Skip to main content
. 2020 Feb 28;14:119. doi: 10.3389/fnins.2020.00119

Table 9.

Inference #time-steps and corresponding speedup comparison between SNN and ANN-SNN converted networks for benchmark datasets trained on different network models.

Dataset Model Timesteps SNN Inference Speedup Compared to
SNN ANN-SNN ANN-SNN ANN-SNN ANN-SNN
(Diehl et al., 2015) (Sengupta et al., 2019) (Diehl et al., 2015) (Sengupta et al., 2019)
MNIST LeNet 50 180 200 3.6x 4x
500 10x
SVHN VGG7 100 500 1,600 5x 16x
2,500 2,600 25x 26x
ResNet7 100 500 400 5x 4x
3,000 2,500 30x 25x
CIFAR-10 VGG9 100 500 800 5x 8x
2,500 3,600 25x 36x
ResNet9 100 800 600 8x 6x
3,000 3,000 30x 30x
ResNet11 100 3500 600 35x 6x
3,000 30x

(For each network, the 1st row corresponds to iso-accuracy and the 2nd row corresponds to maximum-accuracy condition).