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Abstract——Technology in bioanalysis, -omics, and
computation have evolved over the past half century to
allow for comprehensive assessments of the molecular
towhole body pharmacology of diverse corticosteroids.

Such studies have advanced pharmacokinetic and
pharmacodynamic (PK/PD) concepts and models that
often generalize across various classes of drugs. These
models encompass the “pillars” of pharmacology,
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namely PK and target drug exposure, the mass-law
interactions of drugs with receptors/targets, and the
consequent turnover and homeostatic control of genes,
biomarkers, physiologic responses, anddisease symptoms.
Pharmacokinetic methodology utilizes noncompartmental,
compartmental, reversible, physiologic [full physiologically
based pharmacokinetic (PBPK) and minimal PBPK], and
target-mediated drug disposition models using a growing
array of pharmacometric considerations and software.
Basic PK/PD models have emerged (simple direct,
biophase, slow receptor binding, indirect response,
irreversible, turnover with inactivation, and transduction
models) thatplaceemphasis onparsimony, aremechanistic
innature, and serve ashighlyuseful “top-down”methods of
quantitating the actions of diverse drugs. These are often
components of more complex quantitative systems
pharmacology (QSP) models that explain the array of
responses to various drugs, including corticosteroids.
Progressively deeper mechanistic appreciation of
PBPK, drug-target interactions, and systems physiology
from themolecular (genomic, proteomic,metabolomic) to
cellular to whole body levels provides the foundation for
enhanced PK/PD to comprehensive QSP models. Our
research based on cell, animal, clinical, and theoretical

studies with corticosteroids have provided ideas and
quantitative methods that have broadly advanced the
fields of PK/PD and QSP modeling and illustrates the
transition toward a global, systems understanding of
actions of diverse drugs.

Significance Statement——Over the past half cen-
tury, pharmacokinetics (PK) and pharmacokinetics/
pharmacodynamics (PK/PD) have evolved to provide
anarrayofmechanism-basedmodels thathelpquantitate
the disposition and actions of most drugs. We describe
how many basic PK and PK/PD model components
were identified and often applied to the diverse
properties of corticosteroids (CS). The CS have
complications in disposition and a wide array of simple
receptor-to complex gene-mediated actions in multiple
organs. Continued assessments of such complexities
have offered opportunities to develop models ranging
from simple PK to enhanced PK/PD to quantitative
systems pharmacology (QSP) that help explain
therapeutic and adverse CS effects. Concurrent
development of state-of-the-art PK, PK/PD, and
QSP models are described alongside experimental
studies that revealed diverse CS actions.

I. Introduction

The application of pharmacokinetic/pharmacody-
namic (PK/PD) modeling in drug development and
pharmacotherapy is well established across the phar-
maceutical industry (Lalonde et al., 2007; Kimko and
Pinheiro, 2015), government regulation (Peck et al.,
1994; Gobburu and Marroum, 2001), and academia
(Danhof et al., 2008; Mager and Jusko, 2008). By inte-
grating the time course of drug concentrations (PK), the
nature of drug-target interaction (pharmacology), and
turnover processes reflecting the relevant physiology and
disease, PK/PD modeling has advanced from an empir-
ical and descriptive endeavor into a mechanistic science.
In addition to providing a systematic framework for
understanding in vivo pharmacology and systems bi-
ology by separating drug- and system-specific parame-
ters, the implications of mechanism-based PK/PD
modeling are far reaching in areas such as: 1) drug
candidate selection and lead optimization, 2) the design
of early proof-of-concept trials using information from
preclinical studies, 3) informing dose optimization for
Phase II and III trials, and 4) explaining sources of intra-
and interindividual variability and disease progression.
Systems biology, another firmly established disci-

pline, comprises a broad spectrum of computational
methods to understand physiology and disease at levels
of molecular pathways, regulatory networks, cells,

tissues, organs, and, ultimately, the whole organism
(Butcher et al., 2004). A systems approach to modeling
biologic networks is crucial for unraveling complex
signaling mechanisms, which often exhibit emergent
properties such as signal integration across multiple
time scales, generation of distinct outputs depending on
input strength and duration, and self-sustaining feed-
back loops (Bhalla and Iyengar, 1999). There has been
growing interest in the complementary adoption of
PK/PD and systems biology approaches toward the
development of integrative quantitative systems phar-
macology (QSP) models to understand more fully the
complex interactions of drugs and disease biology and
consequently improve drug development and pharma-
cotherapy. As a multidisciplinary science, QSP prom-
ises a framework for integrating information obtained
from studying biologic (normal and aberrant) pathways
and pharmacological targets to predict clinical efficacy
and adverse events through iterations between mathe-
matical modeling and experimentation (Mager and
Kimko, 2016). The National Institutes of Health spon-
sored twoworkshops bringing together PK/PDmodelers
and systems biologists and pharmacologists to con-
sider the state-of-the-art and future of quantitative
and systems pharmacology. This resulted in an exten-
sive “white paper” (https://www.nigms.nih.gov/training/
documents/systemspharmawpsorger2011.pdf), along

ABBREVIATIONS: ADX, adrenalectomized; AP-1, activator protein-1; CBG, corticosteroid binding globulin; CIA, collagen-induced arthritis;
CORT, corticosterone; CS, corticosteroid; E2, estradiol; ER, estrogen receptor; GILZ, glucocorticoid-induced leucine zipper; GR, glucocorticoid
receptor; GRE, glucocorticoid-response elements; HPA, hypothalamic-pituitary-adrenal; IL, interleukin; LC/MS, liquid chromatography/mass
spectrometry; mPBPK, minimal PBPK; MPL, methylprednisolone; NCA, noncompartmental analysis; NF-kB, nuclear factor kappa B; OPG,
osteoprotegerin; PBPK, physiologically based pharmacokinetic; PEPCK, phosphoenolpyruvate carboxykinase; PD, pharmacodynamics; PK,
pharmacokinetics; QSP, quantitative systems pharmacology; RANKL, receptor activator of nuclear factor kappa-B ligand; STAT, signal
transducer and activator of transcription; TAT, tyrosine aminotransferase; TMDD, target-mediated drug disposition.
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with National Institutes of Health support for the
emergence of the discipline (Rogers et al., 2013).
Our experimental and theoretical efforts to under-

stand diverse aspects of corticosteroid (CS) actions span
the spectrum from “basic” (“top-down”) PK/PD studies
in animals and humans to systems modeling of an
array of plasma and tissue biomarker and response
data and demonstrate the concepts and elements of
horizontal and vertical integration of molecular to
whole body processes. This review will describe how
five decades of various animal, clinical, and theoretical
studies with CS have provided numerous insights into
the major determinants governing steroid disposition
and responses as well as general ideas that have
advanced the fields of PK/PD for CS and diverse drug
classes. Our continuing efforts to decipher the complex
pharmacogenomic and biochemical mechanisms of CS
action have resulted in an assimilative and natural
transition toward a more mechanistic, global, and
multiscale systems understanding of CS actions. The
development and insights gained from studies leading
to three systems models examining the properties of
methylprednisolone (MPL) are described. Our studies
seeking understanding of the PK/PD properties of CS
will be summarized within the broader context of: 1)
major concepts andadvances inPK, PD, andmechanism-
based PK/PD modeling; 2) challenges and opportunities
formoving basic PK/PD toward systemsmodeling; and 3)
model-building approaches leading to enhanced PK/PD
and QSP models.

II. The Corticosteroids

A. Clinical Use

The CS represent a class of immunomodulatory
agents with appreciable anti-inflammatory and immu-
nosuppressive efficacy. These drugs are synthetic ana-
logs of glucocorticoids, adrenal steroid hormones that
extensively regulate development, metabolism, and
immune function. Therapy with CS dates back to the
late 1940s when cortisonewas discovered (Burns, 2016).
Today, their therapeutic applications span diverse
clinical contexts: as frontline therapy for autoimmune
diseases (Kirwan, 1995; Rhen and Cidlowski, 2005), for
preventing the rejection of solid organ transplants
(Bergmann et al., 2012), in the combinatorial therapy
of certain cancers (Moreno et al., 2000), and as antena-
tal therapy for stimulating fetal lung maturation before
preterm birth (El-Sayed et al., 2017). Despite the
development of targeted antibody-based therapies for
autoimmune diseases such as rheumatoid arthritis,
inflammatory bowel disease, and systemic lupus eryth-
ematosus, CSs such as prednisolone, MPL, and dexameth-
asone remain a critical component in the management
of such diseases (Li et al., 2017a). Beneficial effects
derived from immunosuppression are, however, accom-
panied by a plethora of metabolic disturbances, which

upon long-term steroid usage are manifested as oste-
oporosis, insulin resistance, steroid diabetes, obesity,
and muscle wasting (Schäcke et al., 2002). Despite
such issues, CSs are among the most widely prescribed
drugs in developed countries, taken by up to 1.2% of the
adult population (van Staa et al., 2000; Overman et al.,
2013).

B. Corticosteroid Pharmacokinetics

The study of the PK of diverse CS in humans and
animals, like for many modern drugs, was enabled by
the development of high-pressure liquid chromato-
graphic methodology that allowed sensitive and specific
measurement of several corticosteroids, including cor-
tisol in plasma and tissues (Rose and Jusko, 1979; Jusko
et al., 1994). The preferred assay method for the CS
is now LC/MS/MS (Frerichs and Tornatore, 2004). The
systemically used CSs are generally well absorbed
when given orally, distribute rapidly to all body
tissues, and are extensively metabolized with only
5%–10% of an intravenous dose excreted unchanged in
urine (Rose et al., 1981; Szefler et al., 1986). The CS
exhibit monoexponential or biexponential disposition
with terminal plasma half-lives of 2–4 hours in most
adult humans (shorter in rodents). Although hepatic
metabolism of CS is generally assumed to occur, studies
with perfused rat kidneys have shown a renal contri-
bution to biotransformation of prednisolone (Rocci et al.,
1981). Several hydroxylated metabolites of prednisone
and prednisolone are excreted in urine and the renal
clearance of the parent compounds are nonlinear (Wald
et al., 1992).Transporter-mediated membrane influx
and efflux mechanisms are deemed relevant for some
steroids in tissues such as the liver and brain (Schinkel
et al., 1995; Lackner et al., 1998; Crowe and Tan, 2012).
The synthetic CSs, prednisolone, MPL, and dexameth-
asone show greater uptake in the liver compared with
other tissues in animals (Khalafallah and Jusko, 1984;
Ayyar et al., 2019d). Cortisol (corticosterone in the rat)
andprednisolone bindmoderately to albuminbut strongly
to transcortin (Rocci et al., 1980, 1982; Ko et al., 1995),
a transport globulin protein of high affinity and low
capacity, which is easily saturated at therapeutic doses
of binding steroids (Xu et al., 2008). Cortisol and prednis-
olone are bound to a similar degree and compete for
binding to corticosteroid binding globulin (CBG) (Rocci
et al., 1982). There is also modest binding of predniso-
lone to a1-acid glycoprotein (Milsap and Jusko, 1983).
The capacity-limited binding to CBG produces volumes
of distribution and clearances of total plasma prednis-
olone that increase with dose, but these are constant for
unbound prednisolone (Rose et al., 1981; Wald et al.,
1992) as well as for MPL. The latter is bound at
a constant percentage, predominantly to albumin, with
some species differences (60% in rats and 77% in rabbits
and humans) (Ebling et al., 1986; Ayyar et al., 2019d).
Dosing rats with CBG results in altered distribution
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and elimination of prednisolone, whereas the PK of non-
CBG bound MPL is not affected (Ko et al., 1995) in
accordance with the classic “free hormone” hypothesis
as relevant to PK. Salivary cortisol is monitored in
many psychobiological studies as it approximates the
“bioactive” unbound concentration in plasma (Levine
et al., 2007). This is reasonable as the CS are neutral
compounds; assessing salivary concentrations of ionized
drugs is more complicated owing to variability in
salivary pH (Jusko and Milsap, 1993).
MPL undergoes minor interconversion with its me-

tabolite methylprednisone (Ebling et al., 1985), while
more extensive reversible metabolism occurs between
prednisolone and the inactive prodrug/metabolite, pred-
nisone (Garg and Jusko, 1994) similar to the metabo-
lism between cortisol and cortisone (Colburn et al.,
1980). These interconversions are nonlinear with dose
for both prednisolone (Huang and Jusko, 1990) and
MPL (Haughey and Jusko, 1992) in rats. This reversible
metabolism process complicates the use and interpre-
tation of PK parameters of these CS when calculated
by traditional methods such as NCA and compartmen-
tal modeling because the exposure (area under the
curve) of the active forms of the CS are increased by the
reconverting metabolite. Therefore, alternative meth-
ods of PK analysis and modeling were established
during the study of CS disposition (described in section
III.A).
The corticosteroids, largely metabolized by CYP 3A

enzymes, are sensitive to a variety of metabolic drug
interactions, particularly induction from anticonvul-
sants (Jusko and Rose, 1980) and inhibition from oral
contraceptives (Slayter et al., 1996) and ketoconazole
(Kandrotas et al., 1987), among others. The array of
metabolic drug interactions and physiologic (sex, age,
obesity) and disease effects known to affect CS PK has
been reviewed (Jusko and Ludwig, 1992).
A key determinant of differences in the PK among the

commonly administered CS is lipid solubility as mea-
sured by log P and a quantitative structure-activity
relationship factor Connolly Molecular Surface Area.
The clearances and volumes of distribution (and conse-
quently the half-life) of the CS increase with log P and
Connolly Molecular Surface Area, whereas bioavailabil-
ity decreases owing to more rapid metabolism in
humans (Mager and Jusko, 2002a). Binding to plasma
proteins and to the glucocorticoid receptor (GR) also
increases with log P, a common phenomenon for many
classes of drugs.

C. Mechanisms of Action

The CS exert their pharmacologic effects through
diverse nongenomic (rapid) and genomic (delayed)
mechanisms. Upon binding the GR, the CS can cause
systemically measurable effects that are rapid in onset,
such as cell trafficking and adrenal suppression (Yao
et al., 2008). In contrast, pharmacogenomic regulation

by the drug-receptor complex occurs in a delayed man-
ner (Jusko, 1995) due to a series of intracellular
transduction steps, including gene regulation (trans-
activation and transrepression) and consequent mRNA
and protein synthesis. Figure 1 presents a general
schematic of the receptor-mediated pharmacogenomic
mechanisms of CS. The CSs are moderately protein
bound in plasma, associating with albumin and some-
times CBG. Classic theory holds, in accordance with the
“free hormone” hypothesis (Mendel, 1989), that un-
bound steroids rapidly diffuse into intracellular spaces
where the GRs reside. The inactive receptor in cytosol is
a heterocomplex comprised of the receptor, various heat
shock protein subunits, and the FK506-binding immu-
nophilins. The CSs bind to cytoplasmic GR and cause
a dissociation of the chaperone complex by inducing
a conformational change in the receptor. Upon dissoci-
ation from chaperone proteins, activated drug-receptor
complexes rapidly translocate into the nucleus and
homodimerize. Nuclear GR dimers then bind specific
DNA sequences known as glucocorticoid-response ele-
ments (GRE) in the 59-upstream promoter regions of
target genes, leading to transcriptional changes by
altering chromatin structure (Newton, 2000; Barnes,
2006). This interaction positively or negatively regu-
lates the synthesis rates of numerous target mRNA,
including homologous downregulation of new GR syn-
thesis. In this manner, CS dosing elicits widespread
changes in gene expression with both increases and
decreases found in multiple rat tissues (Almon et al.,
2005a,c, 2007). Circadian production of the endogenous
glucocorticoid hormone (cortisol in humans, corticoste-
rone in animals) and control by the hypothalamic-
pituitary-adrenal (HPA) axis and the turnover of GR
and its mRNA introduce nonstationarities in the
receptor-mediated control of tissue gene expression.
Two major elements are needed for gene-mediated
effects of CS in various tissues; the GR and the bio-
chemical machinery for altered synthesis or degrada-
tion of particular mRNA and proteins responsible for
specific steroid actions.

Interactions between multiple endogenous steroid
hormones (e.g., sex hormones and glucocorticoids) as
well as exogenous CS can occur and represent complex
phenomena. In a manner similar to the CS, estradiol
(E2), the major female sex hormone, can rapidly equil-
ibrate within tissues (Puig-Duran et al., 1979), interact
with cytoplasmic estrogen receptors (ER), form acti-
vated ER complexes, and, consequently, translocate
into the nucleus and modulate its own sets of target
genes (Stossi et al., 2004). Cooperative binding of two
different steroid hormone receptors at single target
enhancer elements has been demonstrated (Tsai et al.,
1989). In the presence of both CS and estrogens, GR
and ER complexes in the nucleus can interact within
the promoter regions of several CS-regulated target
genes (Tynan et al., 2004; Whirledge et al., 2013). Such
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interactions result in a competitive antagonism of CS
gene regulation by E2.
The genomic actions of CS, often divided into catego-

ries of transactivation and transrepression, have been
extensively reviewed (De Bosscher et al., 2003). The GR
is considered a transcription factor with others that
include NF-kB, activator protein-1, and STAT5. After
distribution and receptor binding, the time course of
changes in gene and protein expression vary consider-
ably, but it is difficult to resolve which transcription
factor is involved without direct measurements of these
factors. Classic dogma (Adcock and Caramori, 2001;
Barnes, 2006) contends that the anti-inflammatory
effects of CS are mediated predominantly by trans-
repression, while the undesired metabolic side-effects
primarily stem from transactivation. However, this
traditional view has been challenged (Newton and
Holden, 2007; Vandevyver et al., 2013), ensuing the
discovery of novel transactivated genes that encode
proteins such as the glucocorticoid-induced leucine
zipper (GILZ) (D’Adamio et al., 1997). The therapeutic
(advantageous) relevance of transactivation remains
largely unestablished and remains an important
question in CS pharmacology. Recent studies (Ayyar
et al., 2015, 2017b, 2019a) have quantitatively mea-
sured and examined the integrative physiology and
pharmacology of GILZ regulation by endogenous and
exogenous CS.

Our studies and models have contributed unique
insights into the dynamics of the GR and their control
of CS actions. In particular, while the CS have been well
appreciated to differ in their PK and affinities to the GR
(Mager et al., 2003d), additional key controlling factors
that determine their PD and are components of models
are the type of transcription factor, translocation of the
CS-bound GR from cytosol into the nucleus, its binding
to GRE onDNA, control of the expression of hundreds of
genes, recycling of free GR from the nucleus, and
feedback downregulation of the GR mRNA. Both the
full occupation and depletion of cytosolic receptors and
themRNA feedbackmechanism account for tolerance to
CS, namely lesser effects on repeated dosing. Capturing
these processes in studies of tissues of large numbers of
animals (“giant rat” experiments) led to our first-
through fifth-generation CS models that were premised
on several basic PK/PD principles (Ramakrishnan et al.,
2002). In turn, this multicomponent receptor model
serves as the backbone of more complex systemsmodels
to be described in section IV. Our recent and continued
assessments of CS pharmacology involved the expan-
sion of our “giant rat” experimental paradigm to
consider both sexes. Carefully controlled animal studies
and systematic measurements of PK, receptor dynam-
ics, and gene (biomarker) expression combined with
advanced systems PK/PD analysis led us to unravel
a unique and natural PD interaction between CS and

Fig. 1. Schematic representation of the genomic mechanism of corticosteroids in tissues and the influence of estrogens on glucocorticoid signaling. ER,
estrogen receptor; FKBP, FK506 binding protein; GR, glucocorticoid receptor; hsp 70/90, heat shock protein 70/90; nGRE, negative glucocorticoid
response element; RNAP, RNA polymerase. Figure adapted from (Ayyar et al., 2017b).
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estrogens occurring in vivo in a time-, sex-, and tissue-
dependent manner (to be described in section IV).

III. Arenas of Mechanistic Modeling in PK/PD

A. Pharmacokinetic Models

PK serves as the driving force for drug access to target
sites. Drug input rates, distribution, and elimination
processes control both the duration of drug exposure
and, in turn, part of the duration of drug action. Since its
inception, efforts in theoretical and applied PK have
emphasized and evolved based on an appreciation of
physiology, pharmacology, biochemistry, physicochem-
ical, analytical methodology, mathematics, and statis-
tics. Although the term "pharmacokinetics" was first
introduced in 1953 (Dost, 1953), a systems approach to
describe the processes of drug absorption, metabolism,
distribution, and elimination was put forth as early as
1937 (Teorell, 1937). As displayed in Fig. 2, the major
types of PK analysis methods and models now include:
noncompartmental (NCA), basic and advanced com-
partmental, reversible compartmental, fully physiologic
(PBPK), and minimal physiologic (mPBPK) approaches.
Basic NCA aims to yield, as a useful starting point,
information regarding the systemic clearance and
steady-state volume of distribution, prime PK parame-
ters summarizing the major elimination and distribu-
tion properties of drugs. Simple compartmental models
represent semimechanistic frameworks based on a “tis-
sue cluster” concept (Riegelman et al., 1968), which
permit multiple-dose analyses and extrapolation, in-
corporate time-dependent and concentration-dependent
processes, and provide added insights into distribution
properties of drugs and organisms. More advanced

compartmental models have been developed in PK,
bearing complexities such as reversible systems (e.g.,
parent-metabolite interconversion, maternal-fetal dis-
position, enterohepatic recycling) and target-mediated
drug disposition (TMDD). Drugs that bind to their
pharmacological targets with high affinity and to
a significant extent (relative to dose), such as antibodies
(Wang et al., 2008) and some small molecules (Mager
and Jusko, 2001a; An, 2017), can exhibit TMDD, where
the drug-target interaction can be reflected in their
dose-dependent PK profiles (Levy, 1994; Mager and
Jusko, 2001a). The PBPK models are systems models
developed based on anatomic constructions and func-
tions such as tissue masses, blood flow, organ metabo-
lism, specific drug absorption sites, and the processes of
partitioning, binding, and transport. Such models have
shown considerable success in characterizing and pre-
dicting the concentration-time profiles of small mole-
cules (Rowland et al., 2011) and, more recently, large
molecules (Garg and Balthasar, 2007; Shah and Betts,
2012) in plasma, tissues, and other body fluids. The
“lumped” minimal physiologically based pharmacoki-
netic (mPBPK) models were introduced recently for
small and large molecules and provide more useful
assessments than do traditional mammillary models
(Cao and Jusko, 2012; Cao et al., 2013). These mPBPK
models provide a realistic basis for describing plasma
PK data and differ from the traditional mammillary
models in ways of initial distribution space (plasma),
physiologic assignments, and restrictions (blood flow
and tissue sizes), as well as flexibilities in handling
different clearance mechanisms. These models have
since been extended and applied to account for various
physiologic complexities including the TMDD of large

Fig. 2. Array of modeling approaches for pharmacokinetic data and systems, including noncompartmental analysis (NCA), basic compartmental
(mammillary) models, reversible PK models, TMDD models, minimal PBPK, and full PBPK models. PBPK, physiologically-based pharmacokinetic;
TMDD, target-mediated drug disposition.
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molecules (Cao and Jusko, 2014), kinetics of circulating
target antigens (recombinant human TNF-a) (Chen
et al., 2017), role of nonlinear binding of naproxen in
plasma and extracellular fluid (Li et al., 2017b), and the
sex-specific hepatic metabolism of MPL (Ayyar et al.,
2019b). Recently, an extended “population mPBPK”

approach was applied to study the plasma PK of
levonorgestrel in women, considering known altera-
tions in physiology that occur in obesity (Molins et al.,
2018). Both full PBPK and minimal models have been
successfully applied for the interspecies scaling of PK
from animals to humans (Kawai et al., 1998; Meno-
Tetang et al., 2006; Shah and Betts, 2012; Zhao et al.,
2015). To date, there appear to be no fully elaborated
PBPK models for any of the CS with direct measure-
ments of tissue concentrations. The nonlinear complex-
ities related to CBG binding and reversible metabolism
will be challenging for constituting PBPK models for
prednisolone and MPL. However, the PBPK of the less
complex CSs, dexamethasone and betamethasone, have
been simulated for pregnant women using the commer-
cial software Simcyp (Ke and Milad, 2019).
The mathematical formalism relating to more com-

plex PK phenomena such as reversible metabolism
(Ebling and Jusko, 1986; Cheng and Jusko, 1990,
1993) and maternal-fetal disposition (Samtani et al.,
2004, 2006a; Schwab et al., 2006) were established
during studies of CS disposition (Fig. 2). For CS and
an appreciable number of other drugs (e.g., spironolac-
tone, estradiol, dapsone, lovastatin) (Cheng and Jusko,
1993), some metabolites may be enzymatically con-
verted back to the administered parent compound,
a phenomenon recognizable upon either direct admin-
istration of both the parent and metabolite or assess-
ment of their stabilities in relevant body fluids. The
reversible metabolic properties of prednisolone, MPL,
and their keto metabolites were assessed extensively in
the rat (Haughey and Jusko, 1992), rabbit (Ebling et al.,
1985), and humans (Garg and Jusko, 1994). Simple
models for the interconversion between cortisol and
cortisone used area under the curve values to calculate
interconversion and elimination clearances (Gurpide
et al., 1963). Premised on understanding the underlying
determinants of drug disposition including nonlinear-
ities, analytical solutions for calculating the true clear-
ance and volume of distribution at steady-state as well
as two useful metrics, the exposure enhancement and
the recycled fraction, were derived for parent drug and
their reversible metabolites (Ebling and Jusko, 1986;
Cheng and Jusko, 1991). Current software for making
PBPK predictions do not account for the reversible
metabolism that affects a large number of drugs.
Antenatal use of CS to induce fetal lung maturation

in women at risk of preterm delivery is common in
clinical practice. The PK of the common treatment
CS, betamethasone and dexamethasone, were analyzed
in ovine and rodent models of pregnancy to assess

maternal-fetal disposition and factors controlling fetal
exposure (Samtani et al., 2004). These studies devel-
oped and applied area/moment analysis and compart-
mental PK modeling techniques involving models with
maternal-fetal distribution, exchange, and elimination
of drugs, requiring the simultaneous analysis of paired
maternal-fetal data obtained after both maternal and
fetal drug dosing. Mechanistic PK/PD modeling studies
were conducted in a rat model of pregnancy to link fetal
exposures of free dexamethasone and corticosterone to
their receptor/gene-mediated effects on stimulating
fetal expression of lung surfactant mRNA and protein,
with a goal of designing an optimal approach for dose-
sparing antenatal CS therapy (Samtani et al., 2006a,b).

B. Mechanism-Based Pharmacodynamic Models

The area of PK/PD modeling has evolved based on an
appreciation of basic pharmacological principles mostly
applied to static or in vitro systems (Jusko, 2013). Over
several decades, PD has grown from an empirical to
a mechanistic and quantitative endeavor that resulted
from improved analytical methods to measure various
biomarkers of drug effects, advances in computer
hardware, software, and statistical algorithms for pa-
rameter estimation, increased regulatory and academic
interest, and the continued refinement of PK/PDmodels
based on underlying physiologic mechanisms (Mager
et al., 2003e). It was in the mid-1960s when Gerhard
Levy, who is now viewed as the “Father of Pharmacody-
namics” (Fung and Jusko, 2015), proposed the first PK/
PD (“k∙m”) equation linking the in vivo time course of
a drug response (m representing the linear slope of
effect vs. the log of drug concentration) to the drug’s
first-order elimination rate constant (k) (Levy, 1964,
1966). Wagner subsequently proposed direct effect
models (Wagner, 1968), which employed the Hill equa-
tion reflective of the law ofmass action for drug-receptor
binding as a means to describe the full (nonlinear)
behavior of responses. Such direct effect models are
premised on the fundamental assumption that drug
responses are directly proportional to receptor occu-
pancy (i.e., with linear transduction), that plasma drug
concentrations are in rapid equilibrium with the effect
site, and that receptor binding is extremely rapid. In
accordance with these assumptions, the maximum or
peak effects should occur simultaneously with peak
drug concentrations. This basic PK/PD situation is
applicable for drugs affecting measured circulating
enzymatic activity such as the ACE inhibitory effects
of benazeprilat (Toutain et al., 2000) and the direct
immunosuppression of lymphocyte proliferation by
various CSs (Magee et al., 2002) where the drug and
target are interacting in blood.

Most in vivo responses, however, lag observed plasma
concentrations, a phenomenon resulting in hysteresis in
plots of response versus concentration (Levy et al.,
1969). This temporal displacement can result from
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various physiologic and/or pharmacological causes. The
field of mechanism-based PK/PD modeling has ad-
vanced greatly with the appreciation and development
of relationships between plasma drug exposure and
mechanisms of delayed drug action. Delayed responses
were first rationalized (Segre, 1968) as rate-limiting
drug distribution to a hypothetical “biophase” compart-
ment where the PD effect was assumed to occur. This
concept was later popularized (Sheiner et al., 1979) with
application of an “effect compartment” model, account-
ing for hysteresis between drug concentrations in
plasma and responses using a diffusion-like transfer
rate-constant (keo). This model, however, has been
misapplied in some cases where alternative mecha-
nisms producing delayed effects are plausible (Jusko
and Ko, 1994). Many therapeutic agents can interfere
with body homeostasis via indirect mechanisms affect-
ing the natural turnover of biologic substances, struc-
tures, or their functions. Four basic indirect response
models were developed and have been widely applied to
characterize numerous delayed PD responses where the
production (kin) or loss (kout) of the measured factor are
rate-controlling (Dayneka et al., 1993; Jusko and Ko,
1994; Sharma and Jusko, 1998). These models embrace
two basic tenets of PD: capacity limitation in target
binding or action of the drug and the presence of
turnover and homeostasis in physiology and disease.
This type of model was conceptualized and applied in
describing the suppressive effects of MPL on basophil
cell trafficking from the extravascular space into blood
(Kong et al., 1989) before it was extended to describe the
time course of many other drug responses. Figure 3
depicts the PK/PD model and effects of 0, 10, 20, and
40 mg doses of intravenous MPL on basophils in blood,
measured as whole blood histamine. After dosing, blood
basophils began to fall immediately, owing to their
movement into extravascular sites (kh) as the return (kr)
process was essentially fully inhibited. When MPL
concentrations fall below the IC50 value of about 2 ng/
ml, the cells return to the blood and gradually to the
baseline value. Similar response patterns were found
for plasma cortisol and blood lymphocytes. The indi-
rect models have since been expanded to consider
complexities such as depletion or accretion of precur-
sor substances (Sharma et al., 1998), circadian input
(Chakraborty et al., 1999b), circadian removal (Ayyar
et al., 2019c), multicompartment responses (Krzyzanski
and Jusko, 2001), cell life span loss (Krzyzanski et al.,
1999), drug interactions (Earp et al., 2004), baseline
variability (Sun and Jusko, 1999; Woo et al., 2009),
physiologic limits (Yao et al., 2006b), role of drug
infusions (Krzyzanski and Jusko, 1997), and optimization
of dosage regimens (Gobburu and Jusko, 2001). Recently,
linear combinations of engineering feedback control
terms were incorporated into classic indirect response
models as a simple means for modeling PD processes
subject to autoregulation (Zhang and D’Argenio, 2016).

The majority of rapid effects of CS, such as leukocyte
and lymphocyte dynamics (Wald and Jusko, 1994; Chow
et al., 1999; Mager et al., 2003a), blood histamine (Kong
et al., 1989), and cortisol suppression (Magee et al.,
2001), are well described by simple indirect response
models. Clinical PD responses of CS have been exam-
ined extensively in relation to chronotherapy (Fisher
et al., 1992), design of steroid-sparing regimens (Reiss
et al., 1990), drug-drug interactions (Kandrotas et al.,
1987; Slayter et al., 1996), sex (Lew et al., 1993), obesity
(Dunn et al., 1991), and renal failure (Jusko et al.,
1995b), utilizing indirect response-based modeling
approaches. Whereas the basic indirect response mod-
els assume a constant steady-state baseline value in
the absence of drug, some biomarkers may exhibit
non-stationarity or a time-dependent baseline. Periodic
production rates ranging from a simple cosines to asym-
metric ramp functions have been incorporated for the
indirect response modeling of diverse CS responses,
such as cortisol suppression (Rohatagi et al., 1996;
Chakraborty et al., 1999b), lymphocyte trafficking
(Magee et al., 2002), and the receptor-mediated stimu-
lation or inhibition of target mRNA (Sukumaran et al.,
2011b). The Derendorf laboratory has also extensively
used indirect response models to capture the PK/PD of
various CS. One such study found that the time of day of
dosing affected responses such as cortisol suppression
and lymphocyte trafficking (Xu et al., 2008). The model
comprehensively included the joint effects of free pred-
nisolone and cortisol on inhibition of kin for lymphocyte
suppression. The modeling was based on the PK of free
prednisolone, but it is difficult to discern whether free or

Fig. 3. (Top) Schematics of the pharmacokinetic (left) and two-
compartment cell distribution and direct suppression model for basophils
(whole blood histamine) (right) in relation to methylprednisolone (CMP)
concentrations where IC50 is the CMP producing 50% inhibition of
basophil return to blood (kr). (Bottom) Methylprednisolone concentrations
(left) and blood basophils as whole blood histamine concentrations (CB)
vs. time in a normal male subject at baseline and after 10 (d), 20 (j) and
40 (m) mg of intravenous methylprednisolone sodium succinate. Solid
lines depict joint model fittings. Figure modified from Kong et al., 1989
with permission of John Wiley & Sons, Inc.
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total prednisolone best controls the pharmacodynamics,
as both concentrations have generally similar washout
profiles after single doses (Wald et al., 1992).
In extending our interests in structure-activity rela-

tionships and dose equivalencies for CS, Mager et al.
(2003a) compared the PK of cortisol, prednisolone,
MPL, and dexamethasone in healthy volunteers and
assessed the effects of these CS on endogenous plasma
cortisol, T-helper and T-suppressor lymphocytes, and
neutrophils in blood. Indirect response models were
employed that allowed joint assessment of the system
variables (turnover) while resolving EC50 values for the
four CSs. The latter values differed for each of the
biomarkers, but showed excellent correlations with
relative receptor affinities of the four CS. These studies
demonstrated both the modeling rigor of indirect re-
sponse models to capture relatively rapid CS effects as
well as confirmed classic expectations that PK, receptor
binding, and turnover (the three “pillars”) are advanta-
geous in describing common effects across multiple CSs.
Figure 4 demonstrates the seven primarymechanism-

based PKPD models that are often employed as a start-
ing point in the “top-down” analysis of the time course of
drug responses (Jusko, 2013). The figure includes the
direct effect, biophase, and indirect response models
already described. All models except the direct effect
and biophase models include a turnover process along

with a pharmacologic function for the mechanism of
action. Figure 4, middle left, depicts a basic model with
self-replication of cells (ks) and a drug-induced loss
process (kL). Originally proposed to account for the
actions of cytotoxic anticancer drugs (Jusko, 1971), this
type of model has also been applied to some antibiotics
(Zhi et al., 1988) and antimalarial drugs (Gordi et al.,
2005). Figure 4, middle center, displays a basic model
with zero-order production (kin), first-order loss (kout),
and an irreversible second-order inactivation of the
response variable. This type of model has been used to
account for the anti-platelet inactivation of cyclooxygenase-
1 by aspirin (Yamamoto et al., 1996) and effects of
proton pump inhibitors (Puchalski et al., 2001). Drug
response may be the result of a signaling cascade
controlled by secondary messengers as well as tran-
scripts and proteins. These post-receptor events may be
rate-limiting, producing additional time delays distin-
guished most readily from biophase or turnover delays
by a latency in the onset of drug response relative to
drug concentrations. Transduction processes can be
rapid or slow, single or multiple, linear or nonlinear. A
general time-dependent transduction model has been
proposed (Sun and Jusko, 1998; Mager and Jusko,
2001b), which introduces a series of transit compart-
ments with equal time-constants (t). These models
(Fig. 4, middle right) offer a simplistic and flexible

Fig. 4. Seven major PK/PD models based on mechanisms of drug action and primary rate-limiting steps in the kinetic, target-binding, or physiologic
process.
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method to capture relatively long-onset delays for
applicable drug responses in the absence of measure-
ments of the true biologic mediators. Many applications
of this model have been reported (Mager and Jusko,
2001b), including the delayed chemotherapeutic effects
of methotrexate (Lobo and Balthasar, 2002).
Added to these basic PD models should be consider-

ation that the rates of binding and dissociation of drug
with their receptors may be either contributory, rate
limiting, or account for delayed responses (Fig. 4,
bottom center). This process is often found in TMDD
models and is a component of our complex receptor
models, although these rates tend to be relatively fast
for CS compared with later steps in the receptor/gene-
mediated transduction chain. For example, the half-life
for the koff dissociation of prednisolone from hepatic GR
receptors is about 2 minutes (Boudinot et al., 1986). Of
interest, the kon and koff rates of 8 calcium channel
blockers were used as the rate-determining factors
controlling delayed effects on blood pressure in hyper-
tensive subjects (Shimada et al., 1996).
Combinations of the basic PD models have served to

provide a mechanistic appreciation of drug interactions
compared with empirical methods such as Loewe
additivity and isobolograms. In particular, Earp et al.
(2004) provided equations describing dual drug effects
occurring in the four basic indirect response models.
The long-mysterious concept of drug synergy could be
explained as the natural multiplicative consequence
of two drugs having opposite effects on each side of
a turnover process (e.g., drug A inhibiting production
and drug B stimulating removal). Chakraborty et al.
(1999a), in assessing immunosuppressive interactions
of IL-10 and prednisolone for lymphocyte proliferation,
introduced a drug interaction factor, psi (c), which was
attached to an IC50 value to describe deviations from
expectations of joint additive responses to two drugs
using classic direct relationships such as competitive
and noncompetitive inhibition.
As basic PK/PD modeling moves toward dealing with

biologic and pharmacologic problems of ever-increasing
complexity, more comprehensive systemsmodels can be
developed through the assembly of the basic components
outlined in this section. Such has been our approach in
evolving several generations of increasingly mechanistic
PK/PD models to decipher the genomic mechanisms of
CS actions (Boudinot et al., 1986; Nichols et al., 1989; Xu
et al., 1995; Sun et al., 1998a; Ramakrishnan et al., 2002;
Jin et al., 2003; Mager et al., 2003d; Hazra et al., 2007)
(highlighted in section IV).

C. Enhanced Pharmacokinetic/Pharmacodynamic
and Systems Pharmacology Models

1. The Systems Approach. Modeling as a scientific
endeavor for assimilating knowledge embodies the pro-
cess of human cognition itself, to wit “the entire breadth
and depth of the human understanding of our perceived

world is based onmodels” (Westwick andKearney, 1998).
As such, parallels may be drawn among two widely
adopted philosophies in psychology and the systems
approach. In attempting to rationalize human percep-
tion, Gestalt philosophy emphasized that perceptual
organization involved the processing ofwholes andwhole
processes possessed of defined intrinsic laws. In consid-
ering the living organism as an open, nonlinear, and
highly dynamic system, the general systems theory (von
Bertalanffy, 1950) was advanced, a scientific dogma
concerned with the principles that apply to systems in
general. The major goal of a systems approach in biology
was to develop theories (mathematical models) to serve
as “gestalts” for interpreting experimental observations
and pave the way to establish biology as an “exact”
science. These ideals are consonant with the works of
pioneering systems physiologists such as Yates et al.
(1968), who stated that “a system of coupled, connected
and interacting biological components has properties
beyond those that can be discovered by analysis of the
components in isolation” and, relatedly, that “the objec-
tive of systems biology is to determine the dynamic
attributes of a biosystem of interest, and to rationalize
these attributes in terms of particular properties of the
components, signals, and connections involved”. Many
modern conceptions of physiologic control are deeply
rooted in systems theories ranging from feedback and
homeostasis (Cannon, 1929) to allometry and ontogenic
growth (Adolph, 1949; von Bertalanffy, 1950).

2. Systems Biology and Enhanced Pharmacokinetic/
Pharmacodynamic Modeling. Systems biology is a
multi-disciplinary endeavor, borrowing from genomics,
transcriptomics, proteomics, metabolomics, and network
modeling, geared toward integrating the interactions of
biomolecules across various scales of biologic organiza-
tion (Oltvai and Barabasi, 2002). As such, systems
modelers tend to seek holistic models that assemble all
the known components of the biologic system of interest
to simulate interrelationships and outcomes upon per-
turbing various components within the system. With
such extensive networks, the dynamic models often
operate in a simulation mode with some degree of
subjective calibration of parameters made with avail-
able experimental data. Complex systems models have
been developed for understanding inflammation (Dong
et al., 2010), the immune system (Palsson et al., 2013),
and for control of calcium homeostasis and bone remod-
eling (Peterson and Riggs, 2010). Building such models
and data repositories often requires a team approach
utilizing the input of experts from various disciplines.
Once developed, they offer a platform for common
understanding, enlightened discussion, efficient exper-
imentation, and continual advancement of improved
quantitative models (Jusko, 2013). Of note, the success-
ful application of a computational model of the ErbB
signaling network informed the discovery of MM-111,
a bispecific antibody targeting ErbB2/ErbB3 receptor
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signaling, developed by Merrimack Pharmaceuticals
(Schoeberl et al., 2009). The model predicted superior
efficacy upon dual targeting of ErbB2 and ErbB3
compared with ErbB3-targetedmonotherapy in the treat-
ment of ErbB2-amplified breast cancers (McDonagh
et al., 2012).
The basic mechanism-based PK/PD models (Fig. 4)

tend to incorporate one or more of the major rate-
limiting processes, including PK, receptor binding, and/
or homeostatic mechanisms controlling drug responses.
Unlike systems biology approaches that employ multi-
scale network-based structures, basic PK/PD models
often rely on a single end-point (biomarker) response,
and typically seek parsimony and robust statistical
reliability of model parameters. Throughout most of
the 20th Century, systems biology and PK/PD have
largely evolved in parallel as distinct disciplines. There
is now an appreciation for synergistically merging the
fields of systems biology and PK/PD (Iyengar et al.,
2012) to enhance the rapidly growing discipline of QSP,
which aims to discover and understand therapeutic
molecules at the levels of target engagement, changes in
cellular biochemistry, impact on human pathophysiol-
ogy, and optimal clinical use (https://www.nigms.nih.
gov/training/documents/systemspharmawpsorger2011.
pdf). In practice, QSP focuses on the quantitative model-
ing of dynamic interactions among individual elements
within a system and serves to guide drug discovery and
clinical development by developing formal mathematical
models that incorporate data at multiple scales. The
development and application ofmultiscale PK/PDmodels,
therefore, forms an integral facet of the discipline.
The major components of systems PK/PD models for

drugs altering genomic and/or proteomic signaling net-
works, such as the CS, are depicted in Fig. 5. This
paradigm incorporates the basic determinants linking
drug exposure in plasma to response (Jusko et al., 1995a;
Mager et al., 2003e) and comprises a more elaborate
representation of post-receptor signaling events occur-
ring through gene-protein networks. Drug in plasma
distributes to various body spaces, including the effect-
site or “biophase.” Unbound drug concentrations at the
target site serve as the driving force for engaging free
receptors, resulting in the formation of the drug-receptor
complex (target engagement), which in turn stimulates
or inhibits the production or loss (turnover) of endoge-
nous biomarkers or mediators (biosignal flux). For drugs
with complicated mechanisms, such as CSs, the drug-
receptor complex evokes a polygenic response at the
subcellular to organ levels, primarily by altering the
turnover rates of numerous primary target genes as well
as secondary messengers. Some of the altered mRNA
and proteins mediate pharmacologic effects of the drug,
whereas others represent mediators of toxicities associ-
ated with drug exposure. The signaling pathways per-
turbed by drug may not transduce in a linear manner to
mediate efficacious and toxic responses but can act

through intertwined transduction networks, complicat-
ing safety-efficacy relationships, as exemplified by geno-
mic steroid actions. Additional complexities such as
nonstationary baselines (Sukumaran et al., 2011b),
multiple receptors (Ayyar et al., 2019a), feedback/
tolerance/rebound phenomena (Sun et al., 1998a), drug
interactions (Li et al., 2017c), sex differences (Ayyar
et al., 2019a,b), pathophysiological changes (Earp et al.,
2008a), and genetic polymorphisms (Iyengar et al.,
2012) may be encountered for one or more processes
included within this systems PK/PD framework.

3. Challenges and Opportunities. Considerable op-
portunities and challenges exist in moving from basic
toward systems PK/PD models. Questions regarding
model granularity (holism vs. reductionism), optimal
approaches between robust model fitting and simula-
tion, multidimensional data requirements, and scaling
of drug responses from in vitro and animal models to
patient outcomes frequently arise. Such issues are of
ongoing research (and debate) among systems biologists
and PK/PD modelers. Diverse receptor-related and
post-receptor signaling mechanisms require further
elucidation. Homeostatic mechanisms present at the
whole body to intracellular scales feature a broad array
of feedback loops and compensatory controls (Brandman
andMeyer, 2008), some of which describe drug tolerance
and rebound phenomena. Homologous desensitization is
known to occur when a receptor decreases its response
upon prolonged and/or supraphysiologic exposure to an
agonist, causing an uncoupling of the receptor from the
signaling cascade, attenuating drug response. Post-
receptor transduction cascades involving multiple hori-
zontally and vertically signaling protein networks may
represent rate-controlling factors that introduce consid-
erable lags between drug exposure and response. Trans-
duction delays are often accounted for using multiple
transit steps in basic PK/PD modeling (Mager and
Jusko, 2001b). Substitution of empirical transit delay
steps with the measured dynamics of mechanism-
based biomarkers and signaling biomolecules (mRNA,
proteins, phosphoproteins, and enzymes) along with
their inter-connections represent a current and future
area of opportunity in evolving more mechanistic sys-
tems pharmacology models.

Both basic PK/PD and QSP modelers should bear in
mind that the major goal of mechanistic modeling is
a translational one (Mager et al., 2009); measurements
in cell lines and animal models need to reflect relevant
processes in humans. Although it is somewhat com-
monplace for a conserved model structure to be appli-
cable across species (Mager and Jusko, 2002b; Mager
et al., 2003c), factors such as species differences in the
cross-reactivity of drug to target and varying time scales
of physiologic phenomena (e.g., 4-day rodent estrous vs.
28-day human menstrual reproductive cycle) should be
considered. While allometric and PBPK strategies are
relatively well-established and routinely applied for the
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interspecies scaling of PK (Lin, 1998), species-
dependent variability in key determinants beyond
general anatomy (blood/lymph flows, organ volumes,
renal filtration) must be accounted for with distinct
considerations for small molecules (e.g., protein bind-
ing, metabolic enzymes, transporters) and large mol-
ecule therapeutics (e.g., circulating soluble target
antigen, FcRn expression, and target abundance in
tissue sites of action and catabolism). The challenges
of scaling entire systems PK/PD models remain
considerable, although some success has been met
with use of mechanistic PK/PD models (Kagan et al.,
2010). Whenever possible, the ability to correlate
parameters relating to drug-receptor binding (kon, koff,
or KD), drug efficacy (Emax and EC50), growth (kg), and
turnover (kin and kout) between in vitro measurements
and in vivo estimates from preclinical and clinical data
must be evaluated.
Measurement of the inhibition of mitogen-stimulated

lymphocyte proliferation, either in isolated cells or in
whole blood, has been a frequently used method to
assess the ex vivo immunosuppressive activity of CS.
Whole blood from male human subjects was used to
obtain IC50 values of 10 common CSs (Mager et al.,
2003b). There was excellent (r25 0.95) correlation of the
reciprocal of the IC50 values with the relative receptor
affinity of these compounds. This is a type of “direct
effect” that has relevance in vivo. Studies in both rats
(Meno-Tetang et al., 1999) and humans (Magee et al.,
2002) showed that prednisolone had dual effects on
circulating lymphocytes: a cell trafficking effect with
reduction of cell numbers (similar to the profiles in

Fig. 2) and inhibition of their ability to respond to
mitogen stimulation. This work demonstrated the
complexity of CS effects, the insightful application of
mechanistic PK/PD modeling to unravel the relative
contributions of these dual effects, and the correspon-
dence of these animal and human systems.

IV. Pharmacokinetic/Pharmacodynamic/Systems
Modeling of Corticosteroids

The receptor/gene-mediated actions of CS have been
of interest to us for over three decades. Several gen-
erations of increasingly mechanistic PK/PD models of
gene-mediated steroid actions have been developed,
with each successive model evolving based upon on
an increasing knowledge of pharmacogenomics and
advancements in bioanalysis. These models have thus
far demonstrated that the major determinants of geno-
mic steroid responses include: 1) disposition character-
istics of the steroid, 2) relative receptor affinity of the
steroid, 3) availability of cytosolic receptors, and 4)
secondarily induced mediators. Improved QSP models
were developed in parallel with advances in our exper-
imental “giant-rat” studies, where groups of animals are
given various doses of CS and blood andmultiple tissues
sampled at sacrifice to assess PK, tissue receptor
content, tissue gene expression (both specific and with
gene arrays), proteomics, tissue enzyme activities,
various circulating biomarkers, and sometimesmeasur-
able structures or functions.

The earliest studies in our laboratory examined
literature data for effects of prednisolone on TAT

Fig. 5. Basic components of systems pharmacokinetic/pharmacodynamic models of genomic drug action. The PK is reflected by the concentration of
drug in the central (plasma) compartment and its distribution to the effect site(s) in tissues. Local concentrations of unbound drug bind with free
receptors that are synthesized (ksyn) and degraded (kdeg) over time in tissues. Target engagement and occupancy serves as the driving force for the
inhibition and/or stimulation of the production (kin) or removal (kout) of multiple target gene biomarkers. Genomic markers and mediators of both
therapeutic and adverse drug effects signal through interconnected gene (mRNA and protein) networks to mediate clinically measurable PD end-point
responses. For drugs with genomic mechanisms, such as corticosteroids, signaling proteins related to efficacy and toxicity often do not transduce in
a linear manner but interact through intertwined signaling networks.
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induction in rat liver (Boudinot et al., 1986) and then
employed the adrenalectomized (ADX) male rat model
to examine steroid actions (Nichols et al., 1989). The use
of ADX animals obviated complicating factors such as
the influence of endogenous glucocorticoids. Tyrosine
aminotransferase (TAT) was studied as a classic bio-
marker for genomic effects of CSs in rat liver (DeBosscher
et al., 2003). This experimental paradigm subsequently
evolved to examine the PK/PD effects of MPL in intact
(non-ADX) rats, with consideration of endogenous steroid
effects and circadian rhythms (Hazra et al., 2007).
Several aspects of CS-induced changes in metabolic

functioning were explored in our animal studies, lead-
ing to new insights into the diversity of receptor/gene-
mediated changes. Extensive studies were undertaken
to examine the mechanisms by which CSs alter glucose
metabolism and induce insulin resistance in rats. The
effects of acute and chronicMPL on glucose homeostasis
were investigated, and a series of mechanistic PK/PD
models were proposed to explain the time course of
systemic glucose changes (Jin et al., 2004; Almon et al.,
2005b; Yao et al., 2006a; Jin and Jusko, 2009a,b; Fang
et al., 2011; Sukumaran et al., 2011b). By appreciating
that CS-induced glucose dysregulation results from the
interplay of multiple target organs (whole body meta-
bolic syndrome), a meta-modeling analysis was per-
formed to integrate many of the key biochemical
processes and roles and interrelationships of the liver,
muscle, adipose, and pancreas in the development of
steroid diabetes (Fang et al., 2013). The developed
systems model jointly incorporated multiscale experi-
mental measurements including drug PK, receptor
binding components, target gene mRNA perturbations
in multiple tissues after MPL dosing (e.g., hepatic
PEPCK, leptin in adipose, and ILR1 and IRS-1 in
muscle), plasma hormones and biomarkers (e.g., leptin,
insulin, glucose, and free fatty acids), and food intake.
Thismulti-organmodel facilitated our understanding of
how well an array of hypotheses on how CSs alter
glucose metabolism explained the overall experimental
data sets obtained in rats tested at multiple dose levels,
dosage regimens, and over time.
The integrated effects of circadian rhythms, MPL PK,

and the glucose/free fatty acids/insulin system on the
regulation of two important adipokines, adiponectin
and leptin, were evaluated using systems PK/PD mod-
eling (Sukumaran et al., 2011b). The model simulta-
neously captured the time course of adiponectin and
leptin mRNA in adipose tissue and associated changes
in their circulating protein concentrations as well as
glucose, insulin, and free fatty acid concentrations in
plasma, under homeostatic (circadian) and perturbed
(MPL-dosed) conditions. The receptor-mediated en-
hancement of leptin mRNA and protein by MPL were
well-described based on the fifth-generation model
alone. Unlike the case for leptin, MPL dosing elicited
a complex, biphasic response profile for adiponectin over

time (sharp rise, fall below baseline, and eventual return).
Evidence from various literature reports indicated the
influence of multiple hormones and transcription factors
(e.g., insulin effects) on adiponectin gene regulation in
adipose tissues (Sukumaran et al., 2012). Therefore, the
model incorporated measured MPL effects on glucose/free
fatty acids/insulin dynamics and linked the secondarily
induced stimulation of insulin on adiponectin. This en-
hanced model enabled a more complete and mechanism-
based description of the multi-factorial control of MPL
on adipokine regulation and, consequently, was able to
characterize the biphasic profile of adiponectin.

Our early CS PK/PD studies were confined to male
rats. Sex is a relevant factor influencing the PK/PD of
many drugs. Despite this recognition, very few pre-
clinical PK/PD studies to date include sex as a variable.
We often examined sex differences in the disposition
and pharmacology of CS in humans, animals, and cell
systems. Sex differences in the PK (clearance) and PD
(sensitivity to adrenal suppression) of MPL have been
observed in healthy subjects (Lew et al., 1993). Females
exhibited faster clearances and lower IC50 values than
males. Ex vivo assessments of sex-related differences in
the sensitivity of prednisolone to inhibit lymphocyte
proliferation in whole blood have been reported in
humans, rabbits, and rats (Ferron and Jusko, 1998).
Modest-to-pronounced sex differences were recently
observed in collagen-induced arthritis (CIA) disease
progression, in the PK of dexamethasone, and in the
anti-inflammatory efficacy of the drug in CIA rats (Song
et al., 2018). Our understanding of CS systems pharma-
cology was recently broadened by extending experimen-
tal and pharmacogenomic modeling assessments from
the intact male rat model to females with consideration
of female reproductive cycles (as described section IV.3).
These studies are consonant with recent emphasis
(Clayton and Collins, 2014; Danska, 2014) that trans-
lational studies of sex differences should be expanded.

Pathophysiological changes in the system arising
from disease progression represents another crucial
component that must be taken into consideration while
evaluating PK/PD. The fifth-generation model of CS
developed from our studies of MPL (Ramakrishnan
et al., 2002) was incorporated into a larger systems
model to describe inflammatory disease progression in
a male rat model of collagen-induced rheumatoid
arthritis (paw edema) and the effects of dexamethasone
on inhibition of pro-inflammatory cytokine genes in
inflamed rat paws (Earp et al., 2008a,b). The systems
model comprised an assembly of several components:
the fifth-generation PK-receptor model, multiple transit
steps reflecting the slowly evolving underlying arthritis
disease progression, turnover of pro-inflammatory cyto-
kine mRNA, and the contribution of three cytokines to
the observed paw edema. The pronounced suppression
of multiple pro-inflammatory genes (TNF-a, IL-6, IL-1b)
by dexamethasone demonstrated the key mechanism of
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CSaction and distinct “clinical” advantage of such broad
effects. This comprehensive model was subsequently
expanded by incorporating a systems model of bone
remodeling (Lemaire et al., 2004) to further explore the
molecular effects of arthritis and dexamethasone on
bone mineral density (Lon et al., 2015). This study
incorporated dynamic measurements of IL-6 and IL-1b
protein concentrations in arthritic paws as well as
protein concentrations of two key regulators of bone
turnover, receptor activator of nuclear factor kappa-B
ligand (RANKL), and osteoprotegerin (OPG). The grad-
ual and sustained increase in RANKL:OPG ratios in
CIA rats during disease progression indicated the pres-
ence of active bone resorption, which was confirmed by
direct measurement of bone mineral density. The ex-
tended systems model successfully captured both the
progression of RANKL and OPG in rheumatoid arthritis
as well as the therapeutic PD effects of dexamethasone
dosing. Studies are ongoing to extend our PK/PD/PG/
DIS assessments of dexamethasone from arthritic male
rats to females. Initial indications are that, like in
humans, female rats develop rheumatoid arthritis more
readily and quickly and are less sensitive than males to
the anti-inflammatory effects of dexamethasone (Song
et al., 2018).
Systems PD modeling that integrates “horizontal”

and “vertical” aspects of drug actions are critical for
gaining quantitative insights into drugs, such as CS,
with complex mechanisms. Since hundreds of steroid-
target genes are regulated in an organ, the “horizontal”
can be captured by studying large-scale gene expression
changes within tissues (Yang et al., 2008). Our early
pharmacogenomic assessments of CS effects in rat
tissues used our “giant rat” paradigm and employed
early microarray platforms to demonstrate that MPL
caused both increased and decreased expression of
hundreds of genes in the liver (Almon et al., 2005a),
skeletal muscle (Almon et al., 2007), kidney (Almon
et al., 2005c), and lung (Sukumaran et al., 2011a). These
findingswere accompanied by development of new data-
mining techniques for assessing time-series data and
by identification of affected metabolic pathways that
helped underscore why CS produce such extensive
metabolic derangements in the body, especially on
chronic use (Acevedo et al., 2019). Subsequent bioana-
lytical developments in proteomics involved highly
sensitive and specific LC/MS/MS methodology that
could measure hundreds of proteins in livers from our
“giant rat” experiments (Qu et al., 2006; Nouri-Nigjeh
et al., 2014). Questions regarding the complementar-
ity (or lack thereof) between mRNA and proteins have
been of general interest in molecular and systems
pharmacology, as protein expression is often cited as
being more reflective of drug efficacy and toxicity than
mRNA expression. While some researchers believe that
changes in transcript expression are seldom accompa-
nied by concomitant alterations in protein profiles,

these are often based on same-time single samples.
This general question, along with improved bioanalyt-
ical capabilities, led to our comparisons of tandem and
temporal genomic and proteomic effects of MPL. Hier-
archical clustering based on temporal directionality of
the common genes quantifiable at both the mRNA and
protein levels revealed two dominant patterns: one of
these patterns exhibited complementary mRNA and
protein expression profiles (both changing in the same
direction), whereas a second pattern indicated that
changes in the mRNA were accompanied by changes
in associated proteins in the reverse direction (Kamisoglu
et al., 2015). Our previous studies using microarrays
provided the basis to model the possible receptor-
mediated mechanisms controlling the time course of
several mRNAs (Jin et al., 2003). Expanding upon this
work, a series of mechanism-based pharmacogenomic
models were developed that jointly captured the emer-
gent temporal transcript and protein expression patterns
of over 120mRNAand proteins perturbed byMPL (Ayyar
et al., 2018a). Together, our bioinformatics (Kamisoglu
et al., 2015) and model-based analyses (Ayyar et al.,
2018a) indicate that transcript expression recapitulated
protein dynamics for approximately 40%–50% of the
genes for which both transcript and protein information
were available within the -omics data sets. Our studies
have demonstrated that collection of time-series PD
data allows the connectivity between mRNA and pro-
teins to be readily revealed, although the changes may
occur with complex (and often opposite) directionalities.

When assessing CS effects on the multiplicity of
biomarkers, genes, and proteins affected in both normal
and drug-treated rat models, it is essential to consider
the endogenous and often circadian behavior of these
PD variables. We enacted “giant-rat” studies under
carefully controlled light/dark conditions and eutha-
nized normal rats at various times over the 24-hour
light/dark cycle and used microarrays to assess gene
expression in various tissues. Circadian changes of
dozens of genes in rat liver, lung, muscle, and fat were
identified and compared showing peaks and nadirs at
differing times of the 24-hour clock for various clusters
of genes with only partial concordance across tissues
(Mavroudis et al., 2018a). Several known core-clock
genes were found in all tissues and an integrated model
for control of natural circadian rhythms was applied
across the four tissues (Mavroudis et al., 2018b). Systems
models for CS effects in both animals and humans need
consideration that corticosterone (rats) and cortisol
(humans) plus large numbers of genes and biomarkers
are controlled by circadian rhythms that serve as time-
varying endogenous baselines and may reflect both
normal and deranged physiologic functioning. Several
of our enhanced PK/PD models have these complexities
accounted for.

The “vertical” in systems modeling is reflected by the
intermediarymechanisms linking drug PK and receptor
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binding to resulting pharmacogenomic changes at
the level of mRNA (Ramakrishnan et al., 2002) and
proteins, and ultimately, to clinically-relevant PD out-
comes (Earp et al., 2008a; Ayyar et al., 2018b). Ourmost
recent efforts showcase the application of combined
systems (experimental and modeling) approaches
to decipher the “horizontal” and “vertical” PK/PD/
pharmacogenomic (PK/PD/PG) relationships of MPL in
relation to: 1) circadian gene expression and tissue-
specific responses, 2) biologic signaling networks, and
3) sex differences, utilizing systems pharmacology
approaches supported with data from microarray and
proteomics analysis, systemic physiologic measure-
ments, and/or more focused quantitation of useful
biomarker(s). The development and basis of the
animal model systems, modeling strategies employed,
major results, and lessons learned from these studies
are summarized.

A. Lesson 1: Multi-Tissue Modeling of the
Glucocorticoid-Induced Leucine Zipper Gene
Delineates Major System Determinants of Genomic
Steroid Response

The genomic response to MPL was examined in
various tissues from intact male rats by employing
GILZ (Ayroldi and Riccardi, 2009), an important medi-
ator of the anti-inflammatory actions of CSs, as a geno-
mic biomarker. Important early steps involved the
identification, assay development, and application of
a sensitive, ubiquitously expressed, and pharmacolog-
ically relevant biomarker of CS actions. Literature
reports and available in-house tissue microarray data
(Almon et al., 2003, 2004; Sukumaran et al., 2010,
2011a) were mined to identify a subset of candidate
genes, of which GILZ was pursued for further study.
Features making GILZ a more robust biomarker com-
pared with other routine gene markers of interest [e.g.,
tyrosine aminotransferase (TAT), glutamine synthetase,
and phosphoenolpyruvate carboxykinase (PEPCK)] in-
cluded: 1) ubiquitous expression in multiple tissues
in humans (Cannarile et al., 2001) and rats (Ayyar
et al., 2015), 2) exquisite sensitivity to glucocorticoids
due to the presence of multiple functional GREs in its
promoter region, and 3) its relation, in part, to anti-
inflammatory CS efficacy.
In addition to quantifying the basal presence of GILZ

in multiple rat tissues (Ayyar et al., 2015), robust
circadian oscillations were identified in lung, muscle,
and adipose tissue (Ayyar et al., 2017b) over the light:
dark cycle in rats, a pattern entrained to that of
endogenous corticosterone release in rats. Expression
of GILZ was strongly enhanced (500%–1080%) in a time-
dependent manner in the same tissues upon dosing
50 mg/kg i.m. MPL. In all three tissues, GILZ returned
to its nonstationary baseline beyond 24 hours after
MPL. Mild circadian rhythms in GR mRNA and robust
downregulation by MPL (40%–80%) were quantified.

Simultaneous modeling of circadian and treatment
tissue data sets was performed to: 1) analyze the PD
profiles of MPL-enhanced GILZ within the context of its
nonstationary baselines, 2) delineate determinants
controlling the tissue-specific dynamics of GILZ, and
3) predict GILZ dynamics under different dosing regi-
mens. The fifth-generationmodel for CS (Ramakrishnan
et al., 2002) was adapted to include circadian production
rates for GR and GILZ mRNA using a harmonics-based
approach (Krzyzanski et al., 2000) to account for circa-
dian oscillations in both biomarkers (Fig. 6A). The
overall model was constructed with a series of differen-
tial equations linkingMPLPK (free drug in plasma), free
and bound receptors, receptor mRNA dynamics, and
GILZ mRNA dynamics in rats. A transduction compart-
ment model was used to describe the time course of the
active drug-receptor complex in the nuclei of cells,
coupled with a first-order partial recycling of free
receptors. The nuclear concentrations of the complex in
tissues were used to stimulate the production of GILZ
mRNA. An inhibitory indirect response model was used
to describe the downregulation of the production of the
receptormRNA, also driven by the nuclear drug-receptor
complex density. Simultaneous modeling of control and
bolus MPL data elucidated mechanistic features of GILZ
regulation in tissues and jointly captured the baseline
and PD profiles in muscle, lung, and adipose tissue
(Fig. 6B). Next, the quantitative model, along with the
estimated parameter values,was applied to predict GILZ
dynamics a priori upon chronic steroid dosing. A follow-
up in vivo study confirmed that the model successfully
and quantitatively predicted the dynamics of GILZ in
adipose and lung during 0.3 mg/kg/h s.c. dosing of MPL
over 1 week (Fig. 6C). Of importance, the model was able
to predict accurately the tolerance behavior developed
upon chronic drug exposure in both tissues, resulting in
a lower steady-state of GILZmRNAbeyond 48 hours and
throughout the 7-day infusion. These observations are
consistent with previous repeated-dose studies of MPL,
which demonstrated tolerance in the hepatic profiles of
TAT mRNA and activity due to decreased free cytosolic
receptors (Sun et al., 1998b). This analysis indicated that
absolute baseline expression of GILZ and GR dynamics
(especially feedback inhibition of receptor mRNA result-
ing in reduced free receptor densities) remained impor-
tant, global, system-specific determinants of genomic
GILZ response to MPL. Collectively, these studies pro-
vided a quantitative and mechanistic framework for the
application of GILZ as a tissue-wide PD marker of an
anti-inflammatory mediator of CSs.

B. Lesson 2: Simple to Complex Mechanisms of
Hepatic Receptor/Gene/Protein-Mediated Signaling
Connect Methylprednisolone Exposure to Metabolic
and Immune-Related Pharmacodynamic Actions

This body of work extended previous generation
receptor/gene-mediated models of CS by demonstrating
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that MPL elicited pharmaco/toxico-dynamic responses
through simple-to-more complex downstream signal-
ing mechanisms controlled by receptor/gene/protein-
mediated signaling. In our experiments to model
the receptor-mediated, transcriptomic, and proteo-
mic determinants of CS effects on whole body PD
responses, male ADX rats were given a 50 mg/kg bolus
of MPL and in vivo measurements included steroid in
plasma, microarray-based transcriptomics (Jin et al.,
2003), nano-LC/MS based proteomics (Nouri-Nigjeh
et al., 2014), and relevant physiologic measurements
including hepatic TAT activity, plasma glucose and
insulin concentrations, and blood lymphocyte counts.
Recognizing that proteins, rather than mRNA, repre-
sent more direct mediators of biologic effects, a critical
step involved studying steroid actions at the level of the
“proteome” is understanding protein function(s), rela-
tionships to transcriptional circuitry, interactive sig-
nalingmechanisms, and contributions to drug response.
One challenging aspect of this endeavor was develop-

ing a holistic systems framework or model that in-
corporated the totality of “-omics” information gained

though high-throughput experiments. Current knowl-
edge gaps in the precise gene regulatory networks
connecting the vast array of CS-regulated mRNA and
proteins precluded the development of a unifying-yet-
meaningful model. In addition, the vastly “horizontal”
nature of steroid action on genes affecting diverse
physiologic end-points made the incorporation of every
gene infeasible. Thus, complementary and iterative
approaches were evaluated to decipher the signaling
mechanisms controlling select steroid responses. Func-
tional proteomics analysis (Ayyar et al., 2017a) pro-
vided a rich biologic context for the observed changes in
protein dynamics by MPL, serving as a foundational
step preceding mechanistic modeling of the -omics data.
Numerous signaling proteins mediating CS actions in
liver were identified, annotated, and clustered. This
analysis, in addition to isolating critical protein clusters,
revealed that functionally clustered proteins displayed
a marked diversity in temporal profiles, underscoring
inherent complexities in the dynamic modeling of such
systems. Next, a series of extended (Jin et al., 2003)
mechanism-based pharmacogenomic models were

Fig. 6. Pharmacodynamic scheme for receptor/gene-mediated corticosteroid action (A); measured data (circles) and model-fitted GILZ mRNA dynamics
(lines) in skeletal muscle (green), lung (blue), and adipose tissue (red) after 50 mg/kg i.m. doses of methylprednisolone were given to male rats (B); and
measured data (circles) and model-predicted (simulated) dynamics of GILZ mRNA (lines) in lung (blue) and adipose tissue (red) upon 0.3 mg/kg/h s.c.
infusion of methylprednisolone administered to male rats over 1 week (C). The inset in (B) jointly depicts the mean PD profiles of GILZ in adipose
tissue from dosed (red, solid line) and circadian control (cyan, dashed line) animals. Figure adapted from (Ayyar et al., 2017b).
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developed that jointly captured the emergent temporal
transcript and protein expression patterns of over 60
genes (120 mRNA and proteins) perturbed by MPL
(Ayyar et al., 2018a). The tandem indirect response-
based models used transit compartments (rationalized
as secondarily-regulators) based on plausible biologic
mechanisms (e.g., direct gene regulation, microRNA
regulation or destabilization, and post-translational
modification) to offer mechanistic hypotheses on how
mRNA and protein turnover is controlled by direct and
secondary mechanisms.
The ultimate goal of this work was the development of

a QSP model platform (Ayyar et al., 2018b) that in-
tegrated and applied knowledge gained from functional
proteomics (Ayyar et al., 2017a) and tandem mRNA-
protein analyses (Ayyar et al., 2018a) to connect steroid
kinetics, hepatic receptor dynamics, and temporal
changes in important mRNA and proteins with clini-
cally relevant responses (Fig. 7A). Our efforts focused
on modeling the actions of CS on: 1) TAT regulation at
the levels of mRNA, protein, and enzyme activity; 2)
regulation of systemic glucose homeostasis, as con-
trolled via hepatic gluconeogenesis; and 3) blood lym-
phocyte modulation via direct (trafficking) and indirect
(genomic) mechanisms. The entire systems model
reflects an assembly of a wide array of the basic PK/
PD components: direct effects, single and tandem (pre-
cursor-dependent) indirect responses (inhibitory and
stimulatory), time-dependent transduction, feedback,
irreversible cell loss, and cell redistribution processes.
Culminating from the modeling of the chosen biologic
systems were quantitative descriptions of three distinct
modes of molecular CS actions. These mechanisms
included 1) simple, direct transcription-mediated sig-
naling as employed for describing the TAT pathway; 2)
secondary post-transcriptional regulation of mRNA and
protein expression, as used to characterize the elevation
in PEPCK protein, the rate-limiting step in hepatic
gluconeogenesis, by CCAAT-enhancer binding protein
and an assumed secondary mediator (reflecting the
CREB transcription factor in the absence of data); and
3) activation of effector proteins lacking direct GREs via
downstream signaling (i.e., serpin activation via STAT3)
(Fig. 7B). The signaling model for TAT, comprising
three precursor-like indirect response compartments (for
measurements of mRNA, protein, and activity), natu-
rally accounted for the post-genomic onset delays in TAT
protein and activity, providing a mechanism-based de-
scription of transduction, advancing the traditional
transit step approach. Another novel aspect of the model
involved the coupling of rapid, direct effects of MPL on
cell trafficking with delayed receptor/gene/protein (acute
phase response) mediated (second-order) cell apoptosis
in tissues to model lymphocyte dynamics, which, to-
gether accounted for the incomplete return of lympho-
cytes to baseline after steroid dosing in rats (Fig. 7B).
Addressed in the development of this systems model,

which combined systems structures with fundamental
PK/PD principles (Mager and Kimko, 2016) and some of
our earlier models, was finding a suitable “middle
ground” between parsimony and an incisive recapitula-
tion of mechanistic complexity within the system.

C. Lesson 3: Combined Systems (Experimental and
Modeling) Approaches Dissect Sex-Based
Pharmacokinetic and Pharmacodynamic Variability
in Genomic Steroid Responses

A series of experiments were undertaken to extend
the “giant-rat” study paradigm of CS PK/PD/PG from
male to female rats to investigate the determinants of
possible sex differences in CS response (Fig. 8). Care-
fully controlled animal study designs where female rats
were dosed with MPL within discrete phases of the
rodent reproductive cycle enabled the examination of
estrous (sex hormone-related) variability in MPL dis-
position and actions (Ayyar et al., 2019a,b,d). Promi-
nent sex differences were observed in both plasma and
hepatic drug concentration-time profiles after 50 mg/kg
i.m. MPL, with higher drug exposures in females,
regardless of estrous stage, compared with males (Fig. 9).
Robust suppression of plasma corticosterone occurred
in both sexes upon dosing. In vitro studies examining
hepatic stability of steroid in homogenates as well as
plasma and tissue protein binding properties (Ayyar
et al., 2019d) informed important mechanistic aspects
toward the development of an extended mPBPK/PD
model for MPL (Ayyar et al., 2019b). Message expres-
sion of GILZ was chosen as a multi-tissue biomarker of
GR-mediated drug response. Potential time-dependent
interplay between sex hormone and glucocorticoid
signaling in vivo was assessed by experiments compar-
ing the time profile of enhancement of GILZ by MPL in
uterus (high ER density) and in liver (lower ER density)
from males (liver only) and females (liver and uterus)
dosed within the proestrus (high estradiol/progester-
one) and estrous (low estradiol/progesterone) phases of
the rodent estrous cycle. Of translational importance,
we hypothesized, based upon mechanistic in vitro data
(Whirledge and Cidlowski, 2013; Whirledge et al.,
2013), that elevated estradiol production during pro-
estrus in females would antagonize the CS-enhanced
genomic response in tissues with ERs. A conceptual
summary of the multistep drug, hormone, and receptor
interactions that were considered within our experi-
mental and computational paradigms are depicted in
Fig. 8B.

After accounting for PK differences using an mPBPK
modeling approach, an expanded systems PD model of
MPL considering circadian rhythms, multi-receptor (es-
trogen and glucocorticoid receptor) control, and estrous
variations was developed to delineate the multi-factorial
control of genomic steroid responses (Ayyar et al., 2019a).
The systems mPBPK/PD model accounted for the kinet-
ics of unbound CS in tissues, free plasma concentrations
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Fig. 7. (A) Schematic of systems pharmacodynamic model linking methylprednisolone pharmacokinetics, glucocorticoid receptor dynamics, and
hepatic mRNA and protein biomarkers to select efficacy and toxicity end-points in rats. Stimulation is denoted as open rectangles, and inhibition is
denoted by closed rectangles. Heavy lines reflect turnover while broken lines reflect effects. (B) Measured and model-fitted profiles of steroid PK after
50 mg/kg i.v. (top-left) and i.m. (top-middle) doses, fitted profiles of receptor (mRNA, free cytosolic, and nuclear complex) dynamics (top right), TAT
signaling pathway (middle row), and acute phase response and lymphocyte dynamics (bottom). Orange, PK; green, mRNA; blue, protein; and red,
physiologic PD end-point. Figure adapted from Ayyar et al., 2018b with permission by Springer Nature.
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of corticosterone (including adrenal suppression) and
endogenous estradiol (as a function of the rodent
estrous cycle), binding of the free ligands to the GR
(competitive interactions of drug and hormone) or
estrogen receptor (ER) in tissues, and the antagonistic
coregulation of GILZ gene synthesis by the concentra-
tions of activated GR and ER complexes in the nucleus
(Fig. 8C). The general structure of our fifth-generation
model was retained for describing GR dynamics in both
sexes and in different tissues. Hepatic GILZ response
was about threefold higher in females, regardless of
estrous stage, compared with males, driven predomi-
nantly by increased drug exposure in females (Fig. 9,
top) and a negligible influence of estrogen interaction
(Fig. 9). In contrast, GILZ response in uterus during
proestrus in females was 60% of that observed in estrus-
phased females (Fig. 9), despite no PK or receptor
differences, providing in vivo support to the hypothesis
of an estrogen-mediated antagonism of glucocorticoid
signaling.
The developed model offered a mechanistic platform

to assess the system-dependent factors contributing to
PD variability in CS actions and, in turn, revealed
a unique PD interaction between two different steroid
receptors occurring in vivo. The modeling efforts and
approaches examined CS actions across multiple time

scales, including 24-hour circadian and longer 4-day
reproductive biorhythms and can serve as a paradigm
for the use of combined PK/PD and systems (experi-
mental andmodeling) approaches to gain a quantitative
understanding of complex drug-system interactions
in vivo and its impact on inter-individual variability in
PK/PD. This mechanistic systems model may also form
the basis for explaining the interactions of estrogens
with other drugs and xenobiotics acting via nuclear
receptors.

D. Lesson 4: Basic Components of the Corticosteroid
Receptor Models Are Readily Incorporated within
Diverse Models of Systems Biology

The CS receptor models have provided a powerful,
generalizable formalism for modeling a wide range of
physiologic and biochemical systems. Based on the
concept of indirect responses, this paradigm has en-
abled numerous and seamless extensions, resulting in
more expansive systems models. An early example of
such an extension through the development of a re-
ceptor-mediated, indirect response-based model of Toll-
like receptor 4-stimulated inflammation described the
sequence of inflammatory events connecting extracel-
lular signals and transcriptional dynamics (Foteinou
et al., 2009b). Model-based simulations were performed

Fig. 8. Systems modeling of sex differences in methylprednisolone action. (A) Diagrammatic summary of the various animal cohorts and general
experimental study design. (B) General scheme of the multiscale modeling approach which provides the basis for the development of the systems PK/
PD/PG model. (C) Schematic of the mPBPK/PD/PG systems model for corticosteroid actions in male and female rats. Lines with arrows indicate blood
flows, binding interactions, conversion of species, or turnover of responses. Dashed lines ending in closed boxes indicate inhibition whereas dashed
lines with open boxes depict a stimulation of turnover exerted by the connected factors.
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to identify possible critical targets either upstream of
the activated signaling, such as endotoxin elimination
rate, or downstream, such as those associated with
modulating the Toll-like receptor signaling pathway.
The resulting temporal profiles further indicated the
potential importance of early effective therapeutic
interventions. This model was expanded further by
incorporating the fifth-generation CS model to account
for the receptor- and NF-kB-mediated role of synthetic
CS on inflammation (Foteinou et al., 2009a). Further
extensions of CS receptor models introduced basic
elements of circadian regulation of the inflammatory
response (Scheff et al., 2010). Built upon the hypothesis
that the observed circadian variations in the inflamma-
tory response are governed by cortisol and melatonin
and their interactions with immune cells, the model
provided qualitatively accurate predictions of circadian
variability in the strength of the inflammatory response
(Scheff et al., 2010).
The central role of CS receptor dynamics was

identified in modeling the signal transduction of
photic information from the systemic level, the cen-
tral clock of the suprachiasmatic nucleus and HPA
axis to the molecular level, peripheral clock genes
(Mavroudis et al., 2012). Their model demonstrated
the importance of circadian cortisol interactions with
its receptor in peripheral tissues in synchronizing and
entraining peripheral clock genes and predicted the
loss of intercellular synchrony when cortisol moves
out of its homeostatic amplitude and frequency range,
as observed clinically in chronic stress and cancer

(Mavroudis et al., 2012, 2014). Such integrative model-
ing efforts enabled the coupling of intrinsic oscillation in
the HPA axis, the peripheral clock genes, and external
zeitgebers (light).

As a final example, our model for GR dynamics was
recently incorporated within a mathematical model
that characterized sex-dependent differences and
inter-individual variability in the HPA axis response
to stress (Rao and Androulakis, 2017). As depicted in
Fig. 10A, the semi-mechanistic light-entrained model
of the HPA axis accounted for circadian rhythmicity in
the response of its primary mediators, corticotropin-
releasing hormone, adrenocorticotropic hormone, and
corticosterone (CORT). The model was developed to
evaluate the hypothesis that differential sensitivity
and negative feedback of the HPA axis network are
causal factors for the observed sex differences in its
activity. Figure 10B shows a complete schematic
representation of the model variables, with negative
feedback of CORT captured by the fifth-generation
model for CS, where feedback inhibition is assumed to
occur at the transcriptional level in the pituitary gland.
The model, in qualitative agreement with experimen-
tal results (Atkinson and Waddell, 1997), captured the
significant differences in circadian amplitude between
males and females based on the CORT profiles gener-
ated by the parameters sets within the spaces for each
sex (Fig. 10C). These models exemplify the broad
applicability of the GR model and concepts within the
context of developing more elaborate systems biology
and QSP models.

Fig. 9. Model fittings of the concentration-time profiles of total MPL in plasma (top left) and liver (top right) of male and female rats that received
50 mg/kg i.m. doses of MPL. Shown on the (bottom left) is the plasma concentration-time profile of E2 in female rats over the 4-day estrous cycle;
symbols are measurements from individual rats, and the solid line depicts the model-fitted profile shown to repeat for a second cycle. (Bottom middle)
depicts GILZ mRNA in liver from male rats (green), estrus-phased female rats (red), and proestrus-phased female rats (blue) given 50 mg/kg i.m. MPL.
The GILZ mRNA in uterus from estrus-phased female rats (red) and proestrus-phased female rats (blue) given 50 mg/kg i.m. MPL is shown (bottom right).
Symbols represent the mean 6 S.D. Dark (shaded) and light (unshaded) periods are indicated. Figure adapted from (Ayyar et al., 2019a and 2019b).
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V. Conclusions and Future Perspectives

The CSs remain important therapeutic agents with
diverse endocrinologic, immunologic, and pharmaco-
logic effects, and they have been particularly intriguing
compounds used in seeking improved PD concepts
(Jusko, 1990) as well as systems models. Studies of
properties of drugs such as steroids have helped evolve
PK from empirical NCA and compartment analyses to
mechanistic and physiologically based models. The
principles of capacity-limitation in PK and target occu-
pancy as well as types and rates of turnover processes
serve as tenets for PD and systems models. By consider-
ing multiple system components and biologic network
structures rather than single transduction pathways as
the basis of drug action, systems pharmacology model-
ing represents an extension of mechanism-based PK/
PD modeling, a field premised on many basic laws of

nature, biology, and pharmacology (Jusko, 2016). Efforts
inQSPmodeling should continue to focus and build upon
the “three pillars” of drug action: 1) achieving the desired
drug exposure at the site of action, 2) optimal engage-
ment of the target or receptor over time, and 3) un-
derstanding the relevant pharmacological and physiologic
post-receptor signaling mechanisms that give rise to
efficacious and/or toxic responses. Principles of PBPK,
receptor theory and dynamics, and systems biology
modeling enable the quantitative integration of these
“pillars.”

The corticosteroid systems PK/PD models described
in this article highlight the integration of fundamental
PK/PD principles, the stepwise measurements of in-
termediary events, mediators, and biomarkers in vivo,
and the “current state” of biologic mechanisms found in
the literature. The investigations of CS PK, PD, and

Fig. 10. (A) General schematic of the physiologic model considering sex-related variability on the HPA axis to occur on the strength of glucocorticoid-
mediated negative feedback (Kp1 and Kp2) and adrenal sensitivity (kp3) within the HPA network. (B) Schematic representation of the signaling
mediators in the mathematical model incorporating the fifth-generation model for corticosteroids. (C) Simulated and experimental circadian CORT
profiles generated by (a) male and (b) female parameter sets. For both (male and female), the dashed line represents the mean of simulated CORT
circadian profiles generated by the parameter sets. The dark gray-shaded area represents the S.D. of the simulated CORT circadian profiles. The black
dashed and dotted line represents the scaled mean experimental cosinor for the CORT profile. The light gray shaded area represents the scaled S.D. of
the experimental CORT cosinors. ACTH, adrenocorticotrophic hormone; CORT, corticosterone; CRH, corticotropin releasing hormone. Figure adapted
from Rao and Androulakis, 2017 with permission by Oxford University Press.
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systems biology across multiple scales of physiologic
organization exemplify the transition from basic toward
systems PK/PD approaches. The approaches taken for
modeling in vivo systems pharmacology in our work are
generalizable to other drugs acting through receptor
and genomic mechanisms. Future efforts in evolving
more global and mechanistic models for CS will in-
clude the integration of the circadian systems biology of
glucocorticoid hormones, HPA feedback, and tissue-
specific peripheral clock gene regulation (Mavroudis
et al., 2018b) with the multi-tissue receptor-mediated
pharmacogenomic actions of exogenous corticosteroids
(Ayyar et al., 2017b), further reducing empiricism
(e.g., use of data-driven cosine fitting) within current
models. With continual advances in basic knowledge on
genomics, epigenomics, and proteomics, it is anticipated
that future models (Iyengar et al., 2012) will build upon
current concepts and methodology to further integrate
the disciplines of PK/PD and systems biology for fully
describing the quantitative systems pharmacology of
existing and future compounds.
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