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Abstract

Introduction: The quantitative measurements based on liquid chromatography (LC) coupled 

with mass spectrometry (MS) often suffer from the problem of missing values and data 

heterogeneity from technical variability. We considered a proteomics data set generated from 

human kidney biopsy material to investigate the technical effects of sample preparation and the 

quantitative MS.

Methods: We studied the effect of tissue storage methods (TSMs) and tissue extraction methods 

(TEMs) on data analysis. There are two TSMs: frozen (FR) and FFPE (formalin-fixed paraffin 

embedded); and three TEMs: MAX, TX followed by MAX and SDS followed by MAX. We 

assessed the impact of different strategies to analyze the data while considering heterogeneity and 
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MVs. We have used analysis of variance (ANOVA) model to study the effects due to various 

sources of variability.

Results and Conclusion: We found that the FFPE TSM is better than the FR TSM. We also 

found that the one-step TEM (MAX) is better than those of two-steps TEMs. Furthermore, we 

found the imputation method is a better approach than excluding the proteins with MVs or using 

unbalanced design.
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Introduction

Proteins are important biological macromolecules performing a wide variety of functions. 

The proteome can be defined as the entire set of proteins translated and/or modified within a 

living organism [1,2]. Proteomics more generally refers to large-scale LC-MS based 

discovery studies designed to address both quantitative and qualitative aspects of the 

proteome in question. Now proteomics has emerged as a powerful tool across various fields 

such as biomedicine mainly applied to diseases, agriculture and animal sciences [3–10]. The 

practical application of proteomics includes expression proteomics, structural proteomics, 

biomarker discovery, interaction proteomics, protein networks, etc. [11,12]. Here, we are 

dealing with proteomic expression data that are generated by using high throughput 

technologies usually involving MS [13–18]. LC-MS is used in proteomics as a method for 

identification and quantification of peptides and proteins in complex mixtures [19,20]. There 

are two basic proteomics approaches, namely bottom-up and top-down [10,21]. The most 

common proteomics approach is the bottom-up in which proteins in a sample are 

enzymatically digested into peptides and subjected to chromatographic separation, 

ionization and mass analysis. In the top-down approach, intact proteins are introduced into 

MS where they are subjected to fragmentation. Further, the quantification of peptides/

proteins may be either label-free or labelled (metabolic, enzymatic, or chemical) to detect 

differences in protein abundances among different conditions [22–25]. In label-free 

quantification, MS ion intensity (peak area) and spectral counting of features are the major 

approaches. Conversely, top-down proteomics addresses the study of intact proteins and 

consequently is most often used to address purified or partially purified proteins [26]. Here, 

we are dealing with the bottom-up approach in which peak area values have been used in 

label-free quantification of proteins. Various approaches exist for proteomics data analysis in 

which the first step is to summarize the intensities of all features using a quantitative 

summary followed by some transformation such as log transformation to approximate it to 

normal distribution. However, each of these methods has several drawbacks which can be 

studied by examining the statistical properties of these methods [27–29]. When a data set 

contains an equal number of subjects in each group, and when features have no missing 

observations, the data set is called balanced. It is not always the condition; sometimes the 

data can be unbalanced, having an unequal number of subjects, or missing observations, or 

both. MVs in proteomics data can occur due to biological and/or technical issues. These are 

of three types: (i) missing completely at random (MCAR) in which MVs are independent of 
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both unobserved and observed data; (ii) missing at random (MAR) if conditional on the 

observed data, the MVs are independent of the missing measurements; and (iii) missing not 

at random (MNAR) when data is neither MCAR nor MAR [30]. The data with missing 

observations can be analyzed either by excluding the features having missing observations, 

by using statistical methods that can handle unbalanced data, or by using imputation 

methods. If the features having missing observations are excluded, then there is loss of 

information from the experiment. Therefore, the use of methods that can handle MVs, such 

as imputation methods, are generally preferred. However, the use of imputation methods 

may lead to wrong interpretation and still these methods are questionable in statistical terms 

[31,32]. The data set usually consists of biological replicates only or both biological and 

technical replicates. Biological variability arises from genetic and environmental factors; it is 

intrinsic to all organisms. The technical approaches include sample collection and storage, 

sample preparation, extraction, LC separation and MS detection [20]. Sometimes, variations 

in the biological data or technical approaches to data collection lead to heterogeneity for the 

samples under study [33,34]. We performed analysis of laser capture microdissection 

(LCMD)-LCMS high-resolution proteomics dataset using multifactor ANOVA model. We 

studied the variability in the data based on different TSMs and TEMs. We estimated the 

contribution of various sources of variation to the overall variability. The study of data 

variability was done using various analysis methods and transformation and/or 

normalization techniques. In this paper, we investigated the technical effects of sample 

preparation and the quantitative MS resulting in heterogeneity for low abundant protein 

quantification. This will improve the biomarker discovery studies utilizing limited 

bioreposited tissue resources. We have done all the statistical analysis in R [35] and codes 

are available from the authors on request.

Methods

Proteomics experiment

Data for the methods used in the collection, extraction, and proteomic analysis have 

previously been published under Hobeika L et al. [36]. Individual data files for MS data 

(.RAW), peak lists (.mgf), and compressed search results (.mzIdentML) files can be 

downloaded from the MasslVE data repository (http://massive.ucsd.edu/; MasslVE ID: 

MSV000079914) and ProteomeXchange data repository [37] (http://

www.proteomexchange.org/; ID: PXD004601). For consideration of variability of the 

feature detection and MVs abbreviated methods for these studies are provided below.

Tissue collection: FR and FFPE tissue from the same human kidney unsuitable for 

transplant were cut into 10 μm sections on Polyethylene terephthalate membrane frame 

slides, stained with Mayer’s hematoxylin and glomerular tissue compartments isolated using 

a Leica LMD6500 Laser Microdissection System.

Protein extraction: Experiments were conducted to compare a single tissue solubilization 

step using an acid labile surfactant to approaches for tissue decellularization. The single step 

method used the acid-labile surfactant Protease MAX surfactant with heating (MAX). Two 

tissue decellularization methods incorporated sequential decellularization with solubilization 
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of the residual pellet with MAX. First tissue decellularization approach used 0.4% SDS + 

HALT protease/phosphatase inhibitor cocktail (Thermo Fisher) followed by solubilization of 

residual “ECM” pellet using MAX (SDS.MAX). Second tissue decellularization approach 

used sequential decellularization with 25mM NH4OH/ 0.5%TritonX-100 (TX) followed by 

solubilization of residual “ECM” pellet using MAX (TX.MAX). As described in Hobeika L 

et al. [36], the tryptic peptides were analyzed using a LC-MS Orbitrap ELITE approach with 

peptide assignments using a Mascot/Sequest search strategy. Scaffold4 was used to set false 

discovery rate (FDR) control. Finally, we obtained a label-free quantified data of identified 

proteins (Supplementary File 1). Please see more details about the experimental procedures 

in “Supplementary File 2”. We analyzed the data for comparing statistical methods with 

MVs in the presence of heterogeneity.

Proteomics data analysis

The purpose of this study is to (1) compare variability between (a) tissue storage methods 

(TSMs) and (b) tissue extraction methods (TEMs); (2) compare various statistical 

approaches of analysis and normalization methods.

We have two TSMs (FR and FFPE) and three TEMs (MAX, TX.MAX, SDS.MAX) with 

three replicates and two MS runs leading to 36 samples (total number of samples = 2 × 3 × 3 

× 2 = 36). A flow chart of the experiment is given below in Figure 1.

In the above flowchart, we have shown the basic steps of carrying out the experiment 

involving TSMs and TEMs. We have repeated the MS two times to get more reliable results 

for estimating experimental variability. We obtained the following six groups as given below 

in the Table 1. There are three replicates for each of the six groups thus leading to 18 

samples. Then, we have repeated the MS two times for the 18 samples and we obtained six 

samples for each of the six groups.

Data preprocessing: Initially, there were 728 proteins identified in both runs, 380 

proteins identified in run 1 only and 342 proteins identified in run 2 only. There was a total 

of 1450 identified proteins out of which 1376 proteins were unique, and 37 proteins were 

redundant and duplicate entries were removed from the data. Furthermore, there were 111 

proteins for which all the samples have NA values (MVs). Therefore, we are left with 

protein data with 1302 proteins that correspond to 1178 gene symbols (Supplementary File 

1). The percentage of NA values within each sample (36 samples) ranges from 41.3%

−78.3% with a median value of 49.5%. As we have a greater number of groups, therefore it 

is difficult to perform analysis with this data having MVs. If we discard the proteins having 

any MVs in any of the samples in a group, then there will be only 26 proteins available. 

Another way is to retain the proteins having at least one or two observations in each group. 

A summary of number of proteins available in each group is given below in Table 2. If we 

use the number of proteins having at least one observation in a group, then we can assess a 

greater number of proteins. However, we need at least two observations in each group to 

calculate CV for a protein in each group. Therefore, we used 372 proteins which have at 

least two observations in each of the six groups for further analysis.
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Statistical approaches: The analysis of proteomics data becomes more complex due to 

non-normality behavior of the data, and greater proportion of MVs within and across the 

samples. To get a better insight of proteomics data analysis while dealing with these 

problems, we have performed the analysis using three methods as given below:

A1. Method for data excluding missing values: Proteins having complete 

observations for all the samples, i.e., no MVs, were used for comparison. Proteins having 

MVs were discarded from the analysis.

A2. Method for data including missing values: The proteins with MVs across the 

samples were analyzed using unbalanced ANOVA method [38].

A3. Method for data using imputation: The MVs were imputed after applying the 

normalization methods to the data [39] as given in next section. We have used the “impute. 

MAR” function of the R package “imputeLCMD” [40] for imputing the MVs. Three 

different types of imputation under the assumption of MAR or MCAR, namely, MLE [41], 

SVD [42] and KNN [43,44] are available in this package. We have used only the SVD 

method (A3) for imputation.

We applied three different data transformation and/or normalization methods:

N1. Logarithmic transformation: The raw data is transformed by using logarithmic 

base 2.

N2. Quantile normalization: It is done by using log base 2 transformation of raw data 

followed by “normalize.quantiles” method [45] available in R package “preprocessCore” 

[46].

N3. Variance stabilizing normalization: It is done by applying “justvsn” function 

available in R package “vsn” [47] to the raw data.

Therefore, by using three methods of analysis (Al, A2 and A3) based on three 

transformation and/or normalization methods (N1, N2 and N3), we have 9 different 

combinations (statistical approaches): excluding MVs (A1.N1, A1.N2, A1.N3); including 

MVs (A2.N1, A2.N2, A2.N3); imputing MVs (A3.N1, A3.N2, A3.N3). We preprocessed the 

data using these methods to get 9 different datasets (preprocessed data) for 6 groups having 

6 samples in each group. We calculated the coefficient of variation (CV) for each protein in 

the groups: TSM (FR vs. FFPE), TEM (MAX vs. TX.MAX vs. SDS. MAX) and 

TSM×TEM (FR_MAX, FR_TX.MAX, FR_SDS.MAX, FFPE_MAX, FFPE_TX.MAX, 

FFPE_SDS.MAX). It has two purposes: (i) Which TSM/ TEM/ TSM×TEM have the 

minimum CV based on different statistical approaches; (ii) Which statistical approach leads 

to the minimum CV. We have used ANOVA model as given below for studying the 

contribution of variability due of TSM, TEM and the interaction term TSM×TEM:

yijk = μ + αi + βj + (αβ)ij + εijk (1)
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where, yijk is the transformed and/or normalized data for a protein, αi(i=1,2) is the jth TSM 

effect,βj, (j = 1,2,3)is the jth TEM effect and (αβ)ij is the interaction effect, TSM×TEM. The 

term εijk is the normally distributed error component and εijk N 0, σ2 . The mapping of the 

above model to the experimental design allows us to estimate the contribution due to each 

source of variation for each protein.

Results and Discussion

Comparison of CV among various groups

We have 141, 372 and 372 proteins obtained by using the analysis methods Al, A2 and A3, 

respectively. The summary of CV using 9 different statistical approaches for comparisons 

among TSMs and TEMs is shown below in Table 3. The summary of CV using 9 different 

statistical approaches for comparisons among six groups of TSM×TEM is shown below in 

Table 4.

TSM: We found that median value of CV is lowest in FFPE using all the statistical 

approaches. Furthermore, within FFPE, the normalization method N3 has the minimum 

value of median CV for each analysis method. Overall, the minimum median CV is for 

A1.N3 in FFPE.

TEM: We have the minimum median value of CV in TX.MAX. We found A1.N2 has the 

minimum value of median CV.

TSM×TEM: We have the minimum median value of CV in FR_ MAX followed by 

FFPE_SDS.MAX using all the approaches. We found A1.N3 has the minimum value of 

median CV in all the groups except for A1.N2 in FR_SDS.MAX. Overall, the minimum 

median CV is for A1.N3 in group FR_MAX.

Based on median CV, FFPE is a better choice than FR using all the statistical approaches. 

Similarly, among TSMs, TX.MAX has the least CV and can be a better choice. However, 

based on the maximum value of CV, MAX is a better choice for TEM. If we consider 

approaches (A2 & A3) having greater number of proteins and TEM within FFPE, we see 

that A3.N3 in FFPE_SDS.MAX is having the least median CV (1.63).

Contribution of Sum of Squares (SS) due to each component

The percent contribution of SS due to each variable to the total SS was computed for each 

protein. A summary of contribution of each variable to the total variability is given below in 

Table 5. We found that the TSM has the least contribution to the total variability whereas 

interaction term has the maximum contribution (SStsm < SSTEM < SSTSM×TEM). The 

imputation method leads to decrease in the SS contribution due to each variable. The 

proportion of proteins showing significant effects due to TSM, TEM and TSM×TEM using 

9 different approaches are given below Table 6. The proportion of proteins showing 

significant effects due to TSM and TEM and their interaction vary with each statistical 

approach. The TSM has the least proportion of significant proteins as compared to those of 

TEM and TSM×TEM. This shows that TSM has the least influence. Furthermore, the 
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imputation approach has the least proportion of significant proteins. This shows that 

imputation of MVs is a better approach for analysis as it leads to reduction in variability and 

increase in the number of proteins assessed for analysis.

Analysis for imputed data using VSN

We used ANOVA to test the significance of proteins based on TSM and TEM. The plot of 

CV of the proteins in increasing order of p-values based on A3.N3 for TSM and TEM are 

respectively given below in Figures 2 and 3. There are respectively 261 and 296 proteins 

showing significant effects due to TSM and TEM. From Figure 2, we see that FR has more 

CV as compared to that of FFPE for most of the proteins. From Figure 3, we found 

SDS.MAX has more CV as compared to those of MAX and TX.MAX. We applied chi-

square test for the proteins having significant effects due to TSM and TEM. We found that 

there is association between the TSM and the CV (p-value < 0.001). Similarly, in case of 

TSM, we found that there is association between the variables, TEM and CV (p-value < 

0.001). We found that the FFPE is a better method than that of the FR for tissue storage. 

Further, we found that MAX, the single step approach is better than those of two-step 

approach for tissue extraction. The maximum contribution to the total variability is due to 

the interaction effect TSM×TEM and TEM. The TSMs and TEMs have significant effects on 

the protein expression. However, the effect due to TSM is the least. In the present article, we 

have used different analysis and normalization methods for the proteomics data. The number 

of proteins for testing can be increased by either by including the MVs (A2) or by using 

imputed data (A3). The imputation method (A3) has the least SS contribution than those of 

A1 (complete data) and A2 (unbalanced data). We found the least proportion of significant 

proteins when using the imputation method (A3). The normalization method N1, i.e., only 

logarithmic transformation is not suited for analyzing the proteomics data. The other 

normalization methods N2 and N3 having lesser CV can be a better approach.

Conclusion

Our study discussed the technical issues with a focus on the statistical analysis. It will 

provide better insight to the researchers while designing and executing experiments. There 

may be small changes caused during sample handling and storage, different batches of 

buffer, electrospray, instrument components, calibration and tuning, etc. While designing 

any proteomics experiment, we must identify the technical steps with large variability. 

Therefore, it becomes necessary to understand the data heterogeneity due to biological 

variability and technical variability of the proteomics methods at each step. We have made 

the proteomics data available (Supporting file 1). The researchers involved in proteomics 

research area can use this data for further study. The data can further be used for planning 

new proteomics experiments. In the future, we will come up with a rigorous statistical 

approach using different proteomics dataset that could overcome the heterogeneity problem 

caused due to technical reasons in the proteomics data with MVs. Finally, we can 

recommend: (i) FFPE is the better choice than FR for tissue storage, (ii) one-step TEM is 

better than the two-step TEM, (iii) Imputation method (A3) is the best approach, (iv) N2 or 

N3 method of normalization should be the preferred choice.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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List of Abbreviations:

LC Liquid Chromatography

MS Mass Spectrometry

ANOVA Analysis of Variance

MCAR Missing Completely at Random

MAR Missing at Random

MNAR Missing not at Random

MVs Missing Values

TSM Tissue Storage Method

FFPE Formalin-Fixed Paraffin Embedded

FR Frozen

TEM Tissue Extraction Method

MAX Protease MAX

TX Triton X-100

SDS Sodium Dodecylsulfate

LCMD Laser Capture Microdissection

ETD Electron-Transfer Dissociation

CID Collision-Induced Dissociation

cRAP Common Repository of Adventitious Proteins

FDR False Discovery Rate

SS Sum of Squares

CV Coefficient of Variation
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Figure 1: 
Flowchart of the experiment.
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Figure 2: 
Plot of CV (in %) versus the proteins with increasing order of p-values for TSM (FR – red 

and FFPE – green).
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Figure 3: 
Plot of CV (in %) versus the proteins with increasing order of p-values for TSM (MAX – 

green, TX.MAX – yellow and SDS.MAX – red).
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Table 1:

Table showing different groups understudy.

            TSM →
TEM ↓ FR FFPE

Direct MAX 1 (FR_MAX) 4 (FFPE_MAX)

Sequential Extraction TX.MAX 2 (FR_TX.MAX) 5 (FFPE_TX.MAX)

SDS.MAX 3 (FR_SDS.MAX) 6 (FFPE_SDS.MAX)
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Table 5:

Summary of the contribution of % SS due to TSM, TEM and TSM×TEM.

SSTSM SSTEM SSTSM×TEM

MV Excluded

A1.N1 9.86
(0, 68.98)

20.9
(0.47, 36.32)

32.87
(0.29, 54.41)

A1.N2 14.71
(0, 78.88)

27.49
(1.35, 48.44)

43.21
(0.92, 64.54)

A1.N3 15.05
(0, 73.78)

26.7
(2.31, 44.92)

41.88
(0.59, 65.23)

MV Included

A2.N1 10.84
(0, 83.65)

20.97
(0.08, 49.47)

33.46
(0.29, 78.05)

A2.N2 12.59
(0, 85)

25.56
(0.06, 54.68)

39.37
(0.08, 80.29)

A2.N3 12.84
(0, 88.18)

25.72
(0.04, 53.37)

40.32
(0.06, 77.54)

MV Imputed

A3.N1 8.52
(0, 73.76)

18.83
(0, 40.46)

29.86
(0.09, 57.77)

A3.N2 11.07
(0, 85.67)

23.53
(0.03, 50.93)

37.33
(0.05, 65.75)

A3.N3 11.18
(0, 85.31)

23.32
(0, 49.68)

37.26
(0.14, 65.32)
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Table 6:

The summary of proportion of proteins showing effects due to the variables: TSM, TEM and TSM×TEM.

NTSM NTEM NTSM×TEM

MV Excluded

A1.N1 0.65/ 0.62/ 0.33 0.77/ 0.76/ 0.5 0.77/ 0.77/ 0.65

A1.N2 0.84/ 0.84/ 0.72 0.91/ 0.91/ 0.77 0.89/ 0.88/ 0.78

A1.N3 0.82/ 0.82/ 0.71 0.87/ 0.87/ 0.72 0.87/ 0.85/ 0.77

MV Included

A2.N1 0.61/ 0.57/ 0.25 0.72/ 0.72/ 0.28 0.79/ 0.79/ 0.49

A2.N2 0.75/ 0.73/ 0.48 0.83/ 0.82/ 0.58 0.87/ 0.87/ 0.68

A2.N3 0.74/ 0.74/ 0.52 0.81/ 0.81/ 0.6 0.85/ 0.84/ 0.67

MV Imputed

A3.N1 0.58/ 0.53/ 0.24 0.69/ 0.67/ 0.35 0.78/ 0.77/ 0.52

A3.N2 0.71/ 0.68/ 0.48 0.81/ 0.8/ 0.58 0.86/ 0.85/ 0.69

A3.N3 0.7/ 0.69/ 0.49 0.8/ 0.78/ 0.58 0.84/ 0.83/ 0.67

Note: The result obtained using p-values corresponding to without adjustment, BH adjusted and Bonferroni adjusted are separated serially by slash 
“/” in the table.
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