Skip to main content
. 2020 Mar 5;16:30. doi: 10.1186/s13007-020-00576-7

Table 2.

Confusion matrix of SVC models using full spectra

Cultivar Parametera Training set Validation set Testing set
CK Q S Accuracyb Kappac CK Q S Totalb Kappac CK Q S Accuracyb Kappac
XS 134 (107,10–2) CK 25 0 0 6 0 0 5 0 1
Q 0 23 3 0 6 0 0 7 0
S 1 1 26 0 2 5 1 0 6
93.67% 90.47% 89.47% 80.65% 90% 84.96%
ZJ 88 (107, 10–2) CK 28 0 0 7 0 0 6 0 0
Q 0 28 0 0 6 1 0 6 0
S 0 0 26 0 0 6 0 0 7
100% 100% 95% 92.51% 100% 100%

aParameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)

bTotal means the total classification accuracy

cKappa is used to evaluate the inter-rater reliability of the classification results

CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac