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Influence of Genetic Ancestry on Human Serum Proteome

Jennifer Sjaarda,1,2,3,4,5 Hertzel C. Gerstein,1,6 Zoltan Kutalik,4,5 Pedrum Mohammadi-Shemirani,1,2,3

Marie Pigeyre,1,2,3 Sibylle Hess,7 and Guillaume Paré1,2,3,6,8,*

Disease risk varies significantly between ethnic groups, however, the clinical significance and implications of these observations are

poorly understood. Investigating ethnic differences within the human proteome may shed light on the impact of ancestry on disease

risk.We used admixturemapping to explore the impact of genetic ancestry on 237 cardiometabolic biomarkers in 2,216 Latin Americans

within the Outcomes Reduction with an Initial Glargine Intervention (ORIGIN) study. We developed a variance component model in

order to determine the proportion of variance explained by inter-ancestry differences, and we applied it to the biomarker panel. Multi-

variable linear regression was used to identify and localize genetic loci affecting biomarker variability between ethnicities. Variance

component analysis revealed that 5% of biomarkers were significantly impacted by genetic admixture (p < 0.05/237), including C-pep-

tide, apolipoprotein-E, and intercellular adhesion molecule 1. We also identified 46 regional associations across 40 different biomarkers

(p < 1.13 3 10�6). An independent analysis revealed that 34 of these 46 regions were associated at genome-wide significance (p < 5 3

10�8) with their respective biomarker in either Europeans or Latin populations. Additional analyses revealed that an admixture mapping

signal associated with increased C-peptide levels was also associated with an increase in diabetes risk (odds ratio [OR]¼ 6.07 per SD, 95%

confidence interval [CI] 1.44 to 25.56, p ¼ 0.01) and surrogate measures of insulin resistance. Our results demonstrate the impact of

ancestry on biomarker levels, suggesting that some of the observed differences in disease prevalence have a biological basis, and that

reference intervals for those biomarkers should be tailored to ancestry. Specifically, our results point to a strong role of ancestry in insulin

resistance and diabetes risk.
Introduction

The human proteome plays a principal role in biological

processes such as signaling, transport, growth, repair, and

defense against infection. These proteins represent inter-

mediate phenotypes, and they are often directly and caus-

ally involved in disease pathophysiology. Indeed, many

biomarkers are measured clinically and used as non-inva-

sive markers of a patient’s overall health, guiding diag-

nosis, prognosis, and treatment management.1 However,

biomarker profiles have been shown to vary widely be-

tween ethnic groups and the clinical significance and im-

plications of these observed differences is poorly under-

stood.2 Furthermore, it is unknown whether these

differences correspond to ethnic-specific susceptibility to

disease. Disease risk varies significantly between ethnic

groups, as well. For instance, Mexican, Latin American,

and African populations have a higher risk of type 2 dia-

betes (T2D) compared to populations with European

ancestries.3–5 This disparity in risk has been hypothesized

to be due, at least in part, to genetic and biological

factors.6,7

Biomarker differences that exist between populations

may also lead to clinical challenges. Consistent differences

have been reported for many biomarkers; these include C-

reactive protein, vitamin D binding protein, and many
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circulating adipokines.8–12 Interpretation of these markers

is based on reference intervals which are defined using

population values. However, for biomarkers that are

markers of disease, this might lead to erroneous diagnosis

if ancestry leads to differences in concentrations. For

biomarkers that are directly involved in disease progres-

sion, this might lead to wrongful evaluation of risk if

ancestry leads to increased risk through that mediator.

Ideally, these intervals should be determined based on a

random sample of healthy individuals from a population

similar to the patient. Traditionally, reference intervals

have been determined using predominantly European in-

dividuals’ intervals, and these do not necessarily extend

to other ethnic groups.13

Although differences in levels of biomarkers have been

observed between ethnic groups, the reasons for these

differences are difficult to determine through classic

epidemiological studies. Admixture mapping is a powerful

tool, used in genetic epidemiological studies, that may

shed light on these observations. Genetic admixture oc-

curs when two or more previously independent popula-

tions interbreed, resulting in the introduction of new

genetic lineages. This has occurred in Latin Americans,

for instance. Latin Americans are an admixed population

with Native American, European, and African ancestors.

Admixture mapping is applied to recently admixed
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populations in order to locate disease-causing genetic

variants that differ in frequency across ancestral

groups.14 The approach is based on the assumption that

the frequency of risk alleles varies between populations

such that the proportion of ancestry near causal loci will

be associated with risk of disease. In this way, differential

risk across ancestral groups can be observed at specific

genetic loci.15 This approach has been particularly effec-

tive in African Americans for identifying novel loci for

various diseases.16–18 Most recently, this technique has

been used to reveal novel susceptibility loci in atheroscle-

rosis and albuminuria.19,20

In this study, we used admixture mapping to investigate

the impact of ancestry on the human serum proteome by

conducting a comprehensive investigation of a multiplex

biomarker panel. Specifically, we evaluated the effect of

genetic ancestry on 237 serum biomarker concentrations

measured in the Latin American population from the

ORIGIN (Outcomes Reduction with an Initial Glargine

Intervention) trial.21 Although ethnicity has been deter-

mined to be a strong predictor of biomarker concentrations,

few studies have leveraged the genetic admixture in order to

assess the impact of ancestry on biomarker variability that

may, in turn, impact their risk of disease. Furthermore,

admixture mapping studies offer a unique advantage for

identifying genes that confer differential risk between

populations because admixture mapping can distinguish

biological effects that are due to ancestry at specific loci

from individual-level proportions of ancestry, which can

be confounded by environmental factors.
Material and Methods

Study Population—ORIGIN
The design and findings of the ORIGIN trial have been described

in detail. In brief, 12,537 people who had established cardiovascu-

lar risk factors and who also had T2D, impaired glucose tolerance,

or impaired fasting glucose were studied. Participants were

randomly divided into groups to test two therapies through the

use of a factorial design (testing basal insulin glargine versus

standard care and omega 3 fatty acid supplements versus placebo);

participants were then followed for a median of 6.2 years, watch-

ing for cardiovascular events and other health outcomes. As

previously described,22 biomarker levels were analyzed in the

serum drawn at the beginning of the study from a subset of

8,401 people (66% men; mean age 63.7 years). The analysis was

done using a customized human discovery multi-analyte profile

(MAP) on the Luminex 100/200 platform, and the biomarkers

were selected based on their implications in physiologic processes

related to cardiovascular and metabolic diseases. A further subset

of 5,078 participants consented to genetic analyses, and 4,147

(1,931 Europeans and 2,216 Latin Americans) passed quality con-

trol (QC). Study characteristics were similar across the two groups.
Genotyping
A subset of 5,078 individuals from the ORIGIN study consented

to genetic analyses and were genotyped on Illumina’s HumanCore

Exome chip. Standard QC measures were used. Single-nucleotide
304 The American Journal of Human Genetics 106, 303–314, March
polymorphism (SNPs) were excluded on the basis of low call

rate (< 99%), deviation from Hardy-Weinberg (p < 10�6), and

low minor allele frequency (MAF) (<0.01 in all ethnic groups).

Samples with low call rates (< 99%), sex or ethnicity mismatches,

or cryptic relatedness were also removed.We also removed samples

from ethnicities with small sample sizes (n < 100). All QC steps

were performed using PLINK23 and GCTA.24 After QC, the sample

consisted of 4,390 participants and 284,024 SNPs from three

ethnic groups (Europeans, Latin Americans, and Africans).

Imputation was then performed on the post-QC data in order

to predict unobserved genotypes in the study population.

Over 30 million SNPs were imputed, allowing for comprehensive

coverage of known genetic variants. The 1000 Genomes

Project25 was used as the reference panel for ORIGIN imputation,

which was performed using the software IMPUTE2.26,27 We

removed SNPs imputed with low certainty (info < 0.6, as defined

by IMPUTE2).27 For the current report, participants of self-reported

Latin American ethnicity comprised the primary analysis group

(n ¼ 2,216) and those of European ethnicity were included in

the validation and replication analyses (n ¼ 1,931)

Genetic Ancestry Estimation
We used phased, consensus data from the 1000 Genomes Project

to create reference panels for Europeans (CEU, FIN, GBR, IBS,

and TSI), Africans (ASW, LWK, and YRI), and Asians alleles

(CHB, CHS, and JPT, which were used as a proxy for Native Amer-

ican ancestry, as previously described15). (For specific definitions

of these population codes, please see Web Resources for a link to

the 1000 Genomes Project population codes web page.) Using

only genotyped SNPs, we removed ambiguous SNPs and used

Beagle28 to phase ORIGIN genotypes. Subsequently, we used

RFMix15 to infer the local ancestries of 259,778 SNPs in 2,216

Latin Americans. Probabilities of Asian, European, and African

ancestry were derived for each SNP, thus accounting for uncer-

tainty in ancestry ascertainment. Probabilities at each allele

ranged from 0 to 1 and were summed at each SNP, representing

the dosage of the allele from a given ancestry and ranging from

0 to 2 where, for example, a value of 2 for the European local

component at a given SNP would represent both alleles having Eu-

ropean ancestry. The procedure has been described in detail else-

where.15 It is worth clarifying that although local ancestry can

be derived for each individual SNP (referred to as ‘‘local ancestry

components’’), each component tags large regions of the genome.

Therefore, only a subset of components need to be interrogated in

order to fully capture local ancestry variability.

To calculate individual-level ancestries, a set of minimally

pruned sites was generated, according to a linkage disequilibrium

(LD) correlation matrix based on local SNP European ancestry

components, in R (pairwise r2 < 0.95). Specifically, for each chro-

mosome, a square matrix was constructed containing the Pear-

son’s r2 correlation coefficient between all sites (i.e., pairwise cor-

relation). For example, for any two sites (x and y), the r2 was

calculated between the local European components at sitex and

sitey. The resulting matrix was pruned agnostically at a threshold

of r2 < 0.95. Currently, there is no standard method for pruning

local admixture signals, and this threshold was chosen to reduce

redundant (identical) associations while retaining as much

ancestry information as possible. Pruning using genotype LD

(rather than local ancestry LD) is not sensible here because

admixture regions are much larger than haplotype blocks across

the genome. Therefore, this threshold was selected in an effort

to balance over-pruning, which would result in loss of local
5, 2020



Figure 1. Estimated Admixture Propor-
tion in ORIGIN
Bar graph shows individual ancestry esti-
mates for each of the 2,216 Latin American
participants in the Outcomes Reduction
with an Initial Glargine Intervention
(ORIGIN) study in increasing order of Eu-
ropean ancestry estimates. y axis corre-
sponds to the percentages of the genome
of each individual originating from each
parental population, inferred by the local
ancestry estimates.
admixture signals, and under-pruning, which would result in

redundant signals. Following pruning, 7,246 local components

remained. This set was used for all subsequent analyses. Individ-

ual-level (global) ancestry was then obtained for each individual

by averaging the ancestry at each of the retained sites (Figure 1).

Thus, following this procedure, for each site, each individual

had three local ancestry components (one for each of the three

ancestral ethnicities) ranging from 0 to 2 and three global ancestry

components ranging from 0 to 2, and these represented the

average of all locally derived estimates.
Genetic Association Models to Determine Contribution

of Local Ancestry on Phenotypic Variation
Through the use of simulations, we evaluated the performance of

genetic association models in order to capture the phenotypic

variance explained by local ancestry. Because associations with

global ancestry may represent confounding by environmental or

societal factors rather than a true biological difference, we sought

to distinguish between local and global effects in order to deter-

mine the variance explained according to biological differences

(i.e., local ancestry) between ethnic groups. Continuous pheno-

types were simulated for each of 2,216 Latin Americans in ORIGIN

through the use of the derived local and global ancestry compo-

nents as predictors. We explored various parameters for their

impact on estimated local ancestry variance; these parameters

included the effect of non-directional versus directional local ef-

fects (i.e., restricting local effects to be positive for a given ancestry

in the directional case), the number of causal loci associated with

the simulated trait, and the presence and absence of a global

ancestry effect. Local directional effects were evaluated to test

the models’ ability to distinguish among the many local signals

exerting an effect in the same direction versus a single global

(confounding) effect. Total trait variance and mean were set at 1

and 0, respectively, in all simulations. For each simulation, a pre-

specified set of causal loci ranging from 1 to 10 (1, 2, 3, 5, and

10) were randomly selected from a stringently pruned set of 46

local components (r2 < 0.05) to ensure that independent regions

were selected. The pre-defined, unobserved, true local variance

ranging from 0 to 0.4 was evenly distributed among the randomly

selected causal loci. Similarly, the effect of each global component

was standardized and fixed according to a pre-defined overall

variance value of either 0 or 0.1. The remaining phenotypic

variance was randomly determined. The effect of each locus on

the simulated trait was evaluated using adjusted linear models.

Because ancestry, as opposed to genotype data, tends to be high-

ly correlated over longer regions of the chromosome, the number

of independent tests estimated is small despite the inclusion of

genome-wide ancestry data in the model. Therefore, to determine

an appropriate significance level, we performed 10,000 simula-
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tions under the null hypothesis, assuming no effect of local

ancestry on the simulated trait. For each simulation, a continuous

phenotype was derived with no effect of local ancestry and both

with and without an effect of global ancestry. Next, each local

Asian and African component was tested independently in a linear

model adjusted for global Asian and global African components.

In other words, for each simulation, 14,492 (7,246 loci times

two ethnicities) linear models were tested for an association with

the simulated trait. In this way, the reference group was of either

non-African or non-Asian ancestry, depending on which compo-

nent was being evaluated. The lowest p value (pminimum) from

the 14,492 independent tests was recorded. We did not identify

any difference in distribution of pminimum with and without a

global effect. We selected a p value threshold which corresponded

to <1% of the pminimum; the result was a significance threshold

level of p < 1.13 3 10�6.

For each set of conditions, 100 simulations were completed

and both the effect of local ancestry and the effect of global

ancestry on trait variance were estimated. We used variance

component (VC) models to assess the overall effect of ancestry

on the simulated trait through the use of the mmer function in

the sommer R package.29 Using local ancestry estimates at the re-

maining 7,246 sites after pruning (described above), genetic-

related matrices (GRMs) were calculated for each ancestry. The

local ancestry matrices (2,216 3 7,246) were scaled to have

mean of 0 and standard deviation (SD) of 1. Next, the GRM was

calculated as the cross-product of the scaled local ancestries.

Global Asian ancestry and global African ancestry were each

included in the model as fixed effects. Proportions of variance

explained by global and local ancestry (both together and sepa-

rately) were then estimated for each model and compared to the

value specified for each simulation. Global ancestry variance

was estimated using the regression coefficients from the fixed

effect estimates in the VC model. The mmer function provided

variance-covariance components for each random effect (i.e.,

two local ancestry GRMs and residual variance) and were used

to estimate local and residual variance accordingly. Total trait

variance was estimated as the sum of global, local, and residual

variance estimates. Next, we calculated the proportion of variance

explained due to local, global, and the sum of local and global

ancestry as their respective estimated variance divided by total

trait variance. Estimates were recorded for each simulation, and

the average (5SD) of each set of conditions was calculated and

compared to their unobserved, true, respective values.

We sought to identify the individual loci selected for a causal

association with the simulated trait. Specifically, each local

ancestry component for both Asian and African ethnicities was

independently tested in a linear model with the simulated trait

as the dependent variable, adjusted for global Asian and global

African components. A forward-selection approach was then
can Journal of Human Genetics 106, 303–314, March 5, 2020 305



Figure 2. Estimated Proportion of Vari-
ance Explained by Local and Global
Ancestry under Various Conditions
Average (5SD) estimated local and global
variance explained under various simu-
lated conditions. The sum of the true, un-
observed, local and global variances was
pre-specified. Global variance was set at
either 0 (A and C) or 0.1 (B and D), and
local variance was set as 0.1, 0.2, and 0.3
as determined by 1, 2, 3, 5, or 10 causal
SNPs. The sum of the two variances is
shown on the x axis. Each bar represents
an average of 100 simulations; error bars
show 5SD. (A and B) illustrate simulated
conditions with no directional condition,
while (C and D) restrict local effects to be
greater than 0. (A and C) illustrate simu-
lated conditions with no global effect,
and (B and D) each have a pre-specified
global effect.
used to identify the local components that independently and

cumulatively predicted the dependent variable, with a p value

for inclusion set at the pre-specified threshold according to simu-

lations under the null (p < 1.133 10�6). The minimum p value of

each of the 14,492 models representing all local ancestry compo-

nents for both African and Asian ancestries was evaluated, and if

it fell below the threshold for inclusion, the respective local

component was added into the predictive model in addition to

global African and global Asian components. This process was

repeated until no local component association p value fell below

1.133 10�6. Because biomarkers with levels falling below the level

of quantification in >10% of individuals were analyzed as ordinal

variables (resulting in 45 biomarkers transformed into ordinal

variables), all simulations were repeated using a simulated ordinal

trait to test the models’ ability to perform with a non-continuous

dependent variable, and our findings remained consistent (see

Supplemental Information).

We then evaluated the proportion of randomly selected causal

loci that matched the identified loci based on the forward selec-

tion algorithm for a given simulation (i.e., proportion of true

causal regions identified). To define a regional association, we

used a threshold of r2 > 0.8 with a causal locus. Identified loci

with r2 < 0.8 with all randomly selected causal loci were classified

as false positives.
Estimation of Effect of Local Ancestry on Serum

Biomarkers and Baseline Phenotypes in ORIGIN
The VC model and forward selection process described above

were then performed on the 237 measured biomarkers in ORIGIN

in an effort to determine the proportion of variance explained

by local ancestry for each serum biomarker. A predictive model

was constructed for each biomarker according to the following

procedure. First, biomarkers were linearly residualized for age

and sex. Second, VC models were used to assess the proportion

of trait variance explained by local ancestry; these models used
306 The American Journal of Human Genetics 106, 303–314, March 5, 2020
global components as fixed effects (as in

simulations). Third, linear models were

used to test each local component inde-

pendently for an effect on the residualized

biomarker; these models were adjusted for
global Asian and global African components. As described above,

the minimum p values of all local components were assessed,

and any component with a p value less than our inclusion

threshold (p < 1.13 3 10�6) was added to the predictive model.

This process was then repeated until no p values were less than

1.13 3 10�6. Therefore, for each biomarker, one VC model was

used to assess overall local and global variance, and a linear predic-

tive model was constructed which included global African and

global Asian components in addition to local components selected

from the forward selection algorithm. This forward selection

process revealed specific genetic regions which were indepen-

dently associated with serum biomarkers, residualized for age

and sex. Associations were classified as in cis if the identified

locus had r2 < 0.8 with any SNP5 300 Kb for the respective gene.

We sought to further reinforce these local ancestry associations

by testing genotype associations in Europeans and Native Latins

from the ORIGIN trial (n ¼ 1,931 and 2,216, respectively). For

each identified local ancestry association, we implemented the

following process. First, an investigation window surrounding

the local ancestry signal was created according to pairwise r2 of

European local ancestry data. Pairwise r2 was examined both up-

stream and downstream of the locus of interest until a local

ancestry estimate had r2 < 0.8 with the locus of interest to create

a window of association. Second, the association of each SNP in

this window was tested in ORIGIN Europeans with the respective

biomarker through the use of a linear model, adjusted for age, sex,

and the first five principal components. Third, the association of

each SNP in this window was also tested in ORIGIN Native Latins

with the respective biomarker using a linear model, adjusted

for age, sex, global ancestry and the corresponding local ancestry

components. SNPs with MAF < 0.01 or INFO < 0.6 were removed.

Therefore, for each identified local ancestry association, we ob-

tained an estimate of the effect of the local ancestry component

on its respective biomarker, and also the effect of SNPs within

the derived local ancestry window on the same biomarker, in

both ORIGIN Europeans and Native Latin samples. To determine



Figure 3. Estimated Proportion of Vari-
ance Explained by Local Ancestry under
Various Conditions
Average (5SD) estimated local variance
explained under various simulated condi-
tions. True, unobserved, local variances
were pre-specified at 0.1, 0.2, and 0.3 (x
axis) as determined by 1, 2, 3, 5, or 10
causal SNPs. Each bar represents an
average of 100 simulations; error bars
show 5 SD. (A and B) illustrate simulated
conditions with no directional condition,
while (C and D) restrict local effects to be
greater than 0. (A and C) illustrate simu-
lated conditions with no global effect,
and (B and D) each have a pre-specified
global effect.
if the local ancestry associations were mainly due to European

genotypic associations, we included the effect of the most signifi-

cant European SNP in the admixture window as a fixed effect in

the local ancestry linear model (by weighting the genotype by

the beta coefficient obtained in ORIGIN Europeans).
Results

Evaluation of Genetic Association Models Using

Simulations

We evaluated the performance of our VC models to esti-

mate the phenotypic variance explained by local admix-

ture associations. In these simulations, we assumed that

varying the number of loci (1, 2, 3, 5, or 10) had an

ancestry effect on the quantitative trait and that the pro-

portion of variance explained was 0.0, 0.1, 0.2, 0.3, and

0.4, respectively. We then tested conditions with and

without a directional condition on the causal ancestry

effects (i.e., all effects greater than 0 for a given ancestry)

and with and without an effect of global admixture.

When a global effect was specified, it was split evenly

over the two components (African and Asian), each with

a proportion of variance explained of 0.025. Our simula-

tions show that total variance attributed to local and global

ancestry can be determined using VC models (Figure 2).

Similarly, our simulations show that it is possible to derive

unbiased estimates of local variance using VC models

(Figure 3). These estimates are stable both with a direc-

tional local effect and in the presence of a global

effect. However, local estimates were lower in the

directional scenarios compared to non-directional. For

instance, considering a scenario with 10 causal loci and

local variance specified at 0.1, two-way ANOVA revealed
The American Journal of Human G
significant differences between direc-

tional and non-directional simula-

tions (Figure 3A and 3B versus

Figure 3C and 3D, p < 5 3 10�16)

and no difference between simula-

tions with and without a global effect

(Figure 3A and 3C versus Figure 3B
and 3D, p ¼ 0.73). This is likely due to the fact that it is

difficult for the model to distinguish a global effect from

a directional local signal, particularly when many causal

loci are present.

We also sought to determine the ability of the model to

select the true, unobserved causal loci. The proportion of

causal SNPs selected increased as specified local variance

increased (Figure 4), and this did not vary significantly

across conditions. When only one SNP was specified as

having an effect on the phenotype, the algorithm per-

formed well and identified this locus in >95% of simula-

tions when local variance was greater than 0.05.

Conversely, as the number of causal loci increased, the re-

sulting effects were diluted across the randomly selected

SNPs, and power to detect individual loci decreased.

Consequently, the algorithm was unable to detect all of

the true, causal SNPs. This pattern was apparent for all

conditions; however, this was strongest in the presence

of directional local effect (Figure 4C and 4D). Specifically,

a smaller proportion of causal loci were identified on

average (e.g., 10 causal loci, local variance specified at

0.05, ANOVA Figure 4A and 4B versus Figure 4C and 4D:

p < 5 3 10�16).

Estimation of Effect of Local Ancestry in ORIGIN

The VC and forward selection models tested through

simulations were then applied to the 237 ORIGIN bio-

markers. For each biomarker, a model was built, comprised

of global Asian and African components in addition to

local components selected according to the forward

selection algorithm. The proportion of variance attributed

to local variance was estimated from the VC model and

the individual associated loci (p < 1.13 3 10�06) identified
enetics 106, 303–314, March 5, 2020 307



Figure 4. Proportion of Causal SNPs
Selected under Various Conditions
Proportion of selected SNPs which were
causal or regional, selected by the forward
selection algorithm under various simu-
lated conditions. Proportion of causal
SNPs (y axis) was calculated as: (number
of selected causal SNPs þ number of
selected regional SNPs) / (number of true,
unobserved, causal SNPs). True, unob-
served, local variances were pre-specified
at 0.1, 0.2, and 0.3 (x axis) as determined
by 1, 2, 3, 5 or 10 causal SNPs. (A and B)
illustrate simulated conditions with no
directional condition, while (C and D)
restrict local effects to be greater than 0.
(A and C) illustrate simulated conditions
with no global effect, and (B and D) each
have a pre-specified global effect.
in the linear model were inspected. VC models revealed

that 5% (11/237) of biomarkers have a significant propor-

tion of variance explained by both local ancestries after ad-

justing for multiple hypothesis testing (p < 0.05/237); the

proportion of variance explained ranged from 0.11 to 0.24

(see Table 1). Models were also run after regressing out

smoking status (yes or no), body mass index (BMI), LDL

cholesterol levels, and fasting plasma glucose in addition

to age and sex, and the same 11 biomarkers were found

to be significant (see Table S2). The global associations

and estimated variance were also evaluated as fixed effects

from the VC model (Figure 5). We identified 23 and six

global African and Asian associations, respectively, repre-

senting 12% (29/237) of biomarkers (see Table 2).

Using the fixed-effect forward-selection framework, 17%

(40/237) of biomarkers were found to have at least one sig-

nificant local association, and five of these 40 biomarkers

overlapped with the 11 associations identified using VC

analysis. A total of 46 local components were associated

with these biomarkers (i.e., some biomarkers were associ-

ated with more than one local component) (see Table

S3). Of the 46 local ancestry associations identified, 55%

(25/46) were in trans and 45% (21/46) were in cis with

the gene encoding the corresponding protein or protein

component of the biomarker for which an association

was found. Five biomarkers investigated were not direct

gene products (e.g., cortisol), and therefore they could

not have any cis associations by this definition. One local

association identified with Asian ancestry, on chromosome

14, was with one such biomarker, methylglyoxal (included

in the 25 trans associations). The number of local associa-

tions was similar across ethnicities, with 21 and 25 African

and Asian associations, respectively.
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Replication in ORIGIN Europeans

revealed that 33 of these 46 regions

had genotype associations at

genome-wide significance with their

corresponding biomarkers (p < 5 3

10�8), nine in trans and 24 in cis.
Notably, five biomarkers were significantly associated

with rs12075, located in the ARCK1 gene which encodes

Duffy antigen receptor, which is responsible for the Duffy

blood group system. Replication in ORIGIN Native Latin

participants revealed an additional cis association at the

level of genome-wide significance. Therefore, there were

only 34 local associations with no corresponding

genome-wide-significant association in either European

or Native Latin participants. A summary of local associa-

tions and their corresponding genotypic associations in

Europeans and Native Latins can be found in Tables S3

and S4. Finally, adjustment for the European SNP associa-

tion as a fixed effect in the local ancestry linear model

resulted in attenuation of 14 of the 46 local ancestry asso-

ciations (p > 0.05).

Evaluation of the Role of C-Peptide in Disparities in T2D

Risk among Ethnic Groups

Our analysis revealed that C-peptide is the biomarker

with the most significant involvement of ancestry in

determining its levels. Specifically, we found that 24%

(95% confidence interval [CI] 16% to 32%, p ¼ 1.7 3

10�11) of the variance of C-peptide is due to local ancestry

in Latin Americans, largely due to an effect of African

ancestry.We also identified two local ancestry components

associated with its levels (p < 1.13 3 10�6) (Figure 6). Our

analysis revealed a region on chromosome 9 (with the

most significant ancestry association at rs4149261) to

have a positive association with C-peptide levels and a

region on chromosome 2 (with the most significant

ancestry association at rs3769050) to have a negative

association with C-peptide (see Table S4). Furthermore,

C-peptide has direct medical relevance because of its



Table 1. Summary of Biomarkers with Significant Proportion of Variation Explained by Local Ancestry in Using VC Analysis (p< 0.05/237)

Biomarker Both African Asian

Proportion Explained
and p Value

Proportion
Explained(95% CI)

p Value Proportion
Explained(95% CI)

p Value Proportion
Explained(95% CI)

p Value

C-peptide 0.24 (0.16, 0.32) 1.6 3 10�11 0.22 (0.15, 0.29) 9.9 3 10�12 0.02 (�0.02, 0.06) 0.13

eotaxin-3 0.22 (0.14, 0.29) 5.0 3 10�10 0.03 (0.00, 0.07) 0.02 0.19 (0.12, 0.25) 8.1 3 10�9

clusterin 0.18 (0.11, 0.25) 2.2 3 10�8 0.16 (0.10, 0.22) 1.6 3 10�8 0.02 (�0.01, 0.06) 0.10

fatty acid-binding
protein liver

0.13 (0.07, 0.19) 2.4 3 10�6 0.11 (0.06, 0.16) 1.3 3 10�6 0.02 (�0.02, 0.06) 0.13

intercellular adhesion
molecule-1

0.14 (0.08, 0.21) 3.1 3 10�6 0.08 (0.03, 0.13) 0.00018 0.06 (0.01, 0.11) 0.0042

apolipoprotein E 0.14 (0.07, 0.20) 4.0 3 10�6 0.10 (0.05, 0.15) 9.4 3 10�6 0.03 (�0.01, 0.08) 0.05

Fas ligand 0.14 (0.08, 0.20) 4.6 3 10�6 0.08 (0.03, 0.12) 0.00030 0.06 (0.02, 0.11) 0.0037

alpha-2 macroglobulin 0.12 (0.06, 0.18) 1.2 3 10�5 0.03 (0.00, 0.06) 0.038 0.09 (0.04, 0.14) 0.00010

apolipoprotein A-IV 0.12 (0.06, 0.18) 3.2 3 10�5 0.07 (0.03, 0.12) 0.00039 0.05 (0.00, 0.09) 0.017

interleukin-2 0.12 (0.06, 0.18) 4.0 3 10�5 0.11 (0.06, 0.16) 1.1 3 10�5 0.02 (�0.02, 0.06) 0.22

paraoxanase-1 0.11 (0.05, 0.17) 8.7 3 10�5 0.07 (0.03, 0.12) 0.00028 0.04 (�0.01, 0.08) 0.048

Biomarkers were residualized for age and sex.
CI ¼ confidence interval
physiological importance as a marker of insulin secretion,

and also as a clinical biomarker used in the recently refined

classification of adult-onset diabetes.30 Because diabetes

risk is also well known to vary among ethnicities, we

sought to explore the roles of C-peptide and genetic

ancestry in the context of T2D in order to further elucidate

this relationship.

First, we sought to determine the impact of including a

glycemic-related weighted genetic risk score (GRS) as a
Figure 5. Global Ancestry QQ Plot
QQ plot of association statistics of the effect of African (red) and
Asian (blue) global ancestry on biomarker levels. Variance compo-
nent models were used to assess the effect of global ancestry, with
local ancestry included as random effects. Biomarker levels were
first residualized for age and sex.

The Ameri
fixed effect in the VC model in order to test whether

local admixture associations could be explained by

known genetic associations from large genome-wide asso-

ciation study (GWAS) meta-analyses. Using estimates

from public consortia, we tested a GRS for T2D, HbA1C,

fasting glucose, fasting insulin, and 2 h glucose.31,32 The

effect of local ancestry remained significant in all models

(data not shown). Second, we evaluated the genomic re-

gion surrounding the two local ancestry components

that were found to be associated with C-peptide levels

for association with glycemic traits. Specifically, African

local ancestry components on chromosomes 2 and 9

(Figure 6) were shown to be associated with C-peptide

levels. Using admixture LD, we derived a local ancestry

window (r2 < 0.8) for each local ancestry component

and looked to see whether SNPs in these windows were

associated with T2D and glycemic traits in DIAGRAM or

MAGIC databases.31,32 After adjusting for multiple

hypothesis testing, we found no significant associations.

Third, we tested the effects of the two local ancestry com-

ponents associated with C-peptide for an effect on base-

line T2D prevalence and insulin resistance in ORIGIN.

Insulin resistance was measured as defined previously, us-

ing the insulin res in the ORIGIN trial to achieve normo-

glycemia.33 Models assessing local ancestry associations

demonstrated that the African local estimate associated

with increased C-peptide at rs4149261 was also associated

with increased risk of T2D (OR ¼ 6.07 per SD, 95% CI 1.44

to 25.56, p ¼ 0.01) and median dose of insulin used (per

kg of fat-free mass, log transformed) (b ¼ 0.54 per SD,

95%CI 0.16 to 0.92, p¼ 0.005). However, African local es-

timates at rs3769050 were not associated with T2D or in-

sulin resistance (p > 0.05).
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Table 2. Summary of Biomarkers with Significant Global Ancestry Association for Either African or Asian Global Ancestry (p < 0.05/237)

Biomarker Global African Ancestry Global Asian Ancestry

b and p Value b (95% CI) p Value b (95% CI) p Value

Kallikrein 5 �0.33 (�0.40, �0.25) <5 3 10�10 0.21 (0.02, 0.40) 0.027

vitronectin �0.29 (�0.33, �0.25) <5 3 10�10 0.07 (�0.45, 0.59) 0.79

factor VII �0.24 (�0.27, �0.21) <5 3 10�10 0.03 (�0.19, 0.25) 0.81

insulin-like growth factor binding
protein 5

0.17 (0.13, 0.22) 1.8 3 10�15 �0.15 (�0.50, 0.20) 0.40

immunoglobulin M 0.24 (0.18, 0.30) 5.3 3 10�15 0.00 (�0.31, 0.31) 0.98

apolipoprotein B �0.74 (�0.93, �0.55) 6.2 3 10�14 0.04 (�0.33, 0.40) 0.84

monocyte chemotactic protein 4 0.54 (0.39, 0.69) 1.6 3 10�12 0.08 (0.02, 0.14) 0.011

interleukin-12 subunit p40 �0.08 (�0.10, �0.06) 3.2 3 10�12 0.01 (�0.22, 0.24) 0.95

resistin 0.34 (0.24, 0.44) 1.3 3 10�11 0.01 (�0.20, 0.22) 0.95

hepatocyte growth factor receptor �0.27 (�0.35, �0.18) 1.3 3 10�9 0.10 (�0.34, 0.55) 0.65

ficolin-3 �0.13 (�0.17, �0.09) 9.0 3 10�9 �0.19 (�0.48, 0.09) 0.19

protein S100-A4 0.55 (0.35, 0.75) 7.3 3 10�8 0.07 (�0.04, 0.17) 0.22

cortisol �0.41 (�0.58, �0.25) 6.5 3 10�7 �0.13 (�0.38, 0.13) 0.33

6Ckine �0.27 (�0.38, �0.16) 1.1 3 10�6 �0.18 (�0.39, 0.02) 0.080

immunoglobulin E 0.37 (0.22, 0.52) 1.4 3 10�6 0.45 (0.16, 0.74) 0.0020

hepatocyte growth factor �0.46 (�0.65, �0.26) 3.2 3 10�6 �0.18 (�0.37, 0.02) 0.073

ferritin �0.36 (�0.52, �0.20) 1.5 3 10�5 �0.03 (�0.36, 0.30) 0.86

adrenomedullin �0.62 (�0.90, �0.33) 2.0 3 10�5 �0.23 (�0.54, 0.07) 0.13

creatine kinase-MB �0.61 (�0.89, �0.32) 3.0 3 10�5 �0.10 (�0.48, 0.28) 0.61

prostatic acid phosphatase �0.26 (�0.38, �0.14) 3.4 3 10�5 �0.07 (�0.17, 0.02) 0.13

methylglyoxal �0.50 (�0.74, �0.25) 6.8 3 10�5 �0.05 (�0.54, 0.44) 0.83

glucose-6-phosphate isomerase 0.40 (0.20, 0.60) 8.1 3 10�5 0.17 (�0.37, 0.71) 0.54

sex hormone-binding globulin 0.26 (0.13, 0.40) 0.00015 0.17 (�0.11, 0.45) 0.24

mesothelin 0.25 (�0.01, 0.52) 0.064 0.22 (0.14, 0.29) 3.2 3 10�8

thrombospondin-1 0.00 (�0.24, 0.24) 0.99 0.12 (0.08, 0.17) 1.21 3 10�7

pulmonary and activation-regulated
chemokine

0.27 (�0.08, 0.62) 0.13 0.25 (0.16, 0.35) 5.4 3 10�7

T lymphocyte-secreted protein I-309 0.23 (0.05, 0.41) 0.014 �0.07 (�0.11, �0.04) 1.9 3 10�5

pigment epithelium derived factor �0.01 (�0.15, 0.14) 0.92 �0.26 (�0.39, �0.14) 4.6 3 10�5

chemokine CC-4 0.00 (�0.09, 0.09) 0.98 �0.53 (�0.79, �0.27) 5.5 3 10�5

b per SD increase in global ancestry. Global ancestry is included as fixed effects in the variance component model. Biomarkers were residualized for age and sex.
CI ¼ confidence interval
Discussion

Marked differences in biomarker profiles between popula-

tions have been investigated and previously reported.2

However, these observations have not been fully eluci-

dated, and causes may include genetic, lifestyle, or socio-

economic factors. In this report, we sought to explore the

impact of genetic ancestry on the human proteome and

the implications of this for health and disease. We first

developed a model to investigate phenotypic variation
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among admixed individuals. Through simulations, we

show that the proportion of variance due to local admix-

ture can be estimated using a VC model, and a forward

selection model can be used to reveal causal loci associated

with biomarker levels. Using these models, we found that

local ancestry affects at least 19% (46/237) of biomarkers

with 5% of biomarkers having more than 10% of pheno-

typic variance explained by local ancestry in Latin Ameri-

cans with dysglycemia. Additionally, 12% of biomarkers

had significant global associations, however, global
5, 2020



Figure 6. Manhattan Plot of Admixture
Mapping of C-Peptide Protein
Mirror Manhattan plot of the association
between local Asian ancestry (top) and
local African ancestry (bottom) with C-
peptide, made using the additive esti-
mated model as determined by the for-
ward selection algorithm. In other words,
each point represents the association be-
tween a single local component and C-
peptide, after residualizing for age and
sex, adjusted for global African and Asian
ancestry and the two significant SNPs
falling below (for African) or above (for
Asian) the selected threshold (shown in
red), based on experiment-wide adjusted
p value (1.13 3 10�6). Negative log 10 p
values are plotted against each local com-

ponent’s respective position on each chromosome. The blue line corresponds to nominal significance of p ¼ 1 3 10�4. Local compo-
nents in LD (r2 > 0.8) with any SNP within 300KB of the gene encoding c-peptide protein are shown in green.
associations may be confounded by lifestyle or socio-eco-

nomic factors and might not necessarily represent bona

fide biological effects. Local associations, conversely, repre-

sent true biological effects and implicate genomic regions

involved in phenotypic variance.

Genetic ancestry was found to have a particularly strong

influence on C-peptide, and this influence was almost

entirely due to an effect of African ancestry. C-peptide is

a well-established clinical biomarker which can be used

to distinguish type 1 and 2 diabetes.34 Indeed, diabetes is

well known to exhibit differential risk patterns among

ethnic groups, and this is consistent with these find-

ings.3–5 We identified two African local components that

had an effect on C-peptide. Further examination of these

local ancestry components revealed that the region at

rs4149261, which was associated with increased C-peptide

levels, was also associated with an increased risk of diabetes

and insulin resistance. These results validate the use of

biomarkers as intermediate endpoints to study the effect

of genetic ancestry on disease risk. Because C-peptide is a

strong marker of insulin secretion, these findings point

to the role of insulin resistance rather than insulin defi-

ciency to explain the inter-ancestry difference in diabetes

risk. While both local components showed that increased

levels of C-peptide are associated with increased risk of

T2D, the ancestry-specific effects on C-peptide levels

were inconsistent. In other words, African ancestry

increased C-peptide levels at one locus and decreased

C-peptide levels at another locus. Therefore, more studies

are needed to further resolve the disparity in diabetes risk

among ethnic groups.

The genetics of biomarker concentrations have been

extensively investigated in the context of GWAS.35

Numerous loci have been identified for many biomarkers,

and these loci have also been linked to disease; this

suggests causal relationships and potential drug targets.

However, few studies have leveraged genetic admixture

as a complimentary approach for discovering novel

chromosomal regions that impact biomarker levels. Our

analysis revealed 46 regions linked to biomarker concen-
The Ameri
tration. Specifically, we found an association between local

Asian ancestry and ACE levels, and further genotypic

mapping suggests this is an effect at the ACE locus. ACE

has a well-established role in regulating blood pressure

and is also used to diagnose sarcoidosis. Response to ACE

inhibitors has been shown to differ among ethnic groups,

raising the possibility that current dosage guidelines

may not be applicable to non-European ethnicities.36–38

Additionally, we identified five biomarkers that are associ-

ated with rs12075 within the Duffy antigen receptor gene,

which encodes for the glycosylated membrane protein and

is a non-specific receptor for several cytokines. This gene

exhibits known genetic admixture, and variation in this

gene are responsible for the Duffy blood group system.39

The association of the ARCK1 variant with multiple

protein levels replicates previous findings, substantiating

a potential role for Duffy antigen receptor for chemokines

(DARC) in the regulation of serum cytokines.40 Finally, 32

of these 46 regional local associations remained significant

after we adjusted for the most significant European

GWAS signal in the region. These findings point to a poly-

genic model whereby the local ancestry associations are

capturing large genomic regions which harbor many ge-

netic variants that each confer a very small effect on

biomarker concentrations, and some of these regions

might be monomorphic in one or more ethnicities.

Understanding the impact of genetics on biomarker

profiles also has clinical implications. Predictive thresholds

for each specific ethnic group are necessary for accurate

risk stratification. Otherwise, there is potential for misclas-

sification of risk and inappropriate use of pharmacother-

apies. Notably, after multiple hypothesis testing, we found

that 5% of biomarkers are affected by local ancestry, and

30% showed nominal significance (p < 0.05) ranging

from a 0.05 to a 0.31 proportion of variation due to an ef-

fect of ancestry. These findings suggest that these bio-

markers harbor true biological inter-ancestry differences

in concentration that are genetically determined. These

differences may lead to differences in disease risk and

clinical diagnosis. For instance, we found local associations
can Journal of Human Genetics 106, 303–314, March 5, 2020 311



with clinically relevant biomarkers, including vitamin-D-

binding protein, apolipoprotein-E, and vascular endothe-

lial growth factor. These results are consistent with previ-

ous reports and demonstrate that specific genetic polymor-

phisms may partially explain the observed differences in

concentrations between populations.41,42 These findings

may have implications for the interpretation of clinical

markers across different ethnic groups.

A few limitations are worth mentioning. First, for the 11

biomarkers for which we found significant effects of local

ancestry, we did not identify a specific genetic locus

contributing to the variation of six of these biomarkers.

These results are consistent with the polygenic model of in-

heritance, which is hypothesized to underlie many

complex traits. According to this model, a large number

of loci of small effect sizes together explain the variation

of a single trait, such as a biomarker. If hundreds of genetic

variants contribute to the observed differences between

Asian and African ancestry for a single biomarker, relative

to European ancestry, then the proportion of Asian and

African ancestry in Latins will act as a proxy for the overall

contribution of variants. However, identification of any

specific variant will require an appropriately large sample

size. Indeed, our simulations have shown that even with

10 loci, the power to detect local associations was very

weak, particularly in the presence of directional associa-

tions. Second, we identified a local association for 17%

(40/237) of biomarkers, however, after multiple hypothesis

testing, the VC models showed only 5% of biomarkers to

have a significant effect of ancestry. These results suggest

that power was limited in our VC analysis compared to

the linear model, and larger studies using VC analysis

to identify additional markers with an effect of ancestry

are needed. Third, pruning was performed based on Euro-

pean ancestry, which does not necessarily represent

the genetic architecture of the Asian and/or African ances-

tral components. Finally, we were not able to identify a

significant, corresponding genotype association in either

Europeans or Native Latins for every local association

identified. This could be because multiple causal variants

account for the local association, and we were underpow-

ered for this, or because the causal variant was not well

tagged in our study. Likewise, in the Native Latin GWAS,

the causal variant(s) could be perfectly correlated with

ancestry, and therefore impossible to distinguish from local

ancestry itself. It is also worth noting that we did not have

access to an African or an Asian cohort, so we could not

assess these genotypic relationships in these ancestries.

Genetically admixed populations provide a powerful

model for exploring the contribution of genetics to differ-

ences in biomarker concentrations among populations.

Studying Latin Americans within the framework of a

large, international study, we provide evidence for an effect

of genetic ancestry on biomarker variability. Our results

show that ancestry has a role in the concentration of at

least 5% of biomarkers, although this is likely a lower

boundary. This finding has many implications, namely
312 The American Journal of Human Genetics 106, 303–314, March
that differences in disease prevalence likely have biological

bases in many cases, and that use of reference intervals

for those biomarkers should be tailored to ancestry. These

results highlight the need for specific cutoff values and

prognostic measures to be determined for each ethnicity

and implemented accordingly. Finally, we also show that

some loci appear to have pleiotropic ancestry effects and

therefore appear to be of particular importance. Because

serum proteins are frequently dysregulated in disease,

identification of factors that determine protein variability

is a clinical priority. These findings shed light on the

contribution of ancestry in disease and pave the way for

better informed, ethnicity-specific, defined cut-offs.

Further research will be needed in order to identify specific

factors responsible for these differences and to gain a better

understanding of underlying biological mechanisms.
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H., Gómez-Vázquez, M.J., Burtt, N.P., Aguilar-Salinas, C.A.,

et al.; SIGMA Type 2 Diabetes Consortium (2014). Sequence

variants in SLC16A11 are a common risk factor for type 2 dia-

betes in Mexico. Nature 506, 97–101.

8. Gijsberts, C.M., den Ruijter, H.M., Asselbergs, F.W., Chan,

M.Y., de Kleijn, D.P.V., and Hoefer, I.E. (2015). Biomarkers

of Coronary Artery Disease Differ Between Asians and

Caucasians in the General Population. Glob. Heart 10, 301–

311.e11.

9. Morimoto, Y., Conroy, S.M., Ollberding, N.J., Kim, Y., Lim, U.,

Cooney, R.V., Franke, A.A., Wilkens, L.R., Hernandez, B.Y.,

Goodman, M.T., et al. (2014). Ethnic differences in serum adi-

pokine and C-reactive protein levels: the multiethnic cohort.

Int. J. Obes. 38, 1416–1422.

10. Khan, U.I., Wang, D., Sowers, M.R., Mancuso, P., Everson-

Rose, S.A., Scherer, P.E., andWildman, R.P. (2012). Race-ethnic

differences in adipokine levels: the Study of Women’s Health

Across the Nation (SWAN). Metabolism 61, 1261–1269.

11. Talib, H.J., Ponnapakkam, T., Gensure, R., Cohen, H.W., and

Coupey, S.M. (2016). Treatment of Vitamin D Deficiency in

Predominantly Hispanic and Black Adolescents: A Random-

ized Clinical Trial. J. Pediatr. 170, 266–72.e1.

12. Nielson, C.M., Jones, K.S., Bouillon, R., Chun, R.F., Jacobs, J.,

Wang, Y., Hewison, M., Adams, J.S., Swanson, C.M., Lee,

C.G., et al.; Osteoporotic Fractures in Men (MrOS) Research

Group (2016). Role of Assay Type in Determining Free 25-Hy-

droxyvitamin D Levels in Diverse Populations. N. Engl. J.

Med. 374, 1695–1696.

13. Lim, E., Miyamura, J., and Chen, J.J. (2015). Racial/Ethnic-

Specific Reference Intervals for Common Laboratory Tests: A

Comparison among Asians, Blacks, Hispanics, andWhite. Ha-

waii J. Med. Public Health 74, 302–310.

14. Sankararaman, S., Sridhar, S., Kimmel, G., and Halperin, E.

(2008). Estimating local ancestry in admixed populations.

Am. J. Hum. Genet. 82, 290–303.

15. Maples, B.K., Gravel, S., Kenny, E.E., and Bustamante, C.D.

(2013). RFMix: a discriminative modeling approach for rapid

and robust local-ancestry inference. Am. J. Hum. Genet. 93,

278–288.

16. Zhu, X., Luke, A., Cooper, R.S., Quertermous, T., Hanis, C.,

Mosley, T., Gu, C.C., Tang, H., Rao, D.C., Risch, N., andWeder,
The Ameri
A. (2005). Admixture mapping for hypertension loci with

genome-scan markers. Nat. Genet. 37, 177–181.

17. Freedman, M.L., Haiman, C.A., Patterson, N., McDonald, G.J.,

Tandon, A., Waliszewska, A., Penney, K., Steen, R.G., Ardlie,

K., John, E.M., et al. (2006). Admixture mapping identifies

8q24 as a prostate cancer risk locus in African-American

men. Proc. Natl. Acad. Sci. USA 103, 14068–14073.

18. Kopp, J.B., Smith, M.W., Nelson, G.W., Johnson, R.C.,

Freedman, B.I., Bowden, D.W., Oleksyk, T., McKenzie, L.M.,

Kajiyama, H., Ahuja, T.S., et al. (2008). MYH9 is a major-effect

risk gene for focal segmental glomerulosclerosis. Nat. Genet.

40, 1175–1184.

19. Brown, L.A., Sofer, T., Stilp, A.M., Baier, L.J., Kramer, H.J., Ma-

sindova, I., Levy, D., Hanson, R.L., Moncrieft, A.E., Redline, S.,

et al. (2017). Admixture Mapping Identifies an Amerindian

Ancestry Locus Associated with Albuminuria in Hispanics in

the United States. J. Am. Soc. Nephrol. 28, 2211–2220.

20. Shendre, A., Wiener, H., Irvin, M.R., Zhi, D., Limdi, N.A.,

Overton, E.T., Wassel, C.L., Divers, J., Rotter, J.I., Post, W.S.,

and Shrestha, S. (2017). Admixture Mapping of Subclinical

Atherosclerosis and Subsequent Clinical Events Among Afri-

can Americans in 2 Large Cohort Studies. Circ Cardiovasc

Genet 10, e001569.

21. Gerstein, H., Yusuf, S., Riddle, M.C., Ryden, L., Bosch, J.; and

ORIGIN Trial Investigators (2008). Rationale, design, and

baseline characteristics for a large international trial of cardio-

vascular disease prevention in people with dysglycemia: the

ORIGIN Trial (Outcome Reduction with an Initial Glargine

Intervention). Am. Heart J. 155, 26–32, 32.e1–32.e6.
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