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Abstract

In the last few years, single-cell profiling of taste cells and ganglion cells
has advanced our understanding of transduction, encoding, and
transmission of information from taste buds as relayed to the central
nervous system. This review focuses on new knowledge from these
molecular approaches and attempts to place this in the context of previous
questions and findings in the field. The individual taste cells within a taste
bud are molecularly specialized for detection of one of the primary taste
qualities: salt, sour, sweet, umami, and bitter. Transduction and transmitter
release mechanisms differ substantially for taste cells transducing sour
(Type lll cells) compared with those transducing the qualities of sweet,
umami, or bitter (Type Il cells), although ultimately all transmission of taste
relies on activation of purinergic P2X receptors on the afferent nerves. The
ganglion cells providing innervation to the taste buds also appear divisible
into functional and molecular subtypes, and each ganglion cell is primarily
but not exclusively responsive to one taste quality.
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This review will focus on progress in the last few years in
understanding transduction, coding, and specificity of the
peripheral gustatory system starting with the cellular com-
ponents of taste buds. Taste buds comprise 50 to 100 taste
cells, which are specialized epithelial cells including signal
transducing cells and glial-like supporting cells. The taste cells
respond to taste substances in the saliva to generate a biological
signal that then must be transmitted to the taste sensory
nerves conveying the message to the nucleus of the solitary
tract in the brain stem. This review will focus on recent
discoveries in the processes of taste transduction and trans-
mission, which significantly impact our understanding of this
system.

In mammals, the sense of taste detects a wide variety of
compounds which canonically fall into only five main sensory
qualities (or modalities): sweet, umami (savory), bitter, sour,
and salty. Each taste cell is most responsive to a single taste
quality', and each taste bud contains one or more cells capable
of responding to each of the taste qualities; that is, taste cells are
“chemically tuned” whereas taste buds are not.

Methodological advances

Two relatively new methodologies have been put to good effect
in analyzing taste buds and their associated ganglia. Functional
imaging of ganglion cells expressing genetically encoded
activity sensors has allowed direct analysis of the breadth of
tuning of inputs to the central nervous system (CNS)”’, whereas
single-cell transcriptomics has permitted molecular and
functional classification of both taste cells and ganglion cells**.
The implications of these and other recent studies are described
below and summarized in Table 1.

Transduction

The taste cells are divisible into four types characterized by
both morphological and molecular features and given the names
Type I, Type II, Type III and Type IV (Figure 1). Type I cells
are similar in many ways to astrocytes and Type IV cells are
immature cells, whereas Type II and Type III cells serve as the
transducing elements for different taste qualities.

Type 1II cells use G protein—coupled receptors for sweet
(T1IR2 + T1R3), umami (T1R1 + T1R3), or bitter (T2Rs) to

Table 1. Reported molecular characteristics of taste cells and
ganglion cells.

Taste

quality Sweet Umami Bitter Sour Salty

Sj{‘sg"on Spon?  Cdh4?* Cdh13 7 Penk, Hir3a Egro?:
Pkd2L 1,

Taste cells Sema7A Sema3A OTOP1

Data are from 6,8-11. “The meta-analysis by Anderson and Larson'’ does
not support Cdh4, Cdh13, and Egr2 as marking unique clusters. Cdh13
marked two clusters that also express OIfm3. Olfm3is associated with
several ganglion cell clusters but is never associated with Penk and so may
mark cells innervating Type Il cells® but not a particular subset of Type I
cells. Factors in question are indicated by “?”.
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Figure 1. Cell types in taste buds. Four different morphological
and molecularly distinct types of cells populate taste buds. Types
II'and Il transduce different classes of tastes, whereas Type | cells
are more glial-like. Type IV cells are the immature population, which
develop into the other cell types over the span of a few days. Figure
generated from data in 12.

initiate a transduction cascade, whereas Type III cells rely on ion
channels for transduction of the ionic tastes of salty and sour.
The receptors and downstream signaling cascade for the Type II
cells (sweet, umami, or bitter) have been well described since
the early part of this century” and involve a phospholipase C
(PLC)-mediated cascade culminating in the activation of the
Ca**-responsive channels TRPMS5 and TRPM4'* to depolarize
the cell sufficiently to generate an action potential via voltage-
gated Na* channels (SCN2A, SCN3A, and SCNO9A"). Why
axonless receptor cells should generate action potentials is
of interest and is likely related to the release mechanism for
neurotransmitter from Type II taste cells as described below.

Whereas early studies suggested that a single sweet taste
receptor (TIR2 + T2R3) mediates all responses to sugars and
sweeteners'®, recent studies suggest that other mechanisms also
play a role for glucose-containing sugars but not for artificial
sweeteners. Glucose transporters and the K, , channel, which are
expressed in sweet-responsive (T1R3-expressing) taste cells'’,
are involved in cephalic phase insulin release independent of
the neural signal for sweet transmitted to the nervous system'®.
The exact mechanism by which activation of the taste cells
evokes insulin release is unclear but may involve humoral rather
than neural signals.

Sour

In 2006, Huang et al.”” showed that sour detection depended on
cells expressing PKD2L1—cells subsequently identified as a
subset of Type III cells”. In 2011, Horio er al. showed that
PKD2LI itself was not necessary for transduction of protons’'.
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Rather, transduction of sour involves permeation of H* through
an apical ion channel” subsequently identified as OTOPI®.
Using PKD2L1 as a molecular identifier for sour-responsive
taste cells, Liman and co-workers’ and Zhang et al.® went on to
confirm OTOP1 as the necessary transduction channel underly-
ing sour taste. The entering H* ions not only directly depolarize
the taste cells but also block Kir2.1 K* channels™, thereby ampli-
fying the depolarization of the entering H* ions. The resulting
depolarization triggers voltage-gated Na* channels (SCN2A")
to generate action potentials that activate voltage-gated Ca*™
channels triggering the release of synaptic vesicles™.

In keeping with the PKD2L1 cells being the sour-transducing cells,
optogenetic driving of these cells evokes an aversive response™.
Curiously, another study”® reported that optogenetic driving of
the PKD2L1 population drives drinking behavior in thirsty mice.
Why the mice should respond with drinking to a sensation of
sour is still unresolved, although Zocchi et al.”® suggest that a
subset of PKD2L 1-expressing cells may convey a specific “water
taste” as is known for insects”’ .

Salt

Historically, responsiveness to salt has been separated into
amiloride-sensitive (AS) and amiloride-insensitive (AI) modalities™.
Confounding our understanding of salt taste is that low concen-
trations of salt are appetitive whereas high concentrations are
aversive. Furthermore, while Na* is important perceptually for
salt, other substances, not containing Na*, also are salty-tasting.
The multiple perceptual and chemical properties suggest that
more than one transduction mechanism may be involved.
Supporting this concept are the results from'*”. These studies
argue that the molecular correlate of AS salt, the epithelial
sodium channel (ENaC), underlies the appetitive qualities of
Na* but that Al salt detection of high concentrations of Na* relies
on a subpopulation of the bitter-responsive Type II cells and a
subset of the sour-responsive Type III cells™***. Furthermore, a
recent study’™ suggests that the AI salt transduction mechanism
may directly involve CI-, but the actual mechanism remains
elusive since known Cl~ channel and transporter blockers have
no effect on salt taste. Two recent works confirm a previous
study” suggesting that AS-responsive taste cells fall into
a unique class of taste cells not identified by the canonical
reporters (TRPMS for Type II and CAR4 for Type III** or PIRT
for Types II and IIT**). Further confounding the interpretation of
these studies on Na* transduction is the finding that, compared
with rodents, humans—who enjoy low salt and avoid high
salt—do not have a large AS component of salt taste™, although
chimpanzees do have a minor AS component’’.

Peripheral neurotransmission

Whatever means are used for transduction, the Type II and Type
IIT cells ultimately must release one or more neurotransmitters
to activate the afferent nerves. Activity-dependent release of
ATP from Type II cells™ and 5-HT from Type III cells” was
clearly demonstrated by several investigators, but whether
other transmitters (for example, glutamate or acetylcholine)
also may be involved remains unclear. Although ATP acting on
neural P2X receptors was identified as a crucial transmitter for
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all tastes over a decade ago®', only recently has the contribution
of 5-HT acting on neural 5-HT, receptors been elucidated in
terms of transmission of sour taste”. In addition, taste cells
may directly release peptides such as glucagon-like peptide 1
(GLP-1)**. These additional transmitters may act to modulate
adjacent taste cells* and activate afferent nerve fibers.

Although both Type II and Type III cells require action poten-
tials for transmitter release, the mechanisms of release for these
two cell types are quite different (Figure 2). Type III cells use a
conventional synapse involving voltage-gated Ca** channels and
SNARE mechanisms to effect release of synaptic vesicles™ .
In contrast, Type II taste cells (transducing bitter, sweet, or
umami) rely on action potentials to trigger the voltage-gated
large-pore channel CALHMI to release ATP*~". The pore size
of this channel is sufficient to permit passage of ATP which
serves as an obligatory transmitter in this system*”’. The
biophysical properties of CALHMI1 as described in the seminal
article on this channel* did not exactly match the properties
of the release channel in taste buds. A more recent report”
showed that the channel in taste buds consists of two subunits,
CALHM1 and CALHM3, which together form a channel
matching the properties of the Type II cell release channel.

Whereas the mechanism of release for ATP is well established
for Type II cells, the source of ATP for transmission of sour
information from Type III cells remains enigmatic. No one has
yet demonstrated direct release of ATP from Type III cells, yet
transmission of Type III cell taste qualities (for example, sour)
is dependent on intact purinergic signaling to P2X receptors®'.
Type IIT cells do not express CALHMI1* and so do not use
CALHM1/3-mediated release. Another possible means of release
of ATP is via synaptic vesicles, but Type III cells are reported
to lack the vesicular ATP-transporter, VNUT™, presumed to be
necessary for loading of synaptic vesicles with ATP. So, what
other possible sources exist for release of ATP? One suggestion
is that Type III cells may trigger ATP release via interaction with
other taste cell types. If so, this interaction does not require
participation of Type II cells since mice lacking Type II cells
(Skn1A-KO)* and CALHM1 KO* mice show nearly normal
responses to sour. Hence, the transmission of sour information
to taste nerves does not require the presence of Type II taste
cells nor the function of CALHMI1 to release ATP. Furthermore, a
recent study showing high-resolution reconstructions of taste
buds shows that Type III cells seldom directly contact Type II
cells since processes from Type I cells intervene™, suggesting
that any interactions between Type II and Type III cells may be
indirect.

Tuning specificity of taste cells and nerve fibers

One of the classic discussions in taste research concerns the
specificity of chemical tuning in the peripheral taste system,
that is, whether individual taste cells or nerve fibers respond to
single classes of taste stimuli or respond more broadly across
several modalities. The former, known as “labeled line” coding,
suggests that taste information (for example, for sweet taste) is
transduced by a unique subset of taste cells and transmitted over
dedicated nerve fibers that signal that particular quality (sweet)
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Figure 2. Taste transduction cascades. Transduction pathways for the two different types of taste-transducing cells: Type Il for sour and
Type Il for sweet, bitter, or umami. The different responsiveness of Type Il cells is dictated by the type of receptor each cell expresses, not
by downstream members of the transduction cascade. AtypMito, atypical mitochondria; ER, endoplasmic reticulum; Ge, alpha subunit
of G protein; GBy, beta-gamma subunits of G protein; IP,, inositol trisphosphate; IP,R3, inositol trisphosphate receptor isoform 3; PLCB2,
phospholipase C isoform 2; TRPM5, transient receptor potential cation channel subfamily M member 5; VGCC, voltage-gated calcium

channel; VG-Na*, voltage-gated sodium channel.

to the brain. Conversely, a broadly tuned peripheral system,
utilizing “cross-fiber pattern” coding, relies on nerve fibers that
are more broadly responsive but that respond maximally to
particular qualities, necessitating comparison of activity across
the fiber population in order for the brain to extract quality
information. Receptor expression data strongly indicate that taste
receptor cells largely express receptors for a single taste quality
and this suggests that labeled line coding is plausible™.

So, the question then is how specifically the taste cells activate
particular nerve fibers. Two articles published in 2015 address this
question but arrive at somewhat different conclusions, although
detailed comparison of the data in the two studies shows similar
results. In both works, the investigators used optical record-
ing methods to assess activity in geniculate ganglion cells that
innervate taste buds in fungiform papillae on the front of the
tongue. Barretto et al.’, using relatively low concentrations of
taste stimuli, report that taste ganglion cells largely respond to a
single stimulus class, although many multiply responsive cells
are evident in the data. Conversely, Wu et al.’ found that ganglion
cell specificity is dominant only for low concentrations of tastants.
As concentrations increase, more and more ganglion cells are
recruited so that the majority of cells will respond to more than
one class of tastant at moderate - high stimulus levels. This
finding tends to support a cross-fiber model of decoding afferent
input, particularly at higher stimulus concentrations. It should
be noted that loss of specificity at high stimulus levels is

similar to encoding in other sensory modalities; for example,
a dim blue light of 505 nm will selectively activate the blue-
sensitive, short-wavelength cones in the retina. But when the
same wavelength of light is more intense, it will also activate the
green, medium-wavelength cones and ultimately the red, long-
wavelength cones. So absolute color cannot be determined by
reading the output of only one class of cones but rather requires
comparisons of activity levels across the different types of cones.
Similarly, taste quality identification may require comparison
of activity levels across incoming lines of information which
preferentially, but not absolutely, encode particular qualities.
In other words, while the afferent input is “tuned” as would be
necessary for a labeled line system, absolute quality informa-
tion can be extracted only by comparing the pattern and level of
activity across fiber classes.

Another requirement for labeled line coding is connectional
specificity between taste cells and nerve fibers; that is, sweet
receptor-expressing taste cells should connect to nerve fibers
receiving synaptic input only from other sweet receptor cells and
so forth. Such specificity has been suggested recently for both
Type III cells and Type II cells. Taste nerve fibers highly express-
ing the serotonin receptor 5-HT, show preferential connectiv-
ity with Type III taste cells (sour) that accumulate and release
serotonin’. Argument for Type II cell connectional specifica-
tion is based on transcriptome profiling of geniculate ganglion
cells. Like dorsal root ganglion cells™, geniculate ganglion cells
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fall into distinct molecular classes’. Those ganglion cells that
innervate taste buds express Phox2b, whereas those providing
somatosensory innervation to the ear do not”’, so this transcrip-
tion factor can be used to identify ganglion cells that innervate
taste buds. Lee et al."” showed that connectional specificity for
Type II cells is maintained by molecular encoding of receptor
cell and nerve fiber identities by SEMA family guidance
molecules. Likewise, Zhang et al.® found that genetic deletion
of particular gene products correlates with loss of behavioral
response to particular tastants—Cdh4 for umami, Cdhl3 for
bitter, and Egr2 for salty—suggesting that these factors may
serve to identify particular classes of gustatory ganglion cells
(see Table 1). Since these proteins are expressed widely in the
CNS (including in taste-processing areas), it is unclear whether
the reported behavioral changes are attributable to changes in
ganglion cell functionality or changes higher in the neuraxis.
Furthermore, a more recent meta-analysis of these and other
transcriptome data on ganglion cell subclasses fails to support the
segregation of geniculate ganglion cell subtypes according to
expression of these cadherins''. Whether this all equates to
absolute functional specificity of the taste neurons remains open
to question. Substantial evidence exists for the possibility of
cell-to-cell communication in taste buds'”®, and side-band
activity in the taste nerves might result from such interactions
between taste cells rather than direct convergence of input
onto single fibers.

Another interesting outcome of the molecular profiling of
the geniculate ganglion neurons innervating taste buds is the
identification of a population expressing Piezo2, a marker of
touch-sensitive ganglion cells’. Such touch sensitivity of a
subpopulation of gustatory ganglion cells would explain the
residual tactile responsiveness of the gustatory nerves following
genetic deletion of P2X receptors necessary for transmission from
taste cells to nerve fibers*'. Thus, the nerve fibers themselves
may be touch-sensitive and require no activation from the taste
buds for tactile activation.

Is “fatty” a taste?

A classic question in the field of taste research is “How many
primary tastes are there?” In the 20th century, the debate
focused on whether umami (savory) was a primary taste distinct
from the classic qualities of salty, sour, sweet, and bitter. The
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discovery of a distinct molecular receptor for glutamate, coupled
with the identification of glutamate (umami)-specific fibers in
gustatory nerves and behavioral experiments showing the
discriminability of glutamate from other tastes, clinched the
case that umami is indeed a distinct primary taste. In the last
few decades, the question of whether the taste of fat is a primary
taste quality has been debated”. Potential fat receptors GPR120
and CD36 were identified molecularly in taste buds about a
decade ago®“'. But the mere presence of a receptor does not
necessarily equate to the existence of a separate coding channel
as would be expected of a primary taste quality. This year,
Ninomiya et al.*” identified, for the first time, a population of
nerve fibers (F-fibers) in the chorda tympani nerve that respond
uniquely to a fatty acid, linoleic acid, lending further credence
to the idea that fat is a unique taste quality. Complicating the
situation is that some of the F-fibers also show responses to
glutamate, and although mice can be trained to recognize the
taste of linoleic acid, they confound it with glutamate (see also 63),
suggesting that fatty taste sensations may be intermingled with
those for umami. Thus, the question remains as to whether fatty
acid taste is a distinct primary taste or more a modulator of other
taste qualities.

Remaining unanswered questions

e What mechanisms and cells underlie transduction of Al
salt taste, and what cells are responsible for AS salt taste?

* What is the source of ATP required for transmission of
information from Type III (sour) cells to the afferent
nerves?

e How much intercellular communication occurs within
taste buds, and how does this affect the nature of the signal
transmitted to the nerve fibers?

e Is fatty a primary taste quality? And how many other
unrecognized primary taste qualities may exist?
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In addition to fatty taste, there is substantial evidence for the existence of a maltodextrin, or more
specifically a maltooligosaccharide taste in various species including rats, mice and humans (Sclafani,
1987; Sclafani, 2004; Spector and Schier, 2018; Lim and Pullicin, 2019). This was first suggested by the
attraction displayed by rats to maltodextrin solutions (e.g., Polycose) in brief-access or sham-feeding tests
that minimize postoral nutrient feedback and by the weak cross-generalization of taste aversions
conditioned to maltodextrin and sucrose (Sclafani, 1987). Subsequent studies revealed that deletion of the
T1R2 and/or T1R3 sweet receptor elements substantially reduced the behavioral response of mice to
sugars but had minimal effects on their response to maltodextrin (Treesukosol et al., 2009; Zukerman et al.
, 2009; Treesukosol et al., 2011). Yet deletion of downstream taste signaling elements (a-gustducin,
TRPM5, CALHM1, P2X2/P2X3) greatly attenuates the behavioral responses of mice to maltodextrin as
well as sugar solutions (Sclafani et al., 2007; Taruno et al., 2013; Sclafani and Ackroff, 2014). Consistent
with the mouse findings, blocking the sweet taste receptor with lactisole blocks sugar but not
maltooligosaccharide detection in humans (Lim and Pullicin, 2019). Humans differ from rodents in that they
do not display a strong behavioral attraction to maltodextrin taste. However, the oral detection of
maltodextrins is reported to improve human exercise performance (Jeukendrup and Chambers, 2010;
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Bortolotti et al., 2014). Interestingly, there are no published reports on maltodextrin taste effects on
exercise performance in rodents for comparison. Importantly, the identity of the putative
maltooligosacchride taste receptor is unknown, which represents a major gap in our understanding of this
taste modality.
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