Skip to main content
. 2020 Mar 5;16:30. doi: 10.1186/s13007-020-00576-7

Table 3.

Confusion matrix of SVC models using extracted features

Cultivar Parametera Training set Validation set Testing set
CK Q S Accuracy Kappa CK Q S Total Kappa CK Q S Accuracy Kappa
XS 134 (105, 10–1) CK 25 0 0 6 0 0 5 0 1
Q 0 21 5 0 6 0 0 6 1
S 0 2 26 0 2 5 1 0 6
91.14% 86.68% 89.47% 80.65% 85% 76.15%
ZJ 88 (106, 10–1) CK 28 0 0 7 0 0 6 0 0
Q 0 28 0 0 6 1 0 6 0
S 0 0 26 0 0 6 0 2 5
100% 100% 95% 92.5% 89.47% 80.5%

aParameter means the model parameter of SVC, which is the combination of penalty coefficient C and RBF kernel parameter g, i.e. (C, g)

bTotal means the total classification accuracy

cKappa is used to evaluate the inter-rater reliability of the classification results

CK: treated with nutrient solution, Q: treated with 0.25 g/L quinclorac, S: pre-treated with 10 mg/L SA followed by 0.25 g/L quinclorac