Table 8.
Dataset | Model | Spike/Image | Spike efficiency compared to | |||
---|---|---|---|---|---|---|
SNN | ANN-SNN | ANN-SNN | ANN-SNN | ANN-SNN | ||
(Diehl et al., 2015) | (Sengupta et al., 2019) | (Diehl et al., 2015) | (Sengupta et al., 2019) | |||
MNIST | LeNet | 5.52E+04 | 3.4E+04 | 2.9E+04 | 0.62x | 0.53x |
7.3E+04 | 1.32x | |||||
SVHN | VGG7 | 5.56E+06 | 3.7E+06 | 1.0E+07 | 0.67x | 1.84x |
1.9E+07 | 1.7E+07 | 3.40x | 2.99x | |||
ResNet7 | 4.66E+06 | 3.9E+06 | 3.1E+06 | 0.85x | 0.67x | |
2.4E+07 | 2.0E+07 | 5.19x | 4.30x | |||
CIFAR-10 | VGG9 | 1.24E+06 | 1.6E+06 | 2.2E+06 | 1.32x | 1.80x |
8.3E+06 | 9.6E+06 | 6.68x | 7.78x | |||
ResNet9 | 4.32E+06 | 2.7E+06 | 1.5E+06 | 0.63x | 0.35x | |
1.0E+07 | 7.8E+06 | 2.39x | 1.80x | |||
ResNet11 | 1.53E+06 | 9.7E+06 | 1.8E+06 | 6.33x | 1.17x | |
9.2E+06 | 5.99x |
(For each network, the 1st row corresponds to iso-accuracy and the 2nd row corresponds to maximum-accuracy condition).