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Abstract

Carvacrol (1) and thymol (2) were converted to their alkyl 4-oxobutanoate derivatives (7–20) in 

three steps, and evaluated for tyrosinase inhibitory activity. The compounds showed structure-

dependent activity, with all alkyl 4-oxobutanoates, except 7 and 20, showing better inhibitory 

activity than the precursor 4-oxobutanoic acids (5 and 6). In general, thymol derivatives exhibited 

a higher percent inhibitory activity than carvacrol derivatives at 500 μM. Derivatives containing 

three and four carbon alkyl groups gave the strongest activity (carvacrol derivatives 9–12, IC50 = 

128.8–244.1 μM; thymol derivatives 16–19, IC50 = 102.3–191.4 μM).
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The major components of oregano and thyme essential oils are the isomeric monoterpene 

phenols, carvacrol (1) and thymol (2). These phenols exhibit a wide range of biological and 

pharmacological effects including anticancer, anti-inflammatory, antibacterial, antifungal, 

anticholinesterase, insecticidal, and antioxidant activities.1–3 Several derivatives of carvacrol 

and thymol have been synthesized and show similar or enhanced activity relative to the 

parent phenols. Ester and carbamate derivatives of both compounds showed increased 

antifungal4 and anticholinesterase5 activities, respectively. Some Schiff base derivatives 

exhibited similar or better antioxidant activity compared to thymol and ascorbic acid.6 

Heterocyclic derivatives of thymol containing pyridazinone,7 pyridone,8 and oxadiazole9 

moieties gave moderate to significant antibacterial activity when compared to standard 

antibiotics. Similarly, oxadiazole and thiadiazole derivatives of carvacrol displayed 

significant enhancement of insect growth regulation in a moth species,10 and moderate 

improvement in antioxidant activity11 relative to carvacrol.
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Tyrosinase is the rate-limiting enzyme for the biosynthesis of melanin. Although melanin 

serves to protect the skin from UV damage, overproduction can lead to skin defects such as 

melasma, freckles and age spots. As a catechol oxidase, tyrosinase is also implicated in the 

undesirable browning of fruit. Thus, tyrosinase inhibitors are important in the medical, 

agricultural and cosmeceutical fields, owing to their ability to mitigate fruit browning and 

skin defects arising from melanin overproduction.12–13 The tyrosinase inhibitory activity of 

carvacrol and thymol have not been well documented. Satooka indicated that thymol affects 

the redox processes involved in dopachrome, and subsequently melanin formation, but does 

not directly affect the tyrosinase enzyme activity.14 However, diesters of carvacrol and 

thymol incorporating glycolic acid and benzoic or cinnamic acid moieties have shown 

moderate to potent tyrosinase inhibitory activity when compared with kojic acid,15–16 a 

commercially used skin whitening agent. In addition, a diester containing a succinoyl moiety 

coupled with two kojic acid units gave a better than 2-fold increase in inhibitory activity 

than kojic acid.17 Based on the improvements in tyrosinase inhibitory activities upon 

structural modification of carvacrol, thymol and kojic acid, it was envisioned that alkyl 4-

oxobutanoate derivatives of carvacrol and thymol would give enhancement in activity 

relative to the parent phenols.

4-Oxobutanoate derivatives of carvacrol and thymol were synthesized in three steps (Figure 

1). Carvacrol (1) and thymol (2) were converted to their corresponding ethyl ethers by 

modification of the procedure reported by Silva et al.18 Treatment of acetonitrile solutions of 

the phenols with sodium methoxide and bromoethane afforded ethyl carvacrol (3) and ethyl 

thymol (4) in 60% and 93% yields, respectively. The yields and spectroscopic data for 

compounds 3 and 4 were in good agreement with literature data.18 With the ethyl ethers in 

hand, it was anticipated that the 4-oxobutanoic acid moiety could be introduced to the 

carvacrol/thymol core by Friedel-Crafts acylation with succinic anhydride and aluminum 

chloride, as reported for butyl thymol.7 However, attempts to synthesize the 4-oxobutanoic 

acids using succinic anhydride were unsuccessful in our hands. The use of succinoyl 

chloride, followed by acidic work up gave the 4-oxobutanoic acids 5 and 6 in 68% and 81% 

yields, correspondingly. While the bis-carvacrol or bis-thymol γ-diketone could have been 

obtained as a product of the reaction, there was no evidence of its formation. The carvacrol 

and thymol 4-oxobutanoic acids were each converted to methyl, ethyl, propyl, allyl, butyl, 

crotyl and benzyl 4-oxobutanoates by O-alkylation, using cesium carbonate and the 

corresponding alkyl bromides or iodides in acetonitrile.19 The fourteen new alkyl 4-

oxobutanoate derivatives of carvacrol and thymol (7–20) were characterized by NMR, IR 

and HRMS analyses.

Tyrosinase converts L-tyrosine to dopaquinone, which is subsequently converted to 

dopachrome. The tyrosinase inhibitory assay measures the amount of dopachrome produced 

in the presence of test compounds.20 In order to determine structure-activity correlations, 

compounds 1–20 were evaluated at 500 μM for inhibitory activity against mushroom 

tyrosinase (Table 1). Carvacrol (1) and thymol (2) gave comparable data, with percent 

inhibition of 35.7 and 29.4%, respectively. For carvacrol there was a 1.6 fold increase in 

activity for the ethyl ether derivative (3) and a 2.1 fold decrease in activity for the 4-

oxobutanoic derivative (5). However, there was no significant difference in activity between 
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thymol and its ethyl ether (4) and 4-oxobutanoic acid (6) derivatives. The similar activity 

observed for thymol and its ethyl ether derivative is in contrast to a previous study which 

suggested that the methyl ether derivative of thymol had a lower inhibitory effect than 

thymol.14 The carvacrol and thymol alkyl 4-oxobutanoates showed better inhibitory 

activities than the parent 4-oxobutanoic acids, except for the methyl ester derivative of 

carvacrol, 7, and the benzyl ester derivative of thymol, 20. In general, the activity was 

enhanced with an increase in the carbon chain length, with esters containing three and four 

carbon alkyl groups showing the greatest inhibitory activity (%Inhibition = 72.8–100%). The 

only exception is the carvacrol allyl 4-oxobutanoate (10), which showed significantly lower 

inhibitory activity (58.2%) than the corresponding propyl 9 (85.6%), butyl 11 (82.3%) and 

crotyl 12 (72.8%) derivatives. The benzyl ester derivatives showed significantly lower 

percent inhibition than their three and four carbon counterparts (13 = 47.0%; 20 = 31.3%).

IC50 data were obtained for alkyl 4-oxobutanoates (9–12 and 15–19) showing greater than 

51% inhibition at 500 μM (Table 1). Kojic acid (IC50 = 21.8 μM), was used as a positive 

control. The compounds showed moderate inhibitory activity, with IC50 values ranging from 

122.8 to 244.1 μM for the carvacrol series (9–12) and 102.3–212.3 μM for the thymol series 

(15–19). Despite the anomalous percent inhibition of the carvacrol allyl 4-oxobutanoate 

(10), it showed the highest inhibitory activity among the carvacrol derivatives (IC50 = 128.8 

μM). For thymol, the crotyl derivative 19 had the highest inhibitory activity (IC50 = 102.3 

μM). While the precise mechanism of action of the 4-oxobutanotes is unknown, the increase 

in inhibitory activity for the three and four carbon derivatives and decrease for the benzyl 

group and smaller alkyl groups may indicate interaction with the hydrophobic pocket of the 

tyrosinase enzyme,12–13 with optimal binding interactions occurring with three and four 

carbon alkyl groups.

In conclusion, fourteen alkyl 4-oxobutanoate derivatives of carvacrol and thymol were 

synthesized and evaluated for their tyrosinase inhibitory effects using mushroom tyrosinase. 

Although all the alkyl 4-oxobutanoate derivatives showed lower inhibitory activity than kojic 

acid, the correlations between the structure of the alkyl side chain and tyrosinase inhibitory 

activity are evident. Esters containing three or four carbon atoms in the alkyl chain were the 

most effective. Further structural modifications of the carvacrol and thymol derivatives could 

potentially lead to structures with enhanced tyrosinase inhibitory activities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Synthesis of alkyl 4-oxobutanoate derivatives of carvacrol and thymol
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Table 1:

Tyrosinase inhibitory activities of carvacrol (1)/thymol (2) and their corresponding derivatives 3, 5, 7–13/4, 6, 
14–20

Compound Carvacrol (1) %Inhibition Thymol (2) %Inhibition Carvacrol IC50 (μM) Thymol IC50 (μM)

Parent 1/2 35.7±5.4 29.4±3.7 n.d. n.d.

Ethyl ether 3/4 57.5±2.5 28.8±5.6 n.d. n.d.

4-Oxobutanoic acid 5/6 16.9±4.0 30.7±2.7 n.d. n.d.

Methyl 4-oxobutanoate 7/14 31.7±6.2 45.5±2.1 n.d. n.d.

Ethyl 4-oxobutanoate 8/15 50.9±2.1 72.0±5.5 n.d. 212.3±1.7

Propyl 4-oxobutanoate 9/16 85.6±6.6 78.8±2.4 217.9±4.3 154.0±3.7

Allyl 4-oxobutanoate 10/17 58.2±2.3 100.04±6.7 128.8±1.9 125.6±3.5

Butyl 4-oxobutanoate 11/18 82.3±2.1 100±3.9 176.5±2.8 191.4±2.4

Crotyl 4-oxobutanoate 12/19 72.8±3.3 99.3±8.0 244.1±3.6 102.3±.1.8

Benzyl 4-oxobutanoate 13/20 47.0±9.0 31.3±7.1 n.d. n.d.

Kojic acid (IC50 = 21.8±1.7 μM)

% Inhibition (500 μM); n.d. = not determined (IC50 >500 μM)
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