Table 9.
Dataset | Model | Timesteps | SNN Inference Speedup Compared to | |||
---|---|---|---|---|---|---|
SNN | ANN-SNN | ANN-SNN | ANN-SNN | ANN-SNN | ||
(Diehl et al., 2015) | (Sengupta et al., 2019) | (Diehl et al., 2015) | (Sengupta et al., 2019) | |||
MNIST | LeNet | 50 | 180 | 200 | 3.6x | 4x |
500 | 10x | |||||
SVHN | VGG7 | 100 | 500 | 1,600 | 5x | 16x |
2,500 | 2,600 | 25x | 26x | |||
ResNet7 | 100 | 500 | 400 | 5x | 4x | |
3,000 | 2,500 | 30x | 25x | |||
CIFAR-10 | VGG9 | 100 | 500 | 800 | 5x | 8x |
2,500 | 3,600 | 25x | 36x | |||
ResNet9 | 100 | 800 | 600 | 8x | 6x | |
3,000 | 3,000 | 30x | 30x | |||
ResNet11 | 100 | 3500 | 600 | 35x | 6x | |
3,000 | 30x |
(For each network, the 1st row corresponds to iso-accuracy and the 2nd row corresponds to maximum-accuracy condition).