Skip to main content
. 2020 Feb 28;14:119. doi: 10.3389/fnins.2020.00119

Table 5.

The deep convolutional spiking neural network architectures for a CIFAR-10 dataset.

VGG9 ResNet9 ResNet11
Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride Layer type Kernel size #o/p feature-maps Stride
Convolution 3 × 3 × 3 64 1 Convolution 3 × 3 × 3 64 1 Convolution 3 × 3 × 3 64 1
Convolution 64 × 3 × 3 64 1 Average-pooling 2 × 2 2 Average-pooling 2 × 2 2
Average-pooling 2 × 2 2
Convolution 64 × 3 × 3 128 1 Convolution 64 × 3 × 3 128 1 Convolution 64 × 3 × 3 128 1
Convolution 128 × 3 × 3 128 1 Convolution 128 × 3 × 3 128 1 Convolution 128 × 3 × 3 128 1
Average-pooling 2 × 2 2 Skip convolution 64 × 1 × 1 128 1 Skip convolution 64 × 1 × 1 128 1
Convolution 128 × 3 × 3 256 1 Convolution 128 × 3 × 3 256 1 Convolution 128 × 3 × 3 256 1
Convolution 256 × 3 × 3 256 1 Convolution 256 × 3 × 3 256 2 Convolution 256 × 3 × 3 256 2
Convolution 256 × 3 × 3 256 1 Skip connection 128 × 1 × 1 256 2 Skip convolution 128 × 1 × 1 256 2
Average-pooling 2 × 2 2
Convolution 256 × 3 × 3 512 1 Convolution 256 × 3 × 3 512 1
Convolution 512 × 3 × 3 512 2 Convolution 512 × 3 × 3 512 1
Skip convolution 256 × 1 × 1 512 2 Skip convolution 512 × 1 × 1 512 1
Convolution 512 × 3 × 3 512 1
Convolution 512 × 3 × 3 512 2
Skip convolution 512 × 1 × 1 512 2
Fully-connected 1024 Fully-connected 1024 Fully-connected 1024
Output 10 Output 10 Output 10