Skip to main content
. 2020 Feb 28;14:119. doi: 10.3389/fnins.2020.00119

Table 4.

The deep convolutional spiking neural network architectures for MNIST, N-MNIST, and SVHN dataset.

4 layer network VGG7 ResNet7
Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride
Convolution 1 × 5 × 5 20 1 Convolution 3 × 3 × 3 64 1 Convolution 3 × 3 × 3 64 1
Average-pooling 2 × 2 2 Convolution 64 × 3 × 3 64 2 Average-pooling 2 × 2 2
Average-pooling 2 × 2 2
Convolution 20 × 5 × 5 50 1 Convolution 64 × 3 × 3 128 1 Convolution 64 × 3 × 3 128 1
Average-pooling 2 × 2 2 Convolution 128 × 3 × 3 128 2 Convolution 128 × 3 × 3 128 2
Convolution 128 × 3 × 3 128 2 Skip convolution 64 × 1 × 1 128 2
Average-pooling 2 × 2 2
Convolution 128 × 3 × 3 256 1
Convolution 256 × 3 × 3 256 2
Skip convolution 128 × 1 × 1 256 2
Fully-connected 200 Fully-connected 1024 Fully-connected 1024
Output 10 Output 10 Output 10