Table 3.
Confusion matrix of SVC models using extracted features
Cultivar | Parametera | Training set | Validation set | Testing set | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CK | Q | S | Accuracy | Kappa | CK | Q | S | Total | Kappa | CK | Q | S | Accuracy | Kappa | |||
XS 134 | (105, 10–1) | CK | 25 | 0 | 0 | 6 | 0 | 0 | 5 | 0 | 1 | ||||||
Q | 0 | 21 | 5 | 0 | 6 | 0 | 0 | 6 | 1 | ||||||||
S | 0 | 2 | 26 | 0 | 2 | 5 | 1 | 0 | 6 | ||||||||
91.14% | 86.68% | 89.47% | 80.65% | 85% | 76.15% | ||||||||||||
ZJ 88 | (106, 10–1) | CK | 28 | 0 | 0 | 7 | 0 | 0 | 6 | 0 | 0 | ||||||
Q | 0 | 28 | 0 | 0 | 6 | 1 | 0 | 6 | 0 | ||||||||
S | 0 | 0 | 26 | 0 | 0 | 6 | 0 | 2 | 5 | ||||||||
100% | 100% | 95% | 92.5% | 89.47% | 80.5% |
aParameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)
bTotal means the total classification accuracy
cKappa is used to evaluate the inter-rater reliability of the classification results
CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac