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Abstract

Correct annotation metadata is critical for reproducible and accurate RNA-seq analysis.

When files are shared publicly or among collaborators with incorrect or missing annotation

metadata, it becomes difficult or impossible to reproduce bioinformatic analyses from raw

data. It also makes it more difficult to locate the transcriptomic features, such as transcripts

or genes, in their proper genomic context, which is necessary for overlapping expression

data with other datasets. We provide a solution in the form of an R/Bioconductor package

tximeta that performs numerous annotation and metadata gathering tasks automatically on

behalf of users during the import of transcript quantification files. The correct reference tran-

scriptome is identified via a hashed checksum stored in the quantification output, and key

transcript databases are downloaded and cached locally. The computational paradigm of

automatically adding annotation metadata based on reference sequence checksums can

greatly facilitate genomic workflows, by helping to reduce overhead during bioinformatic

analyses, preventing costly bioinformatic mistakes, and promoting computational reproduc-

ibility. The tximeta package is available at https://bioconductor.org/packages/tximeta.

Author summary

Gene expression quantification from RNA sequencing is a common component of many

research publications. In order that research findings can be computationally reproduc-

ible, it is critical that gene expression datasets are linked to the correct gene annotation,

including the source of the annotation, the release number, and the location of the genes

in a particular genome assembly. Often it is difficult for this critical metadata to be found

for public datasets, and manually curating this information subjects the process to human

error. We describe a solution for the missing metadata problem, whereby we embed a
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checksum of the RNA reference sequences in the output files during the expression quan-

tification step. Later we use this checksum for identification and automatic attachment of

the correct metadata when the dataset is loaded into R for statistical analysis. We feel this

paradigm of embedded checksums and subsequent metadata retrieval will also prove use-

ful in other computational biology contexts.

This is a PLOS Computational Biology Software paper.

Introduction

An RNA-seq data analysis often involves quantification of sequence read data with respect to a

set of known reference transcripts. These reference transcripts may be downloaded from a

database such as GENCODE, Ensembl, or RefSeq [1–3] in the form of nucleotide sequences in

FASTA format and/or transcript locations in a genome in GTF/GFF (gene transfer format /

general feature format). Alternatively a novel set of reference transcripts may be derived as

part of the data analysis. The provenance of the reference transcripts, including their source

and release number, is critical metadata with respect to the processed data. Without informa-

tion about the reference provenance, computational reproducibility—re-performing the

analysis with the same data and code and obtaining the same result [4]—may be difficult or

impossible. Reproducibility has been set as a high-level goal for all NIH-funded research [5, 6],

and so developers of bioinformatic tools should design software that promotes and facilitates

computational reproducibility. Manually tracking critical pieces of metadata throughout a

long-term bioinformatic project is tedious and error prone; still, manual metadata record-

keeping is a common practice in RNA-seq bioinformatics. For example, a common approach

to tracking the provenance of reference transcripts used during an RNA-seq quantification

step would be to keep a README file in the same directory as the quantification data, with

source and release information recorded.

In addition to impeding computational reproducibility, missing or wrong metadata can

potentially lead to serious errors in downstream analysis: if quantification data are shared with

genomic coordinates but without critical metadata about the genome version, computation of

overlaps with other genomic data with mis-matching genome versions can lead to faulty infer-

ence of overlap enrichment. Additional annotation tasks, such as conversion of transcript or

gene identifiers, or summarization of transcript-level data to the gene level, is made more diffi-

cult when the reference provenance is not known. Kanduri et al. [7] documented issues sur-

rounding the lack of provenance metadata for BED, WIG, and GFF files, and described this

problem as a “major time thief” in bioinformatics. Likewise, Simoneau and Scott [8] described

information on genome assembly and annotation as “essential” for describing the computa-

tional analysis of RNA-seq data, and contended that, “no study using RNA-seq should be

published without these methodological details.” Simoneau and co-authors have recently per-

formed a detailed analysis of hundreds of published RNA-seq studies, finding that the majority

did not include annotation source and release information, thus hindering reproducible analy-

sis [9].

A number of frameworks have been proposed that would solve the problem of tracking

provenance in a bioinformatic analysis—provenance in the narrow sense defined above,
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encompassing the source and release information of the reference sequences—as well as in a

larger sense of tracking the state of all files, including data, metadata and any software used to

process these files, throughout every step of an analysis. We will first review frameworks for

tracking provenance of reference sequences, and secondly describe more general frameworks.

The CRAM format, developed at the European Bioinformatics Institute, involves computing

differences between biological sequences and a given reference so that the sequences them-

selves do not need to be stored in full within an alignment file [10]. Because the specific refer-

ence used for compression is critical for data integrity, CRAM includes checksums of the

reference sequences as part of the file header. A partner utility called refget has been developed

in order to allow for programmatic retrieval of the reference sequence from a computed check-

sum, which acts as an identifier of the reference sequence when reads have been aligned to

chromosomes [11]. A similar approach is taken by the Global Alliance for Genomics and

Health’s (GA4GH) Variation Representation Specification (VR-Spec) [12], which uses a

hashed checksum (or “digest”) to uniquely refer to molecular variation, and by the seqrepo

python package for writing and reading collections of biological sequences [13]. The NCBI

Assembly database takes a different approach, by assigning unambiguous identifier strings

(though not computed via a hash function) to sets of sequences comprising specific releases of

a genome assembly [14]. Knowing the identifier is therefore sufficient to know the full set of

sequences in the assembly.

Another approach to reduce manual metadata tracking associated with a number of refer-

ence sequences is Refgenie. Refgenie is a tool that helps with management of bundles of files

associated with reference genomes, and facilitates sharing provenance information across

research groups, in that the generation of resources is scripted [15]. Arkas and ARMOR are

frameworks for automating bioinformatic analyses for RNA-seq, where metadata can be

assembled and attached programmatically to downstream outputs [16, 17]. The pepkit frame-

work and the basejump R package assist with organization and management of metadata in

bioinformatic pipelines, though these cannot allow for post hoc identification of reference

provenance [18, 19].

In 2015, Belhajjame et al. [20] introduced the concept of a “Research Object”, an aggrega-

tion of data and supporting metadata produced within a specified scientific workflow. Their

formulation was system-neutral, describing the requirements for production of a Research

Object. The requirements touch on topics introduced above, such as the need to preserve data

inputs, software versions, as well as traces of the provenance of data as it moves through the

scientific workflow. Belhajjame et al. [20] summarized literature in the field of computational

reproducibility and efforts toward extensive provenance tracking. The developers of the Com-

mon Workflow Language (CWL) [21] have defined a profile, CWLProv, for recording prove-

nance through a workflow run, and have a number of implementations, including within

cwltool [22]. The developers of CWLProv emphasized the importance of tracking versions of

input data, such as reference genomes or variant databases in a scientific workflow, and they

suggested to use and store stable identifiers of all data and software, as well as the workflow

itself. As identifiers play such a crucial role in assuring reproducibility of workflows, the devel-

opers of CWLProv recommended the use of hashed checksums for identifiers of data, includ-

ing any reference sequence, similar to the use of checksums in the CRAM format and

VR-Spec, for identifying the reference or variant sequences. Gruning et al. [23] recommended

combining systems such as Galaxy for encapsulating analysis tools with systems for tracking

and capturing parameters and source data provenance to provide full computational

reproducibility.

Here we describe an R/Bioconductor package, tximeta, for identification of reference tran-

script provenance in RNA-seq analyses via sequence checksums. It is situated among other

Tximeta: Reference sequence checksums for provenance identification in RNA-seq

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007664 February 25, 2020 3 / 13

https://doi.org/10.1371/journal.pcbi.1007664


solutions for facilitating computational reproducibility described above, with some automa-

tion of routine tasks, such as conversion of transcript and gene names, but short of full auto-

mation of downstream statistical analyses as in Arkas and ARMOR (note, however, that

ARMOR relies on tximeta for the import of transcript abundances). Tximeta captures the ver-

sions of the software packages used in import of quantification data, but does not provide full

provenance tracking throughout downstream tasks as in the Research Object specification or

in CWLProv. One unique aspect of tximeta in the context of RNA-seq is that our implementa-

tion can be used to identify the reference provenance post hoc on various shared or public

datasets, regardless of whether the original analyst kept or shared accurate records of the refer-

ence transcripts that were used. Therefore it can provide some utility for bioinformatic analysts

without requiring full buy-in of a particular workflow execution framework. Post hoc tran-

scriptome identification is a novel functionality not offered by alternative existing pipelines for

importing or creating RNA-seq count matrices in R/Bioconductor. Tximeta is similar in

implementation to the CRAM format in the use of hashed checksums, but identifies the tran-

script sequences used during RNA-seq sample quantification rather than the genome sequence

used during alignment. We see tximeta as a piece of a larger effort to create software systems

that are “more amenable to reproducibility” [24].

Design and implementation

Indexing and quantification

Tximeta has been developed to work automatically with output from Salmon or alevin quanti-

fication tools [25, 26], although the implementation could be extended to other quantification

tools that store the appropriate hashed checksum within the index and propagate this check-

sum to the sample output metadata. In addition, tximeta will work with any transcript-level

quantification tool, as long as it is wrapped in a pipeline that writes the reference sequence

checksum to a metadata file in each sample output directory. Without loss of generality, we

describe the implementation referring to Salmon quantification data below. A diagram of the

following workflow is shown in Fig 1.

During the indexing step, Salmon computes the hashed checksum of the cDNA sequence of

the reference transcripts. The set of reference transcripts provided to Salmon will be referred

to in this text as the transcriptome, although we note that the reference is not necessarily equal

to the complete set of possible RNA transcripts in the sample. Currently, both the SHA-256

and SHA-512 [27] checksums are computed on the reference cDNA sequences alone, with

transcript sequences concatenated together with the empty string (the SHA-256 checksum is

currently taken as the primary identifier). Future implementations of Salmon and tximeta may

use alternate hash functions for compatibility with larger efforts toward stable identifiers for

sequence collections, for example, computing a hashed checksum over a lexicographically

sorted set of checksums for each transcript cDNA sequence, which would provide order-

invariance for the collection identifier. During quantification of a single sample, Salmon

embeds the transcriptome index checksum in a metadata file associated with the sample out-

put. For each sample, Salmon outputs a directory with a specific file structure, including files

with quantification information as well as others with important metadata about the parame-

ters. The entire directory, not just the text file with the quantification information, should be

considered the output of the quantification tool.

Import of quantification data into R

During import of quantification data into R/Bioconductor [28], leveraging the existing txim-

port package [29], tximeta reads the quantification data, as well as the transcriptome index
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checksum, and compares this checksum to a hash table of pre-computed checksums of a subset

of commonly used reference transcriptomes (human, mouse, and fruit fly reference transcripts

from GENCODE, Ensembl, and RefSeq), as well as to a custom hash table which will be

described below. Tximeta verifies that the checksum and therefore the reference transcriptome

sequence is identical across all samples being imported. If there is a match of the checksum

among the pre-computed checksums or in the custom hash table, tximeta will begin to compile

additional relevant metadata. Depending on whether the checksum has been seen by tximeta

before, one of two steps will occur:

• (First time)—Tximeta attempts to download the appropriate GTF/GFF file via FTP and

parse it using Bioconductor packages. GENCODE and RefSeq GTF/GFF files are parsed by

GenomicFeatures [30], while Ensembl GTF files are parsed by ensembldb [31]. Tximeta then

creates a locally cached SQLite database of the parsed GTF/GFF file, as well as a GRanges

object of the transcript locations [30]. The local cache is managed by the BiocFileCache Bio-

conductor package [32]. If the database for the correct Ensembl release is available using Bio-

conductor’s AnnotationHub infrastructure, this pre-parsed database will be downloaded

instead of downloading and parsing the GTF.

• (Subsequently)—Tximeta loads the locally cached versions of metadata (the transcript

ranges, or additionally the SQLite database on demand for further annotation tasks).

Fig 1. Flowchart of Salmon quantification followed by tximeta. The quantification and import pipeline results in a SummarizedExperiment object

with reference transcript provenance metadata added by tximeta (see Design and Implementation). The SummarizedExperiment object contains

estimated counts and other relevant metadata, and can be used with downstream statistical packages.

https://doi.org/10.1371/journal.pcbi.1007664.g001
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After loading the appropriate annotation metadata, tximeta outputs a SummarizedExperi-

ment object [30], a class in the Bioconductor ecosystem which stores multiple similarly shaped

matrices of data, or “assays”, including the estimated read counts, effective transcript lengths,

and estimates of abundance (in transcripts per million, TPM). By convention, rows corre-

spond to genomic features (e.g. transcripts or genes), while columns correspond to samples. In

addition, the rows of the matrices are linked to transcript ranges, embedded in an appropriate

genome version (e.g. GRCh38) including chromosome names and lengths. The Summarize-

dExperiment object can then be used with downstream statistical analysis packages in Biocon-

ductor, as described in the tximeta software vignette. If tximeta did not find a matching

transcriptome in the hash table then a non-ranged SummarizedExperiment will be returned as

the function’s output, as the location and context of the transcript ranges are not known to

tximeta.

If the transcriptome was identified, and ranges were attached, then comparing data across

genome versions, or without properly matching chromosomes, will produce an error, leverag-

ing default functionality from the underlying GenomicRanges package [30]. Metadata about

the samples, if provided by the user, is automatically attached to the columns of the Summari-

zedExperiment object. Additional metadata attached by tximeta includes all of the per-sample

metadata saved from Salmon (e.g. library type, percent reads mapping, etc.), information

about the reference transcriptome and file paths or FTP URLs for the source file(s) for FASTA

and GTF/GFF, and the package versions for tximeta and other Bioconductor packages used

during the parsing of the GTF/GFF. At any later point in time, annotation tasks can be per-

formed by on-demand retrieval of the cached databases, for example summarization of tran-

script-level information to the gene level, conversion of transcript or gene identifiers, or

addition of exon ranges.

A key aspect of the tximeta workflow described here is that it does not rely on self-reporting

of the reference provenance for post hoc identification of the correct metadata. An exception

to this rule is the case of a de novo constructed transcriptome, or in general, use of a transcrip-

tome that is not yet contained in tximeta’s built-in hash table of reference transcriptomes. For

such cases, we have developed functionality in tximeta to formally link a given hashed check-

sum to a publicly available FASTA file(s) and a GTF/GFF file. The makeLinkedTxome
function can be called, pointing to the transcriptome index as well as to the locations of the

FASTA files and GTF/GFF file, and this will perform two operations: (1) it will add a row to a

custom hash table, managed by BiocFileCache, and (2) it will produce a JSON file that can be

shared or uploaded to public repositories, which links the transcriptome checksum with the

source locations. When the JSON file is provided to loadLinkedTxome on another

machine, it will add the relevant row to tximeta’s custom hash table, so tximeta will then recog-

nize and automatically populate metadata in a similar manner to if the checksum matched

with a transcriptome in tximeta’s built-in hash table. Finally, the cache location for tximeta,

managed by BiocFileCache, can be shared across users on a cluster, for example, such that

parsed databases, GRanges objects, and custom hash tables created by any one user can be lev-

eraged by all other users in the same group.

Comparison to related software

A number of related software projects are compared with respect to key features of tximeta in

Table 1. While other RNA-seq pipelines can import quantification data into R/Bioconductor,

tximeta uniquely allows for post hoc identification of the reference sequence provenance. The

most directly related RNA-seq software packages create a SummarizedExperiment, or an

object of similar shape and function, including Arkas [16], ARMOR [17], htseq [33],

Tximeta: Reference sequence checksums for provenance identification in RNA-seq
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featureCounts [34] from the Rsubread package, and summarizeOverlaps [30] from the Geno-

micAlignments package. Arkas is a framework for importing transcript-level quantification

data into R/Bioconductor, and specifically designed for extracting annotation metadata from

Ensembl FASTA files. Arkas parses information from the FASTA header lines, and so is lim-

ited in this respect. For example, GENCODE transcript files do not contain transcript ranges

in the header lines, and Ensembl header lines do not contain information about exons or their

ranges. ARMOR depends on tximeta, and so relies on functionality described here to attach

transcript ranges and release information to the output object.

The software packages or functions htseq, featureCounts, and summarizeOverlaps all per-

form counting operations for aligned RNA-seq reads with respect to specific gene models, and

can be used to generate an R/Bioconductor object similar to that provided by tximeta. The

htseq python package and subsequent data import with DESeq2 create a SummarizedExperi-

ment, but without ranges or release information attached. The R functions featureCounts and

summarizeOverlaps automatically attach ranges, and the latter will also attach the transcrip-

tome release metadata, given that a GRanges object was used to perform the counting opera-

tion. However, neither featureCounts nor summarizeOverlaps allow for post hoc metadata

operations, such as the addition or modification of ranges, or addition of relevant metadata, as

they do not explicitly connect the object with a remote or locally cached database as tximeta

does.

Other software such as pepkit [18], basejump [19], Refgenie [15], CRAM [10], refget [11],

and CWLProv [22] are not particularly designed for RNA-seq data import, and so are less

directly comparable to tximeta. Pepkit, basejump, Refgenie, and CWLProv are generic work-

flow or resource management tools, some of which allow for the possibility of post hoc identifi-

cation of annotation metadata. However, none of these would provide automatic metadata

attachment (range and release information) for RNA-seq data as accomplished by tximeta.

Table 1. Comparison of tximeta to related software.

Software Domain Ranges

automatically

attached

Release

automatically

attached

Post hoc

lookup

possible

tximeta RNA-seq import ✓ ✓ ✓

tximport [29] RNA-seq import

Arkas� [16] RNA-seq analysis ✓ ✓

ARMOR†[17] RNA-seq analysis ✓ ✓ ✓

htseq [33] RNA-seq counting

featureCounts [34] RNA-seq counting ✓

summarizeOverlaps [30] RNA-seq counting ✓ ✓

pepkit [18] Workflow management - -

basejump [19] Metadata utilities - -

Refgenie [15] Genome management - - ✓

CRAM+RefGet [10, 11] Read alignment - - ✓

CWLProv [22] Workflow tracing - - ✓

Tximeta is compared to related software, grouped by domain. Columns indicate if the transcript or gene ranges are automatically attached to the output of the software,

whether the transcriptome and genome release information is automatically attached, and whether post hoc lookup of transcriptome-related metadata is possible. A

hyphen (-) indicates that the column is not directly applicable.

�Arkas attaches transcript ranges and release information for Ensembl transcripts only.
†ARMOR imports tximeta for object construction.

https://doi.org/10.1371/journal.pcbi.1007664.t001
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Results

Importing quantification data from known transcriptome

An example of importing RNA-seq quantification data using tximeta can be followed in the

tximeta or fishpond Bioconductor package vignettes. Here we demonstrate the case where the

Salmon files were quantified against a transcriptome that is in tximeta’s pre-computed hash

table. A list of supported transcriptomes as of the writing of this manuscript is provided in

Table 2.

Import begins by specifying a sample table (the “column data”, as the columns of the Sum-

marizedExperiment object correspond to samples from the experiment).

coldata <- read.csv("coldata.csv")
For example, in the fishpond Bioconductor package vignette [35], the following coldata

is read into R in the beginning of the analysis (here just showing the first two rows and five col-

umns). The samples are from a human macrophage RNA-seq experiment [36].

## names sample_id line_id replicate condition_name
## 1 SAMEA103885102 diku_A diku_1 1 naive
## 2 SAMEA103885347 diku_B diku_1 1 IFNg
This table must have a column files that points to paths of quantification files

(quant.sf), and a column names with the sample identifiers. The following line can be

used to create the files column (if it does not already exist), where dir specifies the direc-

tory where the Salmon output directories are located, and here assuming that the sample

names have been used as the Salmon output directory names.

coldata$files <- file.path(dir, coldata$names, "quant.sf")
It is expected that the quantification files are located within the original directory struc-

ture created by Salmon and with all the associated metadata files. The next step is to provide

this table to the tximeta function, which returns a SummarizedExperiment object. If a

match of the hashed checksum is found, tximeta will print a message identifying the

transcriptome and will attach relevant metadata including the genomic ranges of the

transcripts.

Table 2. Pre-computed reference transcripts checksums as of early 2020.

Source Organism Releases Transcript sequence file

GENCODE Homo sapiens 23 – 33 transcripts.fa

GENCODE Mus musculus M6 – M24 transcripts.fa

Ensembl Homo sapiens 76 – 99 �.cdna.all.fa (NR)

Ensembl Mus musculus 76 – 99 �.cdna.all.fa (NR)

Ensembl Drosophila melanogaster 79 – 99 �.cdna.all.fa (NR)

Ensembl Homo sapiens 76 – 99 �.cdna.all.fa + �.ncrna.fa

Ensembl Mus musculus 76 – 99 �.cdna.all.fa + �.ncrna.fa

Ensembl Drosophila melanogaster 79 – 99 �.cdna.all.fa + �.ncrna.fa

RefSeq Homo sapiens p1 – p12† �_rna.fa

RefSeq Mus musculus p2 – p5† �_rna.fa

The set of pre-computed checksums span the stable releases from these sources for the years 2015—2019. (NR)—not recommended: we recommend combination of

coding and non-coding transcripts for accurate RNA-seq quantification;
†—RefSeq assembly versions p13 and p6 for human and mouse respectively are currently “latest”, and are subject to sequence updates under the same assembly version,

and so not stable releases.

https://doi.org/10.1371/journal.pcbi.1007664.t002
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se <- tximeta(coldata)
The SummarizedExperiment object, se, that is returned by tximeta contains information

including the estimated counts, abundances (in TPM), and the effective lengths of the tran-

scripts. It also contains the metadata about the samples in the colData slot and metadata

about the transcript ranges in the rowRanges slot. The SummarizedExperiment object can

then be passed to various downstream statistical analysis packages such as DESeq2, edgeR,

limma-voom, or fishpond, with example code in the tximeta software vignette [35, 37–40].

The transcript or gene ranges can be easily manipulated using the GenomicRanges or plyr-

anges packages in the Bioconductor ecosystem [30, 41]. For example, to subset the object to

only those transcripts that overlap a range defined in a variable x, the following line of code

can be used.

se_sub <- se[se %over% x,]
The metadata columns associated with the genomic ranges of the SummarizedExperiment

will have different information depending on the source. For GENCODE, Ensembl, and

RefSeq, the chromosome names, start and end positions, strand, and transcript or gene ID are

always included. Quantification data with an Ensembl source will also include the transcript

biotype, and the start and end of the CDS sequence in the metadata columns.

Further examples of manipulating the SummarizedExperiment object can be found in the

tximeta vignette, in the fishpond vignette, and in the plyrangesTximetaCaseStudy package

[42].

Importing data from a de novo transcriptome

It is also possible to use tximeta to import quantification data when the transcriptome does not

belong to those in the set covered by pre-computed checksums (Table 2). This case may occur

because the reference transcriptome is from another source or another organism than those

currently in this pre-computed set, or because the transcriptome has been modified by the

addition of non-reference transcripts (e.g. cancer fusion transcripts, or pathogen transcripts)

which changes the checksum, or because the entire transcriptome has been assembled de novo.

In all of these cases, tximeta provides a mechanism for local metadata linkage, as well as a for-

mal mechanism for sharing the link between the quantification data and publicly available ref-

erence transcriptome files.

The key concept used in the case when the checksum is not part of the pre-computed set, is

that of a link constructed between the transcriptome used for quantification via its hashed

checksum and publicly available metadata locations (i.e. permalinks for the FASTA and GTF/

GFF files). This link is created by the tximeta function makeLinkedTxome which stores the

reference transcriptome’s checksum in a custom hash table managed by BiocFileCache, along

with the permalinks to publicly available FASTA and GTF/GFF files.

We demonstrate this use case with an RNA-seq experiment [43] of transcripts extracted

from the speckled killifish (Fundulus rathbuni) quantified using Salmon [25] against a de
novo transcriptome assembled with Trinity [44] and annotated via dammit [45]. An example

workflow is provided in the denovo-tximeta repository on GitHub [46]. Here, the FASTA

sequence of the de novo assembly as well as a GFF3 annotation file have been posted to

Zenodo [47, 48], and permalinks are used to point to those records. After the reference

transcripts have been indexed by Salmon, the following tximeta function can be called

within R.

makeLinkedTxome(
indexDir="F_rathbuni.trinity_out",
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source="dammit",
organism="Fundulus rathbuni",
release="0",
genome="none",
fasta="https://zenodo.org/record/1486276/files/F_rathbuni.trinity_out.fasta",
gtf="https://zenodo.org/record/2226742/files/F_rathbuni.trinity_out.Trinity.fasta.

dammit.gff3",
jsonFile="F_rathbuni.json"

)
The function does not return an R object, but has the side effect of storing an entry in the

custom hash table managed by BiocFileCache, and producing a JSON file which can be shared

with other analysts. The JSON file can be loaded with loadLinkedTxome, and it will like-

wise store an entry in the custom hash table of the machine where it is loaded. In either case,

when the quantification data killi-quant is later imported using tximeta, the checksum will be

recognized and the relevant metadata attached to the SummarizedExperiment object output.

After the above function has been run, or loadLinkedTxome has been run, then the steps

proceed as before, calling tximeta with an argument that specifies the sample table.

se <- tximeta(coldata)
After running tximeta, the SummarizedExperiment object se will have attached to its

rows the ranges described by the GTF/GFF object, including any metadata about those tran-

scripts. In the case of the killifish RNA-seq experiment, the transcript ranges have length,

strand, and an informative column gene_id. The ranges of the SummarizedExperiment can

be examined (here only showing the first two ranges, and suppressing range names).

rowRanges(se)
## GRanges object with 143492 ranges and 3 metadata columns:
## seqnames ranges strand | tx_id
## <Rle> <IRanges> <Rle> | <integer>
## TRINITY_DN114791_c0_g1_i1 1-2308 + | 1290
## TRINITY_DN114724_c0_g2_i1 1-635 - | 1283
## gene_id
## <CharacterList>
## ORF Transcript_. . .type:complete len:190 (+)
## ORF Transcript_. . .5prime_partial len:83 (-)

Availability and future directions

We outline an implementation for importing RNA-seq quantification data that involves (1) the

quantification tool (here, Salmon) computing a hashed checksum of the reference transcript

sequences, which are embedded in the index and in the per-sample output metadata, followed

by (2) downstream comparison of checksums with a hash table (here, by tximeta), automated

downloading and parsing of the appropriate metadata, and attachment to a rich object that bun-

dles data and reference sequence metadata. The software is implemented within the R/Biocon-

ductor environment for genomic data analysis, and leverages a number of existing Bioconductor

packages for parsing annotation files, metadata storage, and genomic range manipulation [28,

30–32]. The tximeta package is available at https://bioconductor.org/packages/tximeta.

Currently, the pre-computed hashed checksums are focused on human, mouse, and fruit

fly reference transcripts, from the popular reference transcriptome sources GENCODE,

Ensembl, and RefSeq. Additional transcriptome releases from these sources are programmati-

cally downloaded, the hashed checksum computed, and the checksum added to the tximeta
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package on Bioconductor’s 6 month release cycle. We are hopeful that future integration of txi-

meta with reference sequence retrieval efforts from the GA4GH consortium will allow for a

wide expansion of the number of supported organisms. Potentially all of the releases of refer-

ence transcriptomes from Ensembl and/or RefSeq may be supported by a future reference

sequence retrieval API (GENCODE releases since 2015 are already fully supported by tximeta).

Furthermore, we provide a mechanism for formally linking those reference transcripts not in

any pre-computed hash table (e.g. de novo transcriptomes) with publicly available metadata.

Finally, we plan to develop tximeta to support provenance identification at the level of alleles,

by combining our current reference transcript identification with transcript variant identifica-

tion as described in GA4GH’s Variant Representation Specification [12].

Tximeta extends tximport [29], and so is appropriate for importing transcript-level quanti-

fication data. Tximeta is not applicable to tasks such as counting of genome-aligned reads in

genomic features such as exons, or ChIP- or ATAC-seq peaks. For aligned reads stored in

CRAM format [10], future work along the lines of tximeta could involve programmatic utiliza-

tion of genomic feature release metadata following read counting operations, for example

matching exons to transcripts.

All bioinformatic software packages have limited lifespan, including the package described

here. We join with others in recommending the underlying paradigm of embedding reference

sequence checksums in sample output metadata, followed by downstream database lookup of

checksums, and identification of reference sequence metadata. This paradigm should be

adopted by other bioinformatic software that outputs any data that refers to a reference

sequence. In addition, workflows can be created that wrap existing tools to ensure that hashed

checksums of relevant annotation metadata are propagated to sample output directories. Such

workflows have the advantage of not requiring additional effort or actions on the part of the

upstream bioinformatic analyst. Otherwise, we risk exposing downstream analysts to the

“major time thief” of post hoc guesswork involved in identifying the provenance of datasets

shared publicly but without critical metadata [7].
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