4,
and mcr-5 [13, 20, 21]. All PCR products were sequenced to
validate their identity and the strains with the confirmed
amplicons were used as positive controls for subsequent
PCR analysis.

String test was performed for all 97 K. pneumoniae
strains to distinguish hypervirulent K. pneumoniae
(hvKP) from classical K. pneumoniae (cKP) [22].
Genomic DNA of all 97 K. pneumoniae strains were used
for PCR detection of virulence genes including K1, K2,
uge, wabG, fimH, magA, rmpA, and kfu [23]. Positive
PCR-amplified products were sequenced to validate their
identity and the strains with the correct amplicons were
used as positive controls for subsequent PCR analysis.
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Plasmid DNA from ESBL-producing K. pneumoniae
strains were extracted using the alkaline lysis method which
contains DNase (10 mg/mL) to avoid chromosomal DNA in
the extracted plasmid. [24], followed by electrophoresis on a
1.5% agarose gel for 4.5 h at 80 V (3.2 V/cm). A 1 kb DNA
ladder and lambda DNA/HindIII (Promega, Madison,WI
USA) were used as DNAmarkers and plasmid extraction also
was performed by using plasmid extraction kit (Qiagen), this
experiment was repeated 3 times to confirm the results. The
plasmid linearization and confirmation of the plasmid sizes
were performed by S1 nuclease PFGE and lambda DNA;
low-range DNA markers and E. coli V517 strain were used
as standard reference [25]. PCR detection of selected β-
lactamase genes (blaSHV, blaTEM, blaCTXM-1 group, and
blaCTXM-9 group) and colistin resistance gene (mcr-1) was
performed using extracted plasmid DNA. The PCR products
were sequenced to confirm their identity [25, 26].

Transfer of ESBL and mcr-1 genes by conjugation was
performed in Luria-Bertani broth using nalidixic acid–
resistant E. coli DH5α as the recipient strain and conjugation
experiment was repeated 5 times to confirm the results.
Transconjugants were selected on LB agar supplemented with
nalidixic acid (100 mg/mL) and cefotaxime (2 mg/L) or colis-
tin (1 mg/L) (Sigma Aldrich) [25, 26]. PCR detection of se-
lected β-lactamase genes (blaSHV, blaTEM, blaCTXM-1 group,
blaCTXM-9 group, and mcr-1) was performed using plasmid
DNA extracted from transconjugants. The plasmid lineariza-
tion was performed by S1 nuclease PFGE and lambda DNA;
low-range DNA markers were used as the standard reference
[25].

PFGE typing was carried out according to Lim et al. (2009)
with minor modification [5]. In brief, equal volumes of the
standardized cell suspensions (OD610 = 0.6) and 1% Seakem
Gold agarose were mixed gently and allowed to solidify to
form agarose plugs. The plugs were lysed with cell lysis buffer
(50 mMTris, 50mMEDTA (pH = 8), 1% sarcosine, 1 mg/mL
proteinase K (Promega, Madison, WI, USA)) and incubated
for 4 h at 54 °C. The lysed plugs were then washed twice with
sterile double distilled water and six times with TE buffer. The
DNA agarose plugs were digested with 10 U of XbaI
(Promega. Madison, WI USA) for 24 h at 37 °C and electro-
phoresed by using a CHEF-Mapper (BioRad, USA) with
pulse times of 2.25–54.2 s at 6 V/cm for 24 h. Analysis of
the PFGE banding patterns based on the unweighted pair
group method was carried out using the BioNumerics 6.0
software; the DNA marker, Salmonella serotype Braenderup
H9812 has been incorporated in the gel (first, middle, and last
lanes) for linearization purpose with tolerance of 1.5.

Genotyping of 97 K. pneumoniae strains was determined
by multilocus sequence typing (MLST) analysis. MLST was
performed with seven housekeeping genes (tonB, rpoB, pgi,
phoE, infB, mdh, and gapA). Alleles and sequence types were
allocated by using the MLST database (http://bigsdb.web.

pasteur.fr/perl/bigsdb/bigsdb.pl?db=pubmlst_klebsiella_
seqdef_public).

eBURST V3 (http://eburst.mlst.net) analysis using the
most stringent definition, where the STs were identical or
shared at least six alleles, was used to detect clonal complex
or BURST groups (BGs) among the STs in this study and the
K. pneumoniae MLST database. The STs were then catego-
rized as BG founders, single-locus variants (SLVs), double-
locus variants, and singletons [27].

Results and discussion

All 97 K. pneumoniae were susceptible to amikacin and co-
listin except for one strain (KP2014C56) that showed resis-
tance to colistin. This strain, from a swab sample of an infect-
ed wound, was detected as MDR and ESBL-producing (mul-
tiple drug-resistant to aztreonam, sulbactam-cefoperazone, tet-
racycline, ampicillin, ceftazidime, cefotaxime, cefixime, and
amoxicillin-clavulanate), hypervirulent, and harbored resis-
tance genes blaCTXM-15, blaTEM-1,blaSHV-11, and mcr-1, and
virulence genes K1 and wabG. This strain had a unique
pulstotype and belonged to ST65. In Malaysia, this is the first
report of colistin-resistant K. pneumoniae among clinical
strain associated with plasmidial mcr-1, which was recently
reported in zoonotic K. pneumoniae from swine farms [20].
Polymyxin E (colistin) is effective against multidrug-resistant
and carbapenemase-producing Gram-negative bacteria, but
recently, colistin-resistant Enterobacteriaceae including K.
pneumoniae has been reported worldwide [10, 12, 28]. The
clinical K. pneumoniae strains from Greece (10.5–20%),
Singapore (6.3%), South Korea (6.8%), and Canada (2.9%)
showed highest resistance rate to colistin [10].

The percentages of antibiotic resistance for 97 K.
pneumoniae strains are as follows: ampicillin (83.5%), cefo-
taxime (31.9%), tetracycline (30.9%), cefixime (29.8%),
cefoperazone (27.8%), aztreonam (27.8%), ceftazidime
(25.7%), amoxicillin-clavulanate (19.5%), tazobactam
(11.3%), gentamycin (11.3%), sulbactam cefoperazone
(8.2%), ciprofloxacin (7.2%), meropenem (6.1%), imipenem
(2%), and colistin (1%). A majority of the K. pneumoniae
strains (81/97) were resistant to ampicillin. There were 31
strains (31.9%) which showed resistance to more than three
classes of antibiotics (qouinolone, monobactam, β-lactam,
cephalosporin, polymyxin, aminoglycoside, tetracycline) and
categorized as multidrug-resistant (MDR). Five strains
showed carbapnem resistance based on AST and MIC results;
KP2014C15 based on result of the disk diffusion method and
MHT tests, 27 (27.8%) K. pneumoniae strains were ESBL
producers and no carbapenemase-producing K. pneumoniae
was detected.

These rates were higher than the rates reported in previous
study which was carried out in 2000–2004 from another urban
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general hospital (cefixime = 20.2%, cefotaxime = 18.1%,
cefoperazone = 7.3%, and ceftazidime = 8%) [29]. However,
it was lower than another study that was carried out in 2009
from five different hospitals in Peninsular Malaysia [5]. This
could be due to different locations of the hospitals that serve
different patient population. The current study only reported
the resistance from a hospital in southern Malaysia while ma-
jority of the strains from previous studies were isolated from
the central region.

The minimum inhibitory concentration (MIC) of cefo-
taxime and ceftazidime ranged from 16 to 256 μg/mL and
from 8 to 256 μg/mL, respectively. Five strains of K.
pneumoniae showed resistance to meropenem. All strains
showed intermediate susceptibility and resistance to
amoxicillin-clavulanate. Only one was resistant to colistin
(16 μg/mL).

Mu l t i d r u g - r e s i s t a n t a n d E SBL - p r o d u c i n g
Enterobacteriaceae of certain clonal complexes such as
ST258 of K. pneumoniae have been disseminated worldwide
[30]. The presence of virulence genes and drug resistance in
these clonal strains of K. pneumoniae complicates treatment
particularly among immunocompromised individuals [7, 31].
Previously, Low et al. (2017) reported the occurrence of
carbapenem-resistant K. pneumoniae strains in another tertia-
ry Malaysian hospital [6]. However, in this study, no
carbapenemase-producingK. pneumoniae and no carbapenem
resistance gene was detected.

Analysis of the DNA sequence of all the amplicons of
ESBL-encoding genes in the 31 MDR K. pneumoniae strains
showed that the majority (26/31) were positive for blaTEM, all
of which were identified as β-lactamase producer of TEM-1
enzyme. TEM-1 is a common β-lactamase among
Enterobacteriaceae family [1]. This was followed by blaSHV
(24/31) which comprised of 9 blaSHV-11, 7 blaSHV-12, 6 blaSHV-
28, and 2 blaSHV-61. Twenty-threeMDR strains were blaCTX-M-

1 group (11 blaCTX-M-15, 7 blaCTX-M-1, 5 blaCTX-M-28), two
MDR had blaCTX-M-9 and one MDR colistin-resistant strain
had mcr-1. No amplification was observed for blaCTX-M-2

group, blaOXA-1, blaOXA-9, blaKPC, blaNDM, blaVIM, blaIMP,
and blaOXA-48 genes.

The CTX-M groups have been reported as predominant
ESBL enzymes worldwide [1]. CTX-M-15 is one of the most
common CTX-M-type ESBLs among the Enterobacteriaceae
family. Nosocomial infections caused by CTX-M-15-
producing K. pneumoniae have dramatically increased in re-
cent years [1]. In Malaysia and other Asian countries, CTX-
M-15 is the major ESBL enzyme reported [5, 32, 33].

According to antimicrobial susceptibility test and mini-
mum inhibitory concentration results, five strains of K.
pneumoniae showed resistance to meropenem ranged from 4
to 8 μg/mL (KP2014C15, KP2014C37, KP2014C62,
KP2014C96, and KP2014C99) and only one strain
(KP2014C96) showed resistance to imipenem (8 μg/mL).

However, these 5 strains were MHT negative and
carbapenemase genes were not detected. This finding sug-
gested that the carbapenem resistance was due to different
mechanisms and the possible mechanisms will be determined
in future.

Thirty-seven strains (38.1%) were hypervirulent as they
were positive for the string test, and all had the virulence gene,
K1. Among 97 clinical strains, 22 (22.7%) and 16 (16.5%)
were positive for wabG and uge genes, respectively. No fimH,
magA, rmpA, kfu, and K2 gene was detected.

Liu et al. (2018) reported the occurrence of virulence genes
K1 (34.4%), K2 (20.8%), rmpA1 (79.2%), rmpA2 (70.8%),
and magA (80.2%) among hvKP in China [13]. Lin et al.
(2014) also reported the occurrence of rmpA (100%), iuc
(96%), and kfu (11.5%) in K. pneumoniae strains from
Singapore, Hong Kong, and Taiwan [33].

Plasmid analysis showed that all 27 ESBL-producing
K. pneumoniae strains had plasmids with sizes ranging
from 1500 to 20,000 bp; PCR detection of selected β-
lactamase and colistin genes (blaSHV, blaTEM, blaOXA-1,
blaCTXM-1, and mcr-1) using extracted plasmid DNA as
templates showed 21 strains had blaTEM in plasmids, 18
strains had blaSHV, 15 strains had blaCTXM-1, and one
strain had mcr-1 (KP2014C56), that this strain had 4 plas-
mids with sizes of 2500, 6000, 8000, and 20,000 bp that
harbored blaCTXM-15, blaTEM-1,blaSHV-11, and mcr-1.
Conjugation was carried out for all ESBL-producing and
nalidixic acid–sensitive K. pneumoniae strains which har-
bored plasmids and ESBLs associated. Nineteen out of 27
were ESBL-encoding transconjugants. Plasmid analysis of
the transconjugants confirmed that plasmids with sizes of
1500, 2500, 3000, 6000, 8000, 10,000, and 20,000 bp
were transferred from the donors to the recipient, with
each donor transferring between 2 and 4 plasmids to the
recipient. Conjugation was carried out for colistin-
resistant and nalidixic acid–sensitive K. pneumoniae
strain (KP2014C56) which harbored plasmids, colistin,
and ESBL genes. This strain was detected as colistin-
resistant transconjugants. Plasmid analysis of the
transconjugants confirmed that 3 plasmids with sizes of
2500, 8000, and 20,000 bp were transferred from the do-
nors to the recipient which contained blaCTXM-15, blaTEM-

1,blaSHV-11, and mcr-1.
Plasmid analysis and transconjugation experiments

showed that all 27 ESBL-producing strains harbored plas-
mids and most of the ESBL genes were plasmid-encoded

�Fig. 1 Cluster analysis of PFGE profiles for 97 K. pneumoniae strains
used in this study. aBronchoscopic aspirates (BBA). bCefoperazone
(CFP), aztreonam (ATM), amikacin (AMK), sulbactam cefoperazone
(SCF), meropenem (MEM), cefixime (CFM), amoxicillin-clavulanate
(AMC), ciprofloxacin (CIP), ampicillin (Amp), tazobactam (TZP),
imipenem (IMP), ceftazidime (CAZ), colistin (CT), cefotaxime (CTX),
gentamycin (GEN), and tetracycline (TET). cFemale (F) or male (M)
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Amp
Amp
Amp
CFP,ATM,CIP,TZP,Amp,CN,CAZ,CTX,CFM,AMC
CFP,Amp
CFP,ATM,CAZ,CTX,CFM,AMC,MEM
CFP,ATM,Amp,CAZ,CTX,CN,CFM,AMC
Amp,TE
CFP,ATM,CIP,SCF,TZP,Amp,CAZ,TE,CTX,CN,CFM,.
CFP,SCF,TZP,Amp,CAZ,TE,CTX,MEM,CFM,AMC
Amp,CIP
Amp
Amp,TE,CN,MEM,AMC
Amp
Amp
Amp
CFP,ATM,CAZ,TE,CTX,CFM,MEM,AMC
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
Amp
CFP,ATM,Amp,CAZ,TE,CTX,CFM,MEM,AMC
CFP,ATM,CAZ,TE,CTX,CFM,MEM,AMC
Amp
CFP,ATM,Amp,CAZ,TE,CTX,CFM,MEM,AMC
Amp
Amp
Amp
Amp,TE
Amp
CFM,ATM,TZP,CTX,CFM,AMC
Amp,TE
Amp
CFP,ATM,SCF,Amp,CAZ,TE,CTX,CN,CFM,MEM,IPM,.
Amp,MEM
ATM,CAZ,CTX,CFM,MEM,AMC
CFP,ATM,SCFTZP,Amp,CAZ,TE,CTX.CN.MEM,AMC
Amp
Amp
Amp
Amp
Amp
Amp

Sex

M
M
M
M
M
F
M
M
M
M
M
F
M
M
M
F
M
M
M
F
F
M
M
F
F
F
M
F
M
F
M
F
M
M
M
F
M
M
F
M
M
F
F
M
M
F
M
F
M
M
M
F
M
M
M
M
M
M
F
F
M
M
F
F
M
M
M
F
F
M
M
M
M
F
M
M
M
M
F
M
F
M
M
M
M
F
F
M
F
M
F
M
F
F
M
F
F

Resistance genes

CTXM-15,CTXM-9,TEM-1,SHV-11

CTXM-9,TEM-1,SHV-28

CTMX-15,TEM-1,SHV-11

CTXM-1,TEM-1,SHV-12
CTXM-15,TEM-1,SHV-11

TEM-1,SHV-61

CTXM-1,TEM-1,SHV-28
CTXM-15,TEM-1,SHV-11
CTXM-1,TEM-1

CTXM-28,TEM-1,SHV-12
CTXM-15,TEM-1,SHV-11

TEM-1,SHV-28

CTXM-15,TEM-1,SHV-12
CTXM-1,TEM-1,SHV-11

CTXM-1,TEM-1,SHV-11

CTXM-15,TEM-1,SHV-12

TEM-1,SHV-28
CTXM-1,TEM-1,SHV-12

CTXM-28,TEM-1,SHV-11
CTXM-15,TEM-1

CTXM-28,TEM-1,SHV-12

CTXM-1,TEM-1,SHV-11
CTXM-28,TEM-1,SHV-28

CTXM-15,TEM-1,SHV-28

CTXM-15,TEM-1

CTXM-28,SHV-12
CTXM-15,TEM-1,SHV-61

Virulence genes

K1

K1, uge

K1, wabG

K1, uge, wabG
K1

K1

K1, wabG

K1, wabG

K1
K1, uge, wabG

uge, wabG

uge

K1

K1, uge, wabG

K1, uge

K1, wabG

K1, wabG
K1, wabG
K1
K1, uge
wabG
K1, wabG
K1, uge
uge

K1, uge, wabG

K1
K1, wabG

K1, wabG
K1, wabG
K1, uge
wabG

K1, uge, wabG
K1
K1
K1, uge

K1

K1, uge, wabG

K1, wabG
K1, uge, wabG

K1

K1

K1, wabG

, MCR-1

a

b c
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and 19 strains had conjugative plasmids. These results
concurred with previous studies on clinical K. pneumoniae
which showed that ESBL genes carried on plasmids are trans-
missible [5, 34, 35]. Plasmid is one of the ways for the spread of
ESBLs and other antibiotic resistance genes among microorgan-
isms. Casper et al. (2017) reported the presence of ESBL genes
and the mcr-1 gene on a unique plasmid [36].

All the 97 strains were subtyped into 89 distinct
pulsotypes comprising 14–27 restriction fragments. The
genetic similarity of the strains ranged from 52.1 to
100%. The PFGE dendrogram showed 13 clusters (A to
N) and 63 unique pulsotypes at 85% similarity cut off
(Fig. 1). There was no direct association between
pulsotypes with source of isolation (sampling source, kind
of infection, and gender), virulence genes, and antimicro-
bial resistance phenotypes. This was not surprising as the
strains were collected from different patients at different
time points. Strains with high genetic similarity showed
several antimicrobial susceptibility profiles. For instance,
two strains in cluster B with identical pulsotypes but dif-
ferent antimicrobial resistance phenotypes. The 27 ESBL-
producing K. pneumoniae strains yielded 23 unique
pulsotypes. Generally, genotyping of 97 K. pneumoniae
clinical strains showed high genetic diversity and
heterogeneity.

MLST analysis of the K. pneumoniae strains yielded 24
different STs based on genetic variation in seven housekeep-
ing genes. ST23 (n = 20) was a common ST among these
strains. Other strains belonged to ST22 (n = 7), ST412 (n =
7), ST845 (n = 6), ST37 (n = 5), ST685(n = 5) and ST336 (n =
5), ST1896 (n = 4), ST268 (n = 4), ST86 (n = 4), ST17 (n = 3),
ST65 (n = 3), ST40 (n = 3), ST929 (n = 3), ST52 (n = 3),
ST714 (n = 2), ST20 (n = 2), ST420 (n = 2), ST161 (n = 2),
ST644 (n = 2), and ST29 (n = 2) and 3 unique STs such as
ST426, ST592, and ST584. In comparison with the global
K. pneumoniae MLST database by using eBURST V3, the
Malaysian K. pneumoniae strains, ST22, ST23, ST17, ST20,
and ST29, were international predicted founders. ST65 and
ST37 were SLVs, while ST412, ST845, ST685, ST336,
ST896, ST268, ST86, ST40, ST 929, ST52, ST714, ST420,
ST161, ST644, ST426, ST592, and ST584 were singletons.

In conclusion, this study reports 31.9% MDR and 27.8%
ESBL producers among 97 clinical K. pneumoniae strains.
This is the first report of colistin resistance among clinical K.
pneumoniae strains in Malaysia. No carbapenemase-
producing K. pneumoniae strain was found, and blaSHV and
blaCTXM-1 were the predominant ESBL-encoding genes de-
tected. PFGE typing showed diver subtypes circulating in
the hospital. ST23, ST22, and ST412 and wabG, uge, and
K1 were the predominant STs and virulence genes, respective-
ly. These data indicated presence of diverse virulent MDR
strains which might be useful for controlling and preventing
the spread of antibiotic-resistant infections.
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