Table 2.
Confusion matrix of SVC models using full spectra
| Cultivar | Parametera | Training set | Validation set | Testing set | |||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| CK | Q | S | Accuracyb | Kappac | CK | Q | S | Totalb | Kappac | CK | Q | S | Accuracyb | Kappac | |||
| XS 134 | (107,10–2) | CK | 25 | 0 | 0 | 6 | 0 | 0 | 5 | 0 | 1 | ||||||
| Q | 0 | 23 | 3 | 0 | 6 | 0 | 0 | 7 | 0 | ||||||||
| S | 1 | 1 | 26 | 0 | 2 | 5 | 1 | 0 | 6 | ||||||||
| 93.67% | 90.47% | 89.47% | 80.65% | 90% | 84.96% | ||||||||||||
| ZJ 88 | (107, 10–2) | CK | 28 | 0 | 0 | 7 | 0 | 0 | 6 | 0 | 0 | ||||||
| Q | 0 | 28 | 0 | 0 | 6 | 1 | 0 | 6 | 0 | ||||||||
| S | 0 | 0 | 26 | 0 | 0 | 6 | 0 | 0 | 7 | ||||||||
| 100% | 100% | 95% | 92.51% | 100% | 100% | ||||||||||||
aParameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)
bTotal means the total classification accuracy
cKappa is used to evaluate the inter-rater reliability of the classification results
CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac