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An analytical theory of balanced cellular growth
Hugo Dourado 1 & Martin J. Lercher 1✉

The biological fitness of microbes is largely determined by the rate with which they replicate

their biomass composition. Mathematical models that maximize this balanced growth

rate while accounting for mass conservation, reaction kinetics, and limits on dry mass per

volume are inevitably non-linear. Here, we develop a general theory for such models, termed

Growth Balance Analysis (GBA), which provides explicit expressions for protein concentra-

tions, fluxes, and growth rates. These variables are functions of the concentrations of cellular

components, for which we calculate marginal fitness costs and benefits that are related to

metabolic control coefficients. At maximal growth rate, the net benefits of all concentrations

are equal. Based solely on physicochemical constraints, GBA unveils fundamental quantita-

tive principles of cellular resource allocation and growth; it accurately predicts the relation-

ship between growth rates and ribosome concentrations in E. coli and yeast and between

growth rate and dry mass density in E. coli.
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The defining feature of life is self-replication. For non-
interacting unicellular organisms in constant environ-
ments, the rate of this self-replication is equivalent to their

evolutionary fitness1: fast-growing cells outcompete those grow-
ing more slowly. Accordingly, we expect that natural selection
favoring fast growth in specific environments has played an
important role in shaping the physiology of many microbial
organisms2,3.

Conceptually, we can envision a bacterial cell as a volume
enclosed by a membrane, filled with a solution of metabolites and
of the proteins and nucleic acids that catalyze their conversion
into biomass. A state of the cell is characterized by the molecular
concentrations, which in turn determine the fluxes of the bio-
chemical reactions through kinetic rate laws. The boundary
conditions limiting the concentrations and fluxes are provided by
the environment and by physicochemical constraints. Cellular
growth has to be balanced over the cell cycle, i.e., all cellular
components must be produced in proportion to their abun-
dances4. Casting these constraints into a mathematical model and
characterizing states of optimal growth may provide a detailed
understanding of central aspects of bacterial physiology3,5–10.

Molenaar et al.5 proposed a small, schematic model of
balanced, self-replicating growth with explicit non-linear reaction
kinetics and at most seven reactions, including the production of
catalytic proteins. Numerical growth rate optimization predicted
qualitatively the growth-rate dependencies of cellular ribosome
content, cell size, and the emergence of overflow metabolism. We
term this general modeling scheme Growth Balance Analysis
(GBA). No extensions of this approach to larger models have
been proposed, likely because of its inherent non-linearity and the
resulting difficulty of numerical optimizations. Instead, even
simpler, linear models of 1–3 reactions were solved analytically
to gain further qualitative understanding of systems-level
effects3,6–9, including optimal gene regulation strategies3,8.

Models for the genome-scale physiology of complete cells are
typically formulated as approximations to GBA11. Currently, the
most popular such method is flux balance analysis (FBA)12,13.
FBA maximizes the production rate of a constant biomass

concentration vector while accounting for mass conservation by
balancing the fluxes producing and consuming internal metabo-
lites (Fig. 1). All constraints in FBA are linear. The resulting
computational efficiency comes at the price of ignoring reaction
kinetics and the requirement of sufficient enzyme concentrations
to catalyze the predicted metabolic fluxes. FBA can be viewed as a
linearization of the GBA scheme11. Figure 1 shows a schematic
comparison of FBA and GBA. While FBA predicts a linear
dependence of maximal growth rate on nutrient uptake fluxes,
GBA leads to a non-linear (Monod-type) dependence on nutrient
concentrations.

Most alternative whole-cell modeling schemes14–16 are gen-
eralizations of FBA and are also based on the optimization of a
cellular objective, which is typically set to the cellular growth rate
or a proxy thereof. Like GBA, resource balance analysis (RBA)14

and genome-scale models of metabolism and gene expression
(ME)15 combine a genome-scale metabolic model (as utilized in
FBA, Fig. 1) with a protein translation apparatus that converts
precursors into protein. While RBA models are formulated at a
level of detail typical for FBA models, ME models aim to account
comprehensively for all growth-related cellular processes,
including, for example, chaperone-assisted protein folding. Con-
trary to GBA, both methods do not account for metabolite con-
centrations and assume a linear relationship between fluxes and
protein abundances. ME models typically assume constant
effective rate constants for reactions, which are set to in vitro17 or
in vivo18 estimates of turnover numbers (kcat). RBA instead uses
phenomenological, growth-rate dependent effective kinetic rate
constants. These are modeled as linear functions of the growth
rate, and parameters are obtained by fitting model-predicted
fluxes to proteomics data. Constraint allocation flux balance
analysis (CAFBA)16 is conceptually similar to RBA and ME, but
describes the protein costs of biochemical reactions through
previously discovered phenomenological growth laws19,20.

These previous modeling schemes can be considered as
approximations to GBA11 that go beyond FBA by including the
protein cost of biochemical fluxes, but that ignore the influence of
metabolite concentrations on reaction kinetics and the costs
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Fig. 1 A comparison of flux balance analysis (FBA, top) and growth balance analysis (GBA, bottom) for a simple schematic model. A nutrient G is taken
up through a transporter t at rate vt and is then converted by an enzyme e with rate ve into a precursor for protein synthesis, AA. In FBA, AA is equated with
the biomass, the production of which is maximized while enforcing the stationarity of internal concentrations (blue); this leads to a linear dependence of
growth rate on uptake flux. In GBA, AA is converted further into total protein P by a ribosome R, where P represents the sum of the three proteins (t, e, R).
GBA maximizes the balanced production of the cellular composition with growth (blue), offsetting the dilution of the cellular components (G, AA, P) with
the growth rate μ indicated by the blue arrows. The reaction fluxes are constrained by non-linear reaction kinetics (red) and a limit on cellular density (dry
mass per volume, gray); this leads to a non-linear dependence of growth rate on nutrient concentrations.
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incurred through their dilution by growth. Genome-scale
implementations of RBA, ME, and CAFBA for model organ-
isms14–16,21 have been shown to predict some macroscopic
phenotypic behavior14,22. However, the predicted investment into
individual proteins appears to be highly inaccurate, possibly
because enzyme kinetics are only treated approximately and
metabolite concentrations are not accounted for. Moreover, these
methods cannot facilitate a full understanding of phenotypic
behavior from basic biochemical and biophysical constraints, and
thus do not provide mechanistic insights at the level that would
be possible with fully parameterized, genome-scale GBA models.

Due to the central role of kinetic rate laws in GBA, GBA is also
closely related to kinetic modeling approaches of cellular meta-
bolism and growth23,24. Like GBA, kinetic models implement the
mass balance of biochemical reactions while accounting for the
dependence of enzyme kinetics on protein and metabolite con-
centrations. In contrast to GBA and the alternative modeling
schemes discussed so far, kinetic modeling approaches do not
assume optimality, but simply describe the (steady state) dis-
tribution of fluxes and metabolite concentrations resulting from
known enzyme concentrations and the kinetic rate laws. How-
ever, in vitro kinetic parameters (as reflected in databases such as
BRENDA17) are very incomplete, and estimates were often made
in different experimental settings and are thus not always con-
sistent with each other23 and with in vivo data18. For this reason,
enzymatic rate laws in kinetic modeling algorithms are typically
parameterized by a fitting procedure that minimizes the dis-
crepancy between model predictions and experimental data (e.g.,
metabolic fluxes or metabolite concentrations measured across
multiple conditions or mutants)23,24. Different approaches to
kinetic modeling differ from each other in their representation of
enzymatic rate laws and in the algorithm used to fit the corre-
sponding parameters. While such fitted parameterizations can
lead to accurate predictions of overall cellular physiology, they
may show little or no correspondence to experimentally deter-
mined kinetic parameters25. Moreover, kinetic models typically
need to account for substrate-level regulatory interactions to
result in realistic predictions23.

Below, we develop the mathematical foundations for GBA of
arbitrarily complex cellular systems. We first describe the con-
straints that characterize states of balanced growth, and we define
elementary growth states (EGSs) by referring to the elementary
flux modes (EFMs) of metabolic pathway analysis26 and FBA. We
then show that the reaction fluxes, individual protein con-
centrations, and growth rate of any EGS are uniquely determined
by the set of active reactions and the total cellular protein and
individual reactant concentrations. We show how this theoretical
framework can be used to understand cellular resource allocation
conceptually, and we demonstrate how to analyze specific sub-
systems for which systems-level effects cancel mathematically.

Results
Modeling balanced exponential growth. Our model assumes
that the cell increases exponentially in size, while the con-
centrations of all cellular components (including the number of
membrane constituents per cell volume) remain constant5. We do
not explicitly model cell division; thus, our model can also be
interpreted as describing the growth of a population of cells8.
In balanced growth, the net production rate of each mole-
cular constituent must balance its dilution by growth,
0 ¼ dx

dt

��
production

� μx, where x denotes the concentration of a

given component and μ is the cellular growth rate5,8. The mass
conservation in chemical reaction networks is commonly
described through a stoichiometric matrix N, where rows corre-
spond to metabolites and each column describes the mass balance

of one reaction26. Here, we focus on matrices A of active reac-
tions, i.e., A is a sub-matrix of N that contains all columns j for
reactions with flux vj ≠ 0 and all rows for reactants i involved in
these reactions. A also includes a “ribosome” reaction to produce
catalytic proteins, encompassing enzymes, transporters, and the
ribosome itself. We express concentrations as mass concentra-
tions (mass per volume); accordingly, the entries of A are not
stoichiometric coefficients but are mass fractions. The mass
conservation of each component can then be stated as

Av ¼ μ
P

a

� �
; ð1Þ

where v is the flux vector (in units of [mass][volume]−1[time]−1),
a is the vector of reactant mass concentrations aα, and P is the
sum of the mass concentrations pj of all proteins j ∈ {1, …, n},

P ¼
X
j

pj: ð2Þ

The first row of A describes the net production of total protein P,
which is then distributed among the individual proteins j. The
remaining rows describe the net production of the reactants α.

Each reaction rate vj is the product of the concentration of its
catalyzing protein pj and a kinetic function kj(a) that depends on
the reactant concentrations aα,

vj ¼ pjkjðaÞ: ð3Þ
We assume that the functional form and kinetic parameters of
kj(a) are known. kj(a) may depend on the mass concentrations of
substrates, products, and other molecules aα acting as inhibitors
or activators, and accounts for the system’s thermodynamics. The
activity of all reactions j represented in A (vj ≠ 0) implies pj > 0
and kj(a) ≠ 0.

Below, we treat the concentrations of total protein P and
individual reactants aα as the state variables of the system, and we
show that the fluxes vj, individual protein concentrations pj, and
growth rate μ can be cast as response variables. For a given
concentration vector [P, a]T, we define a balanced growth state
(BGS) as a cellular state (characterized by its flux vector v) that
satisfies constraints (1), (2) and (3). The set of all such states
forms the solution space of balanced growth. On the following
pages, we first develop a framework for GBA by characterizing
BGSs at a fixed concentration vector [P, a]T. These characteriza-
tions are independent of any physicochemical limits on the
concentrations of the cellular components (density constraints);
such constraints will, however, become crucial once we examine
optimal balanced growth across all feasible concentration vectors.
In the main text, we provide an overview over the mathematical
structure of GBA and its implications; the formal definitions and
theorems are detailed in “Methods”, while Supplementary Table 2
lists the symbols used.

Cellular state defined by the concentration variables. Let v be a
BGS at concentration vector y0 ¼ ½P0; a0�T . If we treat y0 as a
constant, then Eq. (1) is mathematically identical to the steady-
state constraint fundamental to FBA and to metabolic pathway
analysis in general26. We call v an EGS if v also represents an
EFM27 of the corresponding FBA-type problem defined by the
mass-normalized stoichiometric matrix A together with a “bio-
mass reaction” described by y0 and the flux directions enforced by
the signs of the kinetic functions kj(a0) (i.e., v is a feasible flux
vector with minimal support under the FBA-type constraints;
“Methods”, Definition 3). We can express any BGS as a weighted
average of EGSs at the same concentration vector [P, a]T (The-
orem 3). Moreover, any optimal BGS under a single cellular
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density constraint (see below) is also an EGS (Theorem 9 based
on refs. 28,29 for EFMs; see also ref. 30).

Thus, if we characterize the mathematical properties of EGSs,
then these properties apply not only to optimal BGSs—which are
the main focus of this work—but also to the individual EGS in a
decomposition of any BGS. If A is the active stoichiometric
matrix of an EGS, it has full column rank (Theorem 4 based on
ref. 31; see also ref. 30). The full column rank is the only property
of EGSs that we will require below. Accordingly, without much
loss of generality, we focus on active matrices A that have full
column rank for the remainder of this article.

The matrix A may have more rows than columns, in which
case some reactant concentrations in a are linearly dependent on
other concentrations32. The dependent concentrations c are not
free variables, and hence they can be put aside and dealt with
separately. For clarity of presentation, we here present only the
case without dependent reactants; the generalization to BGSs with
dependent reactants can be treated similarly and is detailed in
“Methods”.

Without dependent reactants, A is a square matrix with a
unique inverse A−1, and x ≡ [P, a]T is the corresponding vector
of independent concentrations. Multiplying both sides of the
mass balance constraint (1) by A−1, we obtain (Theorem 5)

v ¼ μA�1x: ð4Þ
The right-hand side of the mass balance constraint (1) quantifies
how much of each component xi needs to be produced to offset the
dilution that would otherwise occur through the exponential
volume increase at rate μ. A�1

ji quantifies the proportion of flux vj
invested into offsetting the dilution of component i, and we thus
name A−1 the investment (or dilution) matrix; see Supplementary
Fig. 1 for examples. In contrast to the mass-normalized stoichio-
metric matrix A, which describes local mass balances, A−1 describes
the structural allocation of reaction fluxes into offsetting the
dilution of all downstream cellular components, carrying global,
systems-level information.

From the kinetic equation (Eq. (3)), pj= vj/kj(a), and inserting
vj from the investment equation (Eq. (4)) gives

pj ¼ μ

P
i A

�1
ji xi

kjðaÞ
: ð5Þ

where ∑i sums over the total protein and individual reactant
concentrations (Theorem 6). Substituting these expressions into
the total protein sum (Eq. (2)) and solving for μ results in the
growth equation (Theorem 7)

μðxÞ ¼ PP
j

P
i
A�1
ji xi

kjðaÞ

: ð6Þ

As detailed in “Methods” (Theorems 5–7), a corresponding
result also holds for BGSs with dependent reactants. Thus, for any
active matrix A with full column rank (in particular for all active
matrices of EGSs) and for any corresponding concentration vector
x, there are unique and explicit mathematical solutions for the
fluxes v, individual protein concentrations p, and growth rate μ. If
μ (Eq. (6)) and all individual protein concentrations pj (Eq. (5))
are positive, the cellular state is a BGS; otherwise, no balanced
growth is possible at these concentrations.

Marginal fitness contributions of cellular concentrations. We
now use these relationships to calculate the costs and benefits of
concentration changes, which are naturally expressed in terms of
relative fitness effects. As above, the main text considers the
simpler case without dependent reactants, while the more general

case is treated in “Methods”. If fitness is determined pre-
dominantly by growth rate1 (Supplementary Note 1), we can we
define the marginal net benefit ηi of concentration xi as the
relative change in growth rate33 due to a small change in xi
(“Methods”, Definition 4),

ηi �
1
μ

∂μ

∂xi
; ð7Þ

for example, ηP= ηATP= 0.01 l mg−1 would indicate that an
increase of either total protein or ATP concentration by 1 mg l−1

—if possible—would increase the growth rate by 1%.
To aid in the interpretation of ηi below, we define the marginal

production cost incurred by the system via protein j as a
consequence of increasing concentration xi at fixed growth rate μ
and kinetics kj,

qji �
1
P

∂pj
∂xi

� �
μ;kj¼const

¼ μA�1
ji

Pkj
;

where the second equality follows from Eq. (5). qji quantifies by
how much the concentration pj of the upstream protein j has to
rise in order to offset the increased dilution of the downstream
concentration xi. q

j
i is related to the protein control coefficient of

metabolic control analysis (MCA); see Supplementary Note 3 for
a more detailed summary of the relationship between GBA and
MCA34–36.

Taking the partial derivatives of the growth equation (Eq. (6))
with respect to P and the concentration aα of reactant α,
respectively, we find that the marginal net benefits according to
Eq. (7) can be expressed as (Theorem 8)

ηP ¼ 1
P
�
X
j

qjP

and

ηα ¼
X
j

ðujα � qjαÞ;

with

ujα � � 1
P

∂pj
∂aα

� �
vj¼const

¼ pj
P
1
kj

∂kj
∂aα

;

where the last equation is derived using pj= vj/kj. u
j
α can be

interpreted as the marginal kinetic benefit37 of reactant α to
reaction j and quantifies the proportion of protein pj “saved” due
to the change in kinetics associated with an increase in aα. The
kinetic benefit ujα is a strictly local effect, as it is zero if aα does not
influence the kinetic function kj(a); we expect u

j
α to be positive if

α is a substrate and negative if α is a product of reaction j. ujα
relates directly to the elasticity coefficients of MCA (Supplemen-
tary Note 3). Because fluxes are proportional to the concentra-
tions of the catalyzing proteins, the marginal kinetic benefit of
total protein is simply 1/P. Expressions that additionally account
for dependent reactants are provided in “Methods”.

As seen from the derivation in “Methods”, applying the chain
rule of differentiation to the growth equation (Eq. (6)) further
provides a simple interpretation of the net benefit of component
i via reaction j (see “Marginal fitness benefits and costs” in
“Methods”; note that because here we assume that there are no
dependent reactants, direct and total net benefits as defined in
“Methods” are identical). The derivation shows that the marginal
net benefit is identical to the reduction of the proteome fractions
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ϕj≡ pj/P facilitated by the increase in xi at constant μ,

ηi ¼ �
X
j

∂ϕj
∂xi

� �
μ¼const

: ð8Þ

Thus, for a positive ηi and keeping the growth rate μ constant, a
small increase in xi by Δxi results in a corresponding reduction
of the total proteome fraction, ∑jΔϕj=−ηiΔxi: at least some
proteins are now required at lower concentrations. This
result provides a formal justification for the widely held
notion that cellular costs lie predominantly in protein
production3,5–9,14,15,19,20,37,38.

Optimal growth and the balance of marginal net benefits. Up to
this point, we kept x= [P, a]T fixed. We will now characterize
optimal growth states, i.e., BGSs with maximal growth rate across
all allowed concentration vectors x. To make this problem well
defined, we need to consider an additional constraint that reflects
the cellular requirement for a minimal amount of free water to
facilitate diffusion39,40. We implement this constraint by assum-
ing that cellular dry weight per volume is limited to a maximal
density ρ, where ρ is determined by external osmolarity40,41 but is
otherwise constant across growth conditions42–44,

ρ≥ P þ
X
α

aα: ð9Þ

A BGS is a density-constrained BGS (dBGS) if it additionally
satisfies constraint (9). At maximal growth rate, the cellular
components will utilize the full cellular limit on density to
saturate enzymes with their substrates, and thus the inequality in
Eq. (9) becomes an equality.

The maximal balanced growth rate μ* will be a function of ρ. In
analogy to the marginal net benefits of cellular components, we
define the marginal benefit of the cellular density as the
relative fitness increase facilitated by a small increase in ρ,

ηρ �
1
μ�

dμ�

dρ
:

Using the method of Lagrange multipliers with the growth
equation (Eq. (6)) as the objective function, we derive necessary
conditions at optimal growth, which we term balance equations:

8i 2 fP; αg : ηi ¼ ηρ ð10Þ
(Theorem 10). Again, the presentation here assumes that there
are no dependent reactants, while a corresponding result is

derived for the general case with dependent reactants in
“Methods” (“Optimal density-constrained balanced growth
states”). Both with and without dependent reactants, the optimal
state is perfectly balanced: the marginal net benefits of all
independent cellular concentrations xi are identical. Thus, if the
dry weight density ρ could increase by a small amount (such as 1
mg l−1), then the marginal fitness gain that could be achieved by
increasing protein concentration by this amount is identical to
that achieved by instead increasing the concentration of any
reactant α by the same amount. This should not be surprising: if
the marginal net benefit of concentration xi was higher than that
of xi0 , growth could be accelerated by increasing xi at the expense
of xi0 .

Equation (10) together with Eq. (9) describes a system of n+ 1
equations for n+ 1 unknowns, the independent concentrations
xi. In realistic cellular systems, this set of equations has a finite
number of discrete solutions. Thus, growth rate optimization can
be replaced by searching for the solution of the balance equations.
If the optimization problem is convex, the conditions given by
Eq. (10) are necessary and sufficient, and the solution is unique.

Quantitative predictions. If a substrate α0 is consumed only by a
single reaction that is the only one producing a product i0 (with
i0 2 fP; αg), the non-local dilution terms in the balance equation
(ηα0 ¼ ηi0 ) cancel, and we are left with a local problem for which
only the production cost of xi0 and the kinetic benefits of aα0 and
xi0 must be considered. This is the case for protein production in
simplified models38 where the ribosome (R) produces proteins
from a single substrate, a generic ternary complex (T). In such
models, we can calculate the optimal proteome fraction of actively
translating ribosomes, ϕR≡ pR/P, from the balance equation ηT=
ηP (Eq. (10) and its generalization in Theorem 10). The predic-
tions agree quantitatively with experimental values in E. coli45,46

and the yeast Saccharomyces cerevisiae47 across a wide range of
growth conditions (Fig. 2).

In contrast to previous approaches based on the analysis of
schematic, linear cell models with 2–3 reactions and largely
arbitrary kinetic parameters6–9, our predictions of the scaling of
active ribosome fractions with growth rate (Supplementary Fig. 2)
are both quantitative and general, as they rely only on the known
stoichiometries and kinetics of the ribosome reactions themselves
and are independent of any particular network structure. An
approximation that ignores the dilution of intermediates and
hence the associated production costs (qjα � 0) results in less
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Fig. 2 GBA predictions of active ribosomal proteome fractions agree with experimental estimates. Comparison of GBA predictions (red lines, no free
parameters) and data. a Ribosomal proteome fractions for E. coli across different growth conditions, estimated from quantitative proteomics45 and total
RNA/protein ratios19,42,46,66 (N= 58; Pearson's correlation coefficient between observed and predicted values r2= 0.97, P < 10−43; coefficient of
determination R2= 0.91, i.e., the variance of the residuals is only 9% of the variance of the raw data). b Ribosomal proteome fractions for S. cerevisiae
across different growth conditions from quantitative proteomics47 (N= 18; r2= 0.98, P < 10−14; R2= 0.89).
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accurate predictions of E. coli ribosome concentrations especially
at high growth rates (Supplementary Fig. 4). In contrast, these
approximate predictions are close to observed values for growth
on minimal media (μ < 1 h−1), indicating that the dilution of
intermediates, μaα, becomes less important at lower growth rates.
The latter observation may explain why the relationship between
the concentrations of a substrate and its catalysts is well
approximated in this regime by simply minimizing their
combined mass concentration while keeping the reaction rate
constant48, as this is mathematically equivalent to ignoring the
dilution of intermediates.

To obtain a rough quantitative estimate of the marginal net
benefits ηi, we here consider the simplest model of a complete
cell, consisting of only a transport protein and the ribosome3,7

(Supplementary Fig. 2). This model is structurally very similar to
previously analyzed schematic whole-cell models. However,
contrary to previous models that assumed a fixed total protein
concentration as the only density constraint3,5–9,19, our model’s
density constraint (9) limits the joint mass concentration of
proteins and reactants. Based on the experimentally observed
proteome fraction of total dry weight in E. coli, P/ρ= 0.5549, we
estimate ρ

μ
dμ
dρ ¼ ρηρ ¼ 0:66 (“Methods”, Eq. (42)). Thus, a

decrease in cellular dry weight density ρ of 1% would lead to a
0.66% reduction in growth rate, emphasizing the biological
significance of the density constraint and potentially explaining
why E. coli’s dry mass density appears to be roughly constant
across conditions42–44.

The cellular density ρ changes when external osmolarity is
modified40. ρηρ ¼ dln μ

dln ρ is the slope of the log-log-scale plot of μ vs.
ρ across different external osmolarities. While increases in ρ may
have strong effects on diffusion and thus on enzyme kinetics,
reductions in ρ due to decreased external osmolarity are within
the scope of our model. The very limited available experimental
data (three data points from ref. 50, Supplementary Fig. 3) suggest
ρηρ ≈ 0.66, the same as our rough estimate from the minimal cell
model. An otherwise identical model that limits total protein
density3,5–9,19 P instead of dry mass density predicts a much
weaker dependency of growth rate on osmolarity, with PηP= 0.36
(“Methods”).

Discussion
At the heart of our mathematical derivations is A−1, the inverse
of the mass-normalized active stoichiometric matrix A of any
given EGS (or, more generally, any given BGS with linearly
independent reactions). A−1 provides important information
on the cellular efficiency. As seen from Eq. (4), A�1

ji quantifies
which proportion of reaction flux vj is required to offset the
dilution of the downstream cellular component i (either total
protein P or reactant α). These non-local, structural mass-
balance constraints lead to an explicit dependence of reaction
fluxes on the cellular concentrations (Eq. (4), Theorem 5).
Independently of this, fluxes also depend on concentrations
through reaction kinetics (constraint (3)). Combining these two
relationships leads to explicit expressions for the individual
protein concentrations pj and for the growth rate μ, casting
them as functions of the concentrations x= [P, a]T. Accord-
ingly, A−1 accounts for all systems-level contributions to the
marginal costs and benefits of cellular concentrations xi, while
the kinetic functions kj(a) account for local effects. The insight
that optimal, density-constrained states of balanced growth are
EGS allowed us to derive the balance equations (Eq. (10));
furthermore, as any BGS can be expressed as a weighted average
of EGSs (Theorem 3), our results allow a general character-
ization of the solution space of balanced growth.

While computational limitations restricted previous studies of
balanced growth to specific models with 2–7 reactions, we here
provide general results for arbitrarily complex cellular systems.
Except for the maximal cellular dry weight density constraint (9),
the balanced growth model proposed by Molenaar et al.5 and
utilized subsequently for the analysis of schematic models3,6–10 is
based on assumptions identical to those made for GBA, con-
straints (1), (2) and (3). Previous authors (with the exception of
Faizi et al.10) assumed a limit on total protein (“macromolecular”)
concentrations, while we assume a joint limitation of all cellular
solutes (Eq. (9)). The latter choice is justified by the approximate
constancy of the cellular dry mass density across growth condi-
tions42–44, and by an observed relationship between enzyme and
substrate concentrations that is consistent with natural selection
on the parsimonious use of a limited dry mass density48.

To make the presentation concise, our development of GBA
assumes (i) that all proteins contribute to growth by acting as
catalysts or transporters; (ii) that there is a 1-to-1 correspondence
between proteins and reactions; (iii) that proteins are not used as
reactants; (iv) that all catalysts are proteins; and (v) that cells are
optimized for growth. Supplementary Note 2 outlines how to
remove these simplifications.

Due to the explicit inclusion of the major physicochemical
constraints on cellular growth, GBA models promise to provide a
mechanistic understanding of microbial resource allocation and
physiology at a depth not achievable with alternative
optimization-based models. In principle, exploitation of the bal-
ance equations (Eq. (10)) may allow the numerical optimization
of cellular systems of realistic size, encompassing hundreds of
protein and reactant species. However, several challenges must be
overcome before GBA models can be used to make detailed
quantitative predictions of genome-scale resource investment and
physiology.

The first challenge is the identification of the set of active
reactions in a given cellular state, leading to the active stoichio-
metric matrix A. The optimal state is an EFM of the linearized
problem (Theorem 9), and thus a direct way to achieve this would
be to compute all EFMs of the full stoichiometric matrix com-
patible with balanced growth (i.e., all support-minimal subsets of
reactions that are capable of producing their own reactants plus
protein), to apply GBA to each of them, and to then select the
EFM resulting in the highest growth rate. While this approach
works well for small, schematic models as those in refs. 3,5–9 and
may be feasible for coarse-grained models with a few dozen
reactions, the number of biomass-producing EFMs in genome-
scale networks is too large for them to be calculated exhaustively
on current computers51. As an approximate alternative, one could
restrict this analysis to a subset of candidate EFMs, e.g., based on
FBA with molecular crowding52 and on parsimonious FBA53

(where fluxes could be scaled by the maximal enzyme turnover
rates, kcat) or chosen to represent known physiological states (e.g.,
yield-maximizing vs. overflow metabolism54), or one might
analyze only EFMs with a pre-specified maximal number of
reactions51.

A further obstacle to the accurate formulation of GBA models
is the current incompleteness of knowledge on the kinetic rate
laws and parameters needed for the functions kj(a), the same
problem which hampers large-scale kinetic modeling
applications23,24,55 and (with respect to the effective turnover
numbers) RBA14 and ME15,22 models. Recent developments of
high-throughput assays for their estimation from -omics data
have led to promising results14,18,56, suggesting that such
approaches may lead to a comprehensive kinetic characterization
of model microbes in the future. In parallel, methods from arti-
ficial intelligence have been shown to predict enzyme kinetic
parameters with reasonable accuracy57,58, suggesting that these
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approaches can augment incomplete in vitro or in vivo parameter
sets. Parameter balancing59 could aid in the completion of a given
set of kinetic constants by exploiting the thermodynamic
dependencies among biochemical quantities37. In addition, GBA
parameterizations could be completed similarly to the para-
meterization of kinetic models23,24, by fitting model predictions
to experimental data acquired across growth conditions. Experi-
ence with kinetic models indicates that high predictive power can
frequently be achieved with large uncertainties in the parameter
sets23,25, suggesting that even approximate GBA parameteriza-
tions may already lead to valuable insights. Finally, finding the
optimal state of a genome-scale GBA model requires the
numerical solution of a large non-linear optimization problem.
The system of n+ 1 equations provided by Eqs. (9) and (10)
represents the necessary conditions for optimal growth, and these
are important ingredients for developing efficient algorithms to
solve the problem.

Although explicit, genome-scale GBA models are built on the
same kinetic rate laws as kinetic modeling approaches, their
optimization-based methodology does not require enzyme con-
centrations as model inputs and will likely be more robust to
inaccurate kinetic representations. Importantly, GBA will also be
much more robust to the omission of regulatory effects of reac-
tants, as these result in additional protein costs but will in most
cases have no major influence on the predicted fluxes. On the
other hand, kinetic models can be used to assess the cellular
response to genetic or environmental perturbations and can uti-
lize mutant data for their parameterization. This is not possible
with optimization-based models such as GBA, as they assume
that cellular resource allocation in the modeled state is optimal
with respect to a known objective function, the balanced growth
rate in the case of GBA.

While several challenges have to be met before GBA can be
applied to genome-scale balanced growth models, the present
work establishes a comprehensive formal basis for such applica-
tions. Importantly, this mathematical framework can immediately
be applied to the systematic analysis of schematic models, such as
those examined in earlier work using numerical methods5,10 or
ad-hoc analytical optimizations3,6–9. Moreover, the analytic for-
mulations developed here facilitate the straight forward applica-
tion of GBA to coarse-grained cellular models of increasing
complexity, parameterized from experimental data19,20,60.

Independent of model details and parameterizations, our
mathematical analysis provides general quantitative insights into
cellular resource allocation and physiology in states of balanced
growth. For example, while previous work has emphasized the
central role of proteins in the cellular economy3,5–9,14,15,19,20,37,38,
Eq. (8) provides a rigorous formal justification for this notion in
the context of balanced growth. At the same time, whereas the
total protein mass concentration P is much higher than the mass
concentration of any other cellular constituent aα in most bio-
logical systems, the balance equations show that their marginal
net benefits are in fact equal at optimal growth.

The application and further development of the GBA theory may
foster an enhanced theoretical understanding of how physico-
chemical constraints determine the fitness costs and benefits of
cellular organization. Moreover, the explicit expressions for the
marginal fitness costs and benefits of cellular concentrations pro-
vide a rigorous framework for a quantitative analysis of the cellular
economy. We anticipate that this approach will prove fruitful not
only in the interpretation of natural and laboratory evolution, but
also in optimizing the design of synthetic biological systems.

Methods
Overview. In the first four sections of “Methods”, we provide a formal description
of Growth Balance Analysis (GBA), detailing the formal definitions, theorems, and

proofs that form the basis of the main text. For simplicity of notation, we use the
following conventions: {α} is the set of all reactants in the active stoichiometric
matrix A, and ∑α indicates that we sum over all α∈ {α}. We use corresponding
notations for the sets of independent basis reactants {β}, with concentrations bβ,
and dependent reactants {γ}, with concentrations cγ (see below). As explained in
Definition 1 below, stoichiometric matrices are always in units of mass fractions,
not stoichiometric coefficients. The last two sections describe the calculations of the
optimal ribosome proteome fractions and the dependence of maximal growth rate
on cellular water content.

Characterization of balanced growth states. First, we introduce the fundamental
definitions that characterize the solution space of balanced cellular growth. We
define BGSs and generalize the concept of EFMs from linear constraint-based
models to EGSs (defined as flux vectors). We then introduce several theorems on
the characterization and decomposition of BGSs.

In the formulation presented here, we assume that proteins do only act as
catalysts and not as substrates of reactions. Hence, neither total protein nor
individual proteins are considered “reactants”.

Definition 1 (BGSs): Let v0 2 Rn0 be the vector of fluxes through the
biochemical reactions that occur in a cell, in units of [mass][volume]−1[time]−1.
Let v 2 Rn

≠0, n≤ n
0 , be the subvector of v0 that contains all active fluxes of v0 (i.e.,

all entries v0k ≠ 0). Let y � ½P; a�T 2 Rmþ1
> 0 be a corresponding vector of total

protein concentration P and individual reactant concentrations aα, α ∈ {1, ..., m},
where each aα is consumed or produced by at least one of the fluxes vi; y is in units
of [mass][volume]−1. Let A 2 Rðmþ1Þ ´ n be the corresponding active stoichiometric
matrix in mass fraction units, i.e., column j of A describes reaction j with flux vj,
row i of A corresponds to the cellular component yi, and each column is mass
balanced. Thus, the sum of negative entries in each column is S−=−1 and the sum
of positive entries of each column is S+=+1; for reactions that involve an external
substrate not represented by a row of A, −1 < S− ≤ 0, while for reactions that
involve an external product, 0 ≤ S+ < 1.

Let p 2 Rn
> 0 be the vector of individual protein concentrations (in units

of [mass][volume]−1), where protein j catalyzes reaction j; for simplicity, we
assume that the “ribosome” catalyzing protein production is also itself a protein
(but see Supplementary Note 2 for how to remove this simplification). Let k(a) be a
vector of kinetic functions, k : Rm

> 0 7!Rn
≠0, where kj(a) is in units of [time]−1.

Then v is a balanced growth state (BGS) at growth rate μ if and only if it fulfills
the following three constraints:

Av ¼ μ
P

a

� �
ð11Þ

vj ¼ pjkjðaÞ ð12Þ

P ¼
X
j

pj: ð13Þ

A BGS v at growth rate μ is a density-constrained BGS (dBGS) if it additionally
fulfills the constraint on total dry mass density

ρ≥P þ
X
α

aα: ð14Þ

Constraint (11) implements mass balance, constraint (12) implements
concentration-dependent reaction kinetics, while constraint (13) implements a
constraint on the total proteome concentration. The kinetic constraint (12)
assumes that the flux through each reaction is linear in the concentration of the
catalyzing enzyme, while the dependence on the reactant concentrations aα will
typically be non-linear. For simplicity of notation, we will sometimes make the
dependence of kinetics on a implicit, i.e., we will use kj≡ kj(a).

In the above definitions, we define a BGSs (or dBGSs) as a function of the set of
active reactions (corresponding to the columns of A) and the concentration vector
y= [P, a]T. For a given active stoichiometric matrix A, the set of all such states at
all concentrations y 2 Rmþ1

> 0 defines the solution space of balanced growth (or of
density-constrained balanced growth if only concentrations y that respect
constraint (14) are considered).

Based on biophysical considerations, we might replace Eq. (14) with separate
density constraints on the total volume concentration inside each cellular
compartment39 and on the total area occupied by non-lipid membrane
components per membrane area5,61. An even simpler density constraint imposed
in most previous models3,5–9,14,15 is to fix total protein concentration P to a
constant value. However, it has been shown that P decreases with increasing
growth rate, whereas total dry mass density is approximately constant across
conditions42–44. Thus, while a constant P allows to simplify the presentation, Eq.
(9) provides a biologically more meaningful constraint; moreover, this constraint
allows us to determine the costs and benefits of varying the total protein
concentration.

De Groot et al. have defined BGSs for a similar problem30. In their formulation,
the dimensions of the concentration vector y include not only total protein P, but
all individual protein concentrations pj. This more general problem formulation
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comes at the cost of more involved decomposition rules30 compared with
Theorem 2.

We now provide the basis for linking BGSs to EFMs, which are defined for
FBA-type linear constraint-based problems27 and which have been extended to
proteome-constrained models28,29.

Definition 2 (EFMs): Let v 2 Rn , y ¼ ½P; a�T 2 Rmþ1
> 0 , and A 2 Rðmþ1Þ ´ n be as

in Definition 1. Let kðeffÞ 2 Rn
≠0 be a vector of effective kinetic constants. Then we

call v a feasible flux vector at biomass production rate vbio if and only if it fulfills the
following constraints:

Av ¼ vbio
P

a

� �
ð15Þ

vj ≤ pjk
ðeffÞ
j ð16Þ

P ¼
X
j

pj: ð17Þ

A feasible flux vector v is a representative of an elementary flux mode (EFM) if
and only if it is non-decomposable, i.e., it fulfills the following additional
constraint27: There exists no couple of feasible flux vectors v0; v00 such that v ¼
λ1v

0 þ λ2v
00 with λ1, λ2 > 0 and where both v0 and v″ have at least the same number

of zeroes as v, while at least one of them contains more zeroes than v.
If we consider the concentration vector y= [P, a]T as a descriptor of a constant

biomass composition, we see that constraint (15) is mathematically equivalent to
the standard steady-state constraint of FBA and metabolic pathway analysis26

problems, formulated without an artificial “biomass reaction” in A (see, for
example, Eq. (2) in ref. 62). Note that in the definition of EFMs, both the biomass
composition y= [P, a]T and the effective kinetics k(eff) are assumed to be constant;
thus, the constraints (15)–(17) that define the space of feasible flux vectors are fully
linear. In contrast, constraint (12) in Definition 1 defines reaction kinetics as a
function of the reactant concentrations a.

Definition 3 (EGS): A BGS v at concentrations y= [P, a]T is an elementary
growth state (EGS) if and only if it is a representative of a corresponding EFM, i.e.,
v represents an EFM of the corresponding linear problem with constant biomass y
and effective kinetic constants k(eff)= k(a).

We emphasize that v is an EFM of the corresponding linearized (FBA-like)
problem (see Definition 2), not of the balanced growth problem (Definition 1) from
which it is derived. EFMs are defined as equivalence classes of minimal feasible
steady-state flux distributions, whose members can be converted into each other by
multiplication with a positive scalar27. This definition cannot be generalized to
balanced growth models, as multiples of a feasible flux vector generally do not
satisfy constraint (11). For this reason, de Groot et al. have generalized the concept
of EFMs to equivalence classes of minimal sets of active reactions in BGSs, termed
elementary growth modes (EGMs)30.

Theorem 1 (Existence of solutions): Let y= [P, a]T be a concentration vector
and μ > 0 be a growth rate. For any flux vector v0 that satisfies the mass balance
constraint (11), there exists a unique BGS v ¼ λv0 with λ > 0 if all fluxes run in the
direction compatible with the reaction kinetics (i.e., ∀j: kjvj > 0), and no such BGS
otherwise.

Proof: From constraint (12), it is clear that if kjvj ≤ 0, no BGS with pj > 0 exists.
For kj ≠ 0, the concentration of protein j is uniquely defined by pj= vj/kj (constraint
(12)). Let P0 ¼Pjv

0=kj be the total protein concentration associated with v0. Then
setting λ � P=P0 results in the only flux vector that fulfills all constraints of
Definition 1. □

Next, we use this result to show that any weighted average of BGSs is
itself a BGS.

Theorem 2 (A weighted average of BGSs is a BGS): Let (v(1), . . . , v(k)) be an
ordered set of BGSs for the concentration vector y= [P, a]T with growth rates
(μ(1), . . . , μ(k)), but with potentially different active stoichiometric matrices A(l).
Let A be the stoichiometric matrix that combines all reactions represented in
(A(1), . . . , A(k)), i.e., the columns of A consist of all unique columns of
(A(1), . . . , A(k)). Let ðv0 ð1Þ; :::; v

0 ðkÞÞ be a representation of the individual BGSs v(l) in

the flux space defined by A, i.e., v
0 ðlÞ
j ¼ 0 for all columns (reactions) of A not

represented in A(l). Then any weighted average v ¼Plwlv
0 ðlÞ of these extended

flux vectors (with weights wl > 0 and ∑lwl= 1) is itself a BGS for y, with a growth
rate that is the weighted average of the individual growth rates, μ= ∑lwlμ(l).

Proof: The mass balance constraint (11) is linear in the fluxes and growth rates,
and is hence also fulfilled for the weighted averages. The protein concentrations of

each BGS v
0 ðlÞ are p

0 ðlÞ
j ¼ v

0 ðlÞ
j =kj . To satisfy the reaction kinetics constraint (12), the

protein concentrations of the weighted average are

pj ¼ vj=kj ¼
P

lwlv
0 ðlÞ
j =kj ¼

P
lwlp

0 ðlÞ
j . As each BGS (l) fulfills the proteome

constraint (13),
P

jpj ¼
P

j

P
lwlp

0 ðlÞ
j ¼PlwlP ¼ P, and thus v is a BGS. □

We can now use Theorems 1 and 2 together with results on EFMs to show that
any BGS can be decomposed into a weighted average of EGSs.

Theorem 3 (BGSs are weighted averages of EGSs): Any BGS v for the
concentration vector y= [P, a]T can be decomposed into a weighted average of
EGSs at y.

Proof: v is a feasible flux vector for the linearized problem defined by
constraints (15)–(17) at constant biomass y. The direction of reaction j is fixed by

the sign of kðeffÞj ¼ kjðaÞ, i.e., all reactions are irreversible. Under these conditions, it
has been shown that v is a convex combination of EFMs v

0 ðlÞ of the linear
problem27, i.e., v ¼Plw

0
lv

0 ðlÞ with w0
l > 0. From Theorem 1, we know that for each

of these EFMs, there exists a unique BGS vðlÞ ¼ λlv
0 ðlÞ with λl > 0; according to

Definition 3, this is an EGS. Thus, we can write v= ∑lwlv(l) as a linear combination
of EGSs, with weights wl � w0

l=λl .
To prove that v is a weighted average of the v(l), it remains to be shown that

W ≡ ∑lwl= 1. According to Theorem 2, a weighted average v00 �Pl
wl
W vðlÞ ¼ 1

W v
will also be a BGS. However, Theorem 1 states that there exists only one BGS in the
direction of v, and thus W= 1. □

Growth equations. In this section, we assume that the concentrations of total
protein and of individual reactants, y≡ [P, a] are known. Mass conservation
(constraint (11)) and reaction kinetics (constraint (12)) relate reaction fluxes to
the concentration vector in two fundamentally different ways. We will now
exploit this fact to eliminate the flux variables and to derive explicit expressions
for v, p, and μ.

Note that because the concentrations y are used as state variables in these
analyses, no explicit consideration of constraints on cellular density, such as
constraint (14), is necessary. The given concentrations y may obey constraint (11)
or alternative density constraints, such as independent constraints on the density of
cellular compartments, but these will not be used here. They will only become
important when we vary y to find states of maximal growth rate in a later section.

An important requirement for the analyses below is that the active
stoichiometric matrix A has full column rank, motivating the next theorem.

Theorem 4 (The active reactions of an EGS are linearly independent): Let
A 2 Rðmþ1Þ ´ n be the active stoichiometric matrix of an EGS. Then A has full
column rank n, i.e., the columns of A are linearly independent.

Proof: According to the definition of EGSs (Definition 3), A is also the active
matrix of the corresponding linearized (flux balance type) problem. It has
previously been shown31 that the active stoichiometric matrix A of an EFM of a
linear flux-balance problem has full column rank if A is formulated without an
explicit “biomass” reaction (as in Definition 2). □

According to this theorem, the following theorems—which assume that A has
full column rank—can in particular be applied to EGSs (and, as we will see below in
Theorem 9, thus also to dBGSs with maximal growth rate).

Theorem 5 (Investment equation): Let A 2 Rðmþ1Þ ´ n be an active
stoichiometric matrix of a flux vector v that fulfills the mass balance constraint (11)
with concentration vector y= [P, a]T, where A has full column rank n. Then we
can split A into two submatrices B 2 Rn ´ n and C 2 Rðmþ1�nÞ ´ n,

A ¼ B

C

� �
;

such that B is a non-singular (invertible) square matrix and each row of C is a
linear combination of rows of B.

Let B−1 be the inverse of B. Let b be the subvector of reactant concentrations a
that correspond to the rows of B, c be the subvector of the reactant
concentrations that correspond to the rows of C, and x≡ [P, b]T. Then v is given by

v ¼ μB�1x:

The dependent reactant concentrations c are linear combinations of the
independent concentrations x,

c ¼ Dx; ð18Þ
with the dependence matrix D≡ CB−1.

Proof: The active stoichiometric matrix A may have more rows than columns.
In this case, m+ 1 > n, and the rows for exactly n metabolites are linearly
independent, as row and column rank must equal. As a consequence, the
remaining m+ 1− n metabolite concentrations are linearly dependent on the
concentrations of the n independent metabolites. These dependent concentrations
are not free variables, and hence they can be put aside and dealt with separately.

We decompose the linear system of equations represented by constraint (11)
into two parts, rearranging the rows of A into matrices B, C such that B contains
the rows for the independent reactants. As A has full column rank, choosing
linearly independent rows results in a square matrix B of full rank (#rows(B)=
rank(B)= rank(A)). Let b be the subvector of reactant concentrations a that
correspond to the rows of B, and let c be the subvector of the remaining reactant
concentrations corresponding to the rows of C. We can then split the mass balance
constraint (11) into two separate equations:

Bv ¼ μ
P

b

� �
Cv ¼ μc;

B is a square matrix of full rank, so there is always a unique inverse B−1.
Multiplying both sides of the first equation by B−1 from the left, we obtain the
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desired equation for v. Inserting this result into the second equation results in the
desired equation for c. □

Thus, if A has full rank, then any flux vector v respecting the flux balance
constraint (11) is uniquely defined and is a linear combination of the total protein
concentration P and the independent metabolite concentrations b. Each entry of
the inverse matrix B�1

ji quantifies the proportion of flux j invested into the dilution
of component i, and we thus name B−1 the investment (or dilution) matrix (see
Supplementary Fig. 1 for examples). In contrast to the stoichiometric matrix A,
which describes local mass balances (constraint (11)), B−1 describes the structural
allocation of reaction fluxes into the production of cellular components diluted by
growth, and thus carries global, systems-level information.

B corresponds to the reduced stoichiometric matrix in ref. 32. D describes the
linear dependence of the dependent concentrations c on P and b; it is identical to
the link matrix in ref. 32. The relationship between A and B, C can be understood in
terms of matroid theory, where the rows of B form a basis for the matroid spanned
by the rows of A, and the set of rows of C is the closure for the set of rows of B. If
the choice for the partitioning of A into B and C is not unique, some partitionings
may be pathological and should be avoided (Supplementary Note 4).

When A is not square, B includes a proper subset of the rows in A, and thus B
on its own is not mass balanced. The “missing” mass fluxes are balancing c, and
hence the flux investment into c is already accounted for by the investment
equation in Theorem 5.

We are now in a position to express the individual protein concentrations and
the growth rate of a BGS as explicit functions of the concentrations y = [P, a]T.

Theorem 6 (Individual protein concentrations as a function of the independent
concentrations): Let A 2 Rðmþ1Þ ´ n be an active stoichiometric matrix with full
column rank n, and let x= [P, b]T be the independent concentration vector with
corresponding index i∈ {P, β}. Let v be a corresponding BGS. Let B and D be the
basis and dependency matrices, respectively, as defined in Theorem 5. Then the
concentration of the protein catalyzing reaction j is

pj ¼ μ

P
i B

�1
ji xi

kjðaÞ
:

Proof: As A is an active matrix, all fluxes vj= pjkj(a) (constraint (12)) are non-
zero. We can thus express the individual protein concentrations as pj= vj/kj(a).
Inserting vj from the investment equation (Theorem 5) directly leads to the above
equation. □

We now insert the equations for the individual proteins into the total protein
constraint (13) to obtain an explicit expression for the growth rate.

Theorem 7 (Growth equation): Let A 2 Rðmþ1Þ ´ n be an active stoichiometric
matrix with full column rank n, and let y= [P, a]T be a concentration vector. Let v
be a corresponding BGS. Let B and D be the basis and dependency matrices,
respectively, as defined in Theorem 5. Then the growth rate is

μðP; aÞ ¼ PP
j

P
i
B�1
ji xi

kjðaÞ

if for all reactions
pj
μ ¼

P
i
B�1
ji xi

kjðaÞ > 0, and no balanced growth is possible otherwise.

Proof: According to Theorem 6, the individual protein concentrations are

pj ¼ μ

P
i
B�1
ji xi

kjðaÞ . The flux vj catalyzed by protein j must be active, and thus pj has to

be positive for all j. Substituting the expressions for pj into the proteome constraint
(13), we obtain

P ¼ μ
X
j

P
i B

�1
ji xi

kjðaÞ
:

The sum on the r.h.s. is positive, and dividing by it results in the growth
equation. □

Thus, if the active matrix A of a BGS is full rank, there are unique and explicit
mathematical solutions for p, v, and μ. In particular, this is the case for optimal
growth states (Theorem 9), as well as for all other EGSs. In this section, we did not
impose any density constraints (such as constraint (14)), and thus Theorems 1–7
remain valid under arbitrary density constraints as long as these are respected by
the concentration vector y= [P, a]T.

Marginal fitness benefits and costs. In this section, we first define marginal
fitness benefits and costs of concentrations. As in the previous section, the con-
siderations in this section make no use of the density constraint (14), and thus
remain valid under alternative density constraints. After introducing the defini-
tions, we show how to calculate and to interpret the costs and benefits.

Definition 4 (Marginal costs and benefits): Let v be a BGS with growth rate μ.
Let i∈ {P, β} be an index of the independent concentration vector x = [P, b]T.
Then the direct marginal net benefit of concentration xi is defined as the relative
change in growth rate due to a small change in xi33,

η0i �
1
μ

∂μ

∂xi
:

Analogously, we define the marginal benefit of dependent reactant γ as

ηcγ �
1
μ

∂μ

∂cγ
: ð19Þ

The (total) marginal net benefit of xi is then defined as the relative change in
growth rate due to a small change in xi, accounting for the resulting changes in the
concentration of dependent metabolites cγ,

ηi �
1
μ

∂μ

∂xi
þ
X
γ

∂μ

∂cγ

∂cγ
∂xi

 !
¼ η0i þ

X
γ

Dγiη
c
γ; ð20Þ

where the second equality follows directly from Eq. (18).
A change δxi of xi (i∈ {P, β}) causes a correlated change of each dependent

concentration δcγ=Dγiδxi (Eq. (18)). Thus, a change by δxi results in a total change
of the utilization of cellular density by κiδxi, with the density factor defined as

κi � 1þ
X
γ

Dγi:

To help in the interpretation of the marginal net benefits, we will relate them in
the next theorem to two explicit definitions of costs and benefits, respectively. The
marginal production cost of the cellular concentration xi is defined as

qji �
1
P

∂pj
∂xi

� �
μ;kj¼const

;

where the subscript of the parenthesis indicates which variables are kept constant
in the derivative. qji can be interpreted as the additional amount of protein j
required to offset the increased dilution of xi∈ {P, β} at growth rate μ and fixed
kinetics kj. We define the marginal kinetic benefit of the reactant concentration bβ
as

ujβ � � 1
P

∂pj
∂bβ

 !
vj¼const

;

and we make corresponding definitions ujγ for dependent concentrations cγ. The
marginal kinetic benefits can be interpreted as the fraction of proteins j saved at
constant flux vj due to the increased saturation of reaction j with reactant β or γ,
respectively.

The marginal net benefits can now be expressed as differences between benefits
and costs. To calculate the direct marginal net benefits η0i , we must use the growth
equation derived in Theorem 7,

μðP; aÞ ¼ PP
j

P
i
B�1
ji xi

kjðaÞ

¼ PP
j
pj
μ

¼ 1P
j
ϕj
μ

; ð21Þ

where we defined proteome fractions ϕj≡ pj/P. The first form given for μ(P, a) here
quantifies growth as a function of the state variables xi, and it would be straight
forward to calculate η0i from this expression. However, to establish a formal link
between marginal net benefits and protein investment, we will instead go via the
second form, which arises from Theorem 6 and was used to derive the growth
equation, and the third form, which expresses this relationship in terms of the
proteome fractions ϕj. When we take the partial derivatives with respect to the state
variables xi in the second and third forms, we must make sure that we keep the
right terms constant: when expressed in terms of the xi, the expression pj/μ is in fact
independent of μ (Theorem 6), and we hence need to take the derivatives while
keeping μ constant. We thus get for the direct marginal net benefits:

η0i � 1
μ
∂μ
∂xi

¼ 1
μ

∂
∂xi

1P
j

ϕj
μ

 !
μ¼const

¼ ∂
∂xi

1P
j
ϕj

� �
μ¼const

¼ � 1P
j
ϕj

� �2

P
j

∂ϕj
∂xi

� �
μ¼const

¼ �Pj
∂ϕj
∂xi

� �
μ¼const

;

where we used the fact that the proteome fractions must add to 1, ∑jϕj= 1. Thus,
the direct marginal net benefit of the cellular concentration xi is identical to the
total associated changes in proteome fractions caused by this change.

Again looking at Eq. (21), we can further analyze the nature of the proteome
changes caused by a change in the cellular concentration xi. Let us first consider a
reactant concentration xi= bβ. Applying the chain rule of differentiation to
ϕj ¼ pj=P ¼ μ

P
iB

�1
ji xi=kjðaÞ, we have to add the partial derivatives with respect to

xi= bβ in the numerator μ
P

iB
�1
ji xi ¼ vj (keeping μ and kj constant) and in the

denominator kj(a) (keeping the numerator vj constant, which also guarantees that μ
is constant). Thus, we can write the direct marginal net benefits of the independent
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reactant concentration bβ in terms of proteome changes as

η0β ¼ �
X
j

∂ϕj
∂bβ

 !
vj¼const

�
X
j

∂ϕj
∂bβ

 !
μ;kj¼const

¼ � 1
P

X
j

∂pj
∂bβ

 !
vj¼const

� 1
P

X
j

∂pj
∂bβ

 !
μ;kj¼const

¼
X
j

ujβ � qjβ

� �
;

where in the last line we inserted the definitions of the marginal kinetic benefits
and production costs (Definition 4).

Performing an analogous calculation for the direct net benefit of the total protein
concentration P (noting that we now need to take the derivative with respect to the
numerator of the growth equation but not with respect to (kj), we obtain

η0P ¼ �P
j

∂ϕj
∂P

� �
μ¼const

¼ � ∂
∂P

1
P

P
j
pj

 !
μ¼const

¼ 1
P2

P
j
pj � 1

P

P
j

∂pj
∂P

� �
μ¼const

¼ 1
P �

P
j
qjP;

where we used ∑jpj= P and where we inserted the definition of the marginal
production cost of P (Definition 4, with kj independent of P) in the last line. The
positive term 1/P in the direct net benefit of total protein quantifies the marginal
benefit of increasing the total protein concentration P, which accelerates all reactions
linearly.

We have thus proven the next Theorem, which elucidates how costs and
benefits of cellular compounds are naturally related to protein use; this connection
has been proposed before33,37 but is derived here rigorously from first principles.

Theorem 8 (Direct marginal net benefits): The direct marginal net benefit of any
independent cellular concentration xi (i∈ {P, β}) is the negative of the total
associated change in relative protein concentrations at constant growth rate μ,

η0i ¼ �
X
j

∂ϕj
∂xi

� �
μ¼const

: ð22Þ

The direct marginal net benefits of the total protein concentration P and of
independent reactant concentrations bβ (β∈ {1, …, m}), respectively, are

η0P ¼ 1
P
�
X
j

qjP

η0β ¼
X
j

ðujβ � qjβÞ:

The marginal production cost qji is the fraction of extra protein j expended to offset
the additional dilution of concentration xi at rate μ and fixed saturation kj; it can be
calculated from the growth equation (Theorem 7) as

qji �
1
P

∂pj
∂xi

� �
μ;kj¼const

¼ μB�1
ji

Pkj
: ð23Þ

The marginal kinetic benefit ujβ is the fraction of protein j saved due to its increased
saturation with reactant β; it is calculated from the growth equation as

ujβ � � ∂ϕj
∂bβ

 !
vj

¼ ϕj
kj

∂kj
∂bβ

:

The marginal kinetic benefits of dependent reactants γ are

ηcγ �
1
μ

∂μ

∂cγ
¼
X
j

ujγ;

where ujγ is calculated analogously to the marginal kinetic benefits of independent

reactants, ujβ .

Optimal density-constrained balanced growth states. So far, we have considered
BGS for a given set of active reactions (corresponding to the columns of A) and given
concentrations y= [P, a]T, where y may or may not have respected any particular
density constraint. We now examine density-constrained BGSs (dBGSs) with max-
imal growth rate given the set of active reactions, optimized over all concentration
vectors y ¼ ½P; a�T 2 Rmþ1

> 0 that respect the density constraint (14). As a preparation
for these analyses, we first show that states of optimal growth are EGSs.

Theorem 9 (dBGSs with maximal growth rate are EGSs). Let N be a
stoichiometric matrix of a general balanced growth model. Let v* be a dBGS that
maximizes the growth rate of the general problem. Then v* is an EGS.

Proof: Without loss of generality, we restrict v* to its active dimensions (v�j ≠ 0),
with active stoichiometric matrix A. Then this reduced v* is the optimal solution
for the following non-linear optimization problem over all concentration vectors
y � ½P; a�T 2 Rmþ1

> 0 :

maximize
y

μ

subject to :

Av ¼ μy

8j : vj ¼ pjkjðaÞ
P ¼

X
j

pj

ρ≥ P þ
X
α

aα:

ð24Þ

Let y� ¼ ½P�; a��T be the concentrations and μ* the growth rate of the optimal
solution v*. Now let us consider a linearized version of this optimization problem,
where me maximize the production rate vbio at constant biomass composition y*

and effective kinetic constants kðeffÞj � kjða�Þ (see Definition 2):

maximize
v

vbio

subject to :

Av ¼ vbioy
�

8j : vj ¼ pjk
ðeffÞ
j

P� ≥
X
j

pj:

ð25Þ

We relaxed the constraint (13) on total protein into an inequality constraint, so
that Eq. (25) describes a protein-constrained FBA problem for the active
stoichiometric matrix. This is precisely the type of constrained flux balance
problem analyzed in refs. 28,29, which prove that the solutions vopt to the
optimization problem defined by Eq. (25) are EFMs.

In the optimal solution to the problem defined by Eq. (25), the protein
concentration constraint will be active, that is, P* = ∑jpj; if not, the biomass
production rate vbio could be increased by multiplying the vector of protein
concentrations p with a constant >1 (as vj ¼ pjk

�
j for all j). Thus, the optimization

problem described by Eq. (25) is the same as that described by Eq. (24), except for a
reduction in the dimension of the search space due to the fixed concentrations y*

(Note that the cellular density constraint (14) is trivially respected in Eq. (25) and
can be ignored). Accordingly, the flux distribution v* that maximizes the balanced
growth rate μ in Eq. (24) also maximizes the biomass production rate vbio of the
protein-constrained FBA problem in Eq. (25); it is hence a representative of an
EFM of the active stoichiometric matrix A with biomass y*28,29, and thus v* is an
EGS according to Definition 3. □

In parallel work, de Groot et al.30 have shown that optimal solutions to balanced
growth problems are elementary growth modes (as defined in ref. 30), and that the
active stoichiometric matrix of elementary growth modes has full rank.

If instead of a single constraint on cellular density, multiple density constraints
are imposed simultaneously (e.g., to describe separate constraints on different
cellular compartments), then the solutions may in some cases correspond to
positive linear combinations of EGSs30,63, and the treatment below needs to be
generalized. Multiple density constraints may play a role in the emergence of
overflow metabolism in E. coli54,64, although overflow metabolism can also arise in
balanced growth models with a single density constraint5.

In a dBGS with maximal growth rate for a given active stoichiometric matrix A,
the cellular components will utilize the full limit on cellular density ρ to saturate
enzymes with their substrates. Thus, the constraint (14) will be active, turning the
inequality into an equality. The maximal balanced growth rate μ* will thus be a
function of the maximal cellular density ρ. As a reference value for the marginal net
benefits of individual concentrations xi, we now define the marginal benefit of the
cellular density ρ.

Definition 5 (Marginal benefit of the cellular density): In analogy to the
marginal net benefits of cellular components, we define the marginal benefit of the
cellular density as the fitness increase facilitated by a small increase in ρ,

ηρ �
1
μ�

dμ�

dρ
:

We can now relate ηρ to the total marginal net benefits of all concentrations. To
do this, we derive necessary conditions for any optimal BGS at constant cellular
density ρ, using the method of Lagrange multipliers. The Lagrange multipliers
quantify the importance of the density constraint, Eq. (14), and of the constraints
for the dependent reactants, Eq. (18), for the maximization of the objective
function. The Lagrangian L is a function of y= [P, a]T, and ρ.

Theorem 10 (Balance equation): In a dBGS with maximal growth rate, the total
marginal net benefit of each independent concentration xi (i∈ {P, β}) equals the
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marginal benefit of the cellular density ρ scaled by the density factor κi,

8i 2 fP; βg : ηi ¼ κiηρ: ð26Þ
Proof: We use the method of Lagrange multipliers to derive necessary

conditions for any optimal dBGS at constant cellular density ρ. Our objective
function is given by Theorem 7, which expresses the growth rate μ as an explicit
function of the concentrations y= [P, a]T. The density constraint (14) will be active
at maximal growth rate, i.e., it becomes an equality. The density constraint can then
be expressed as a function gρ that depends on ρ and on the concentrations,

gρðP; aÞ � P þ
X
α

aα � ρ ¼ 0:

Finally, the constraints on each dependent reactant γ also only depend on y= [P, a]T,
with the entries DγP determining the composition of each γ in terms of P, and Dγβ

determining the composition of γ in terms of bβ,

gγðP; aÞ � DγPP þ
X
β

Dγβbβ � cγ ¼ 0:

We now define a Lagrangian as the sum of the objective function μ and the
constraints g scaled by Lagrange multipliers λρ, accounting for the density
constraint (14), and λγ, accounting for the dependence of the dependent reactants
γ∈ {γ}, Eq. (18):

L � μþ λρgρ þ
X
γ

λγgγ:

The first-order necessary conditions for a constrained local maximum are that all
partial derivatives of L with respect to the variables P, bβ, cγ and to the Lagrange
multipliers λρ, λγ are zero,

8i 2 fP; βg : 0 ¼ ∂L
∂xi

;

8γ : 0 ¼ ∂L
∂cγ

;

8γ : 0 ¼ ∂L
∂λγ

;

0 ¼ ∂L
∂λρ

:

For the partial derivative with respect to an independent concentration xi (i∈
{P, β}), we have

∂L
∂xi

¼ ∂μ

∂xi
þ λρ þ

X
γ

λγDγi ¼ 0:

With Theorem 8, this results in

μη0i þ λρ þ
X
γ

λγDγi ¼ 0: ð27Þ
For the partial derivative with respect to a dependent reactant cγ, we have

∂L
∂cγ

¼ ∂μ

∂cγ
þ λρ � λγ ¼ 0:

With Eq. (19), we obtain

λγ ¼ μη0γ þ λρ:

Substituting λγ from the last equation into Eq. (27) gives (for i∈ {P, β})

μη0i þ λρ þ
X
γ

μηcγ þ λρ

� �
Dγi ¼ 0:

Rearranging results in

0 ¼ μη0i þ μ
X
γ

Dγiη
c
γ þ λρ 1þ

X
γ

Dγi

 !

¼ μηi þ λρκi

¼ μηi � μηρκi;

ð28Þ

where we used ηρ=−λρ/μ, which follows directly from the envelope theorem65.
With μ > 0, we can divide by μ to obtain the balance equation. □

The optimal state is perfectly balanced: the total marginal net benefit of each
independent cellular concentration xi equals the marginal benefit of the cellular
density, scaled by κi to account for its total utilization of cellular density. If i does
not have any dependent reactants (∀γ: Dγi= 0), then the balance equation
simplifies to ηi ¼ η0i ¼ ηρ (Eq. (10)).

Theorem 10 states that if the dry weight density ρ would be allowed to increase
by a small amount, such as 1 mg l−1, then the marginal fitness gain that could be
achieved by increasing protein concentration (plus dependent concentrations) by
this amount is identical to that achieved by increasing the concentration of any
reactant β (plus its dependent concentrations) by the same amount.

Instead of using Lagrange multipliers in the proof, one could express the total
protein concentration P= ρ− ∑αaα (constraint (14)) and the dependent reactant

concentrations cγ=DγPP+ ∑βDγβbβ (Eq. (18)) in terms of ρ and of the
independent reactant concentrations b. Substituting the resulting expressions into
the growth equation (Theorem 7) would result in an objective function that
depends only on ρ and b, and that is constrained only by the requirement of
positive concentrations. While this would lead to the same balance equations as
derived in the Lagrange multiplier framework, this formulation misses important
insights that can be derived from the Lagrange multipliers themselves.

Optimal ribosome proteome fraction. Here we employ a very simple model for
translation38. It accounts only for the elongation phase, where one catalyst (the
ribosome plus bound mRNA, with concentration R) converts one substrate (the
ternary complex, with concentration aT) into protein, following irreversible
Michaelis–Menten kinetics:

kR � kRðaTÞ ¼ kcat
aT

aT þ Km

� �
ð29Þ

with constant maximal ribosome activity kcat (in units of [time]−1) and Michaelis
constant Km (in units of [mass][volume]−1).

We assume that the model has no dependent reactants (A= B) and that the
ternary complex is not used in any other reaction. In this case, the same canceling
of production costs as in the model depicted in Supplementary Fig. 1a happens,
and the balance of net benefits of ternary complex and total protein, ηT= ηP
(Eq. (10)), simplifies to

PuRT ¼ 1� μ

kRðaTÞ
with the kinetic benefit of the ternary complex T for the ribosome R, uRT (Definition
4). Substituting the partial derivative of irreversible Michaelis–Menten kinetics (Eq.
(29)), we obtain

R
aTð1þ aT=KmÞ

¼ 1� μ

kR
: ð30Þ

Rearranging Eq. (29), we also see that the kinetics determine the concentration
aT uniquely in terms of vR, R, Km, and the ribosome’s turnover number kcat,

aT ¼ Km
kcatR
vR

� 1
:

Substituting this into Eq. (30) gives

R ¼ 1� μ

kR

� �
Km

kcatR
vR

� 1
1þ 1

kcatR
vR

� 1

0
@

1
A

2
4

3
5

¼ 1� μ

kR

� �
Km

kcatR
vR

kcatR
vR

� 1
� �2
2
64

3
75:

ð31Þ

From the ribosome kinetics and mass conservation of proteins, we have

RkR ¼ vR ¼ μP:

Thus, substituting μ/kR= R/P and vR= μP in Eq. (31), we obtain

R
P
¼ 1� R

P

� �
Km

P

kcatR
μP

kcatR
μP � 1

� �2
2
64

3
75:

This is equivalent to a quadratic equation in R/P,

R
P

� �2

þ μ

kcat

Km

P
� 2

� �
R
P

� �
þ μ

kcat

� �2

1� kcatKm

μP

� �
¼ 0: ð32Þ

Its two solutions are

R
P
¼ μ

kcat
1þ Km

2P
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P

Km

kcat
μ

� 1

� �s
� 1

 !" #
:

To see which of the two solutions is relevant, we rewrite this as

kcatR ¼ μP 1þ Km

2P
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P

Km

kcat
μ

� 1

� �s
� 1

 !" #
: ð33Þ

Because kcatR > RkR= vR= μP, the term in square brackets [ ⋅ ] in Eq. (33) must
be >1. Only the positive root is compatible with this condition. Thus, the ratio R/P
is uniquely determined by

R
P
¼ μ

kcat
1þ Km

2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P

Km

kcat
μ

� 1

� �s
� 1

 !" #
:

To relate this expression to experimental data, we need to remember that
ribosomes consist of protein and RNA. To estimate the ribosome proteome
fraction ϕR, we thus need to scale the previous expression by the fraction rP of
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ribosome which is protein, resulting in the final equation

ϕRðμÞ ¼
μrP
kcat

1þ Km

2P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4P

Km

kcat
μ

� 1

� �s
� 1

 !" #
: ð34Þ

The same procedure can be used to find an equation for ϕR that ignores the
production costs. Starting from Eq. (31) without the production cost term μ/kR, we
obtain

R
P
� Km

P

kcatR
μP

kcatR
μP � 1

� �2
2
64

3
75;

which results in a quadratic equation similar to Eq. (32),

R
P

� �2

� 2
μ

kcat

R
P
þ μ

kcat

� �2

1� kcatKm

μP

� �
� 0:

Solving for R/P gives

R
P
� μ

kcat
1 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kcatKm

μP

s" #
: ð35Þ

Again because Rkcat > μP, the term in square brackets [ ⋅ ] in Eq. (35) must be >1,
and again only the positive root is compatible with this condition. Thus, the
ribosome proteome fraction is uniquely determined in this approximation by

ϕR � μrP
kcat

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kcatKm

μP

s" #
: ð36Þ

We compared the predictions for ϕR to experimental estimates based on
quantitative proteomics45 and on total RNA to protein ratios19,42,46,66. While all
estimates are very similar (Fig. 2), given that on the order of 20% of total RNA is
tRNA42 and that this proportion is at least moderately growth rate dependent67,
the exact growth rate dependence of ϕR may be captured more faithfully by the
proteomics data.

To calculate ϕR from the proteomics measurements, we first calculated the mean
over all molar concentrations of ribosomal proteins reported by Schmidt et al.45.
Molar concentrations of the ribosome were converted to mass concentrations by
multiplying with molar masses derived from the amino acid sequences for the protein
parts and nucleotide sequences for the RNA parts. For this, we assumed that each
ribosome contained one copy of each of its constituents, with the exception of four
copies of RplL68. We multiplied the ribosome mass concentrations with the mass
fraction of ribosomes that is protein (rP= 0.35845), and divided the result by the total
protein mass concentration P to obtain ϕR. The proteome fraction of actively
translating ribosomes was determined based on total ribosome proteome fraction and
the fraction of active ribosome at different growth rates. The latter was estimated by
fitting a smooth saturation function s(μ)= μ/(μ+ z) over the fractions of active
ribosomes estimated in ref. 46, with the best-fitting parameter z= 0.124 h−1. Non-
linear fitting was performed using the function nls() in gnu R69.

We set the Michaelis constant of the ribosome to K 0
m ¼ 3 ´ 10�6mol l�1, based

on the diffusion limit for ternary complexes calculated in ref. 38. We set the
ribosome’s turnover number to kcat= 22 AA s−1, the highest elongation rate
observed experimentally in ref. 42. As we do not distinguish between different
ternary complexes and the ribosome only accepts one of the 40 different ternary
complex types at any given time, K 0

m was multiplied by 40 (see ref. 38), resulting in
an effective Michaelis constant of Km= 1.2 × 10−4 mol l−1. For consistency of the
units with the mass concentration units used throughout our paper, the kinetic
parameters had to be converted from molar to mass concentrations. The mean
weight (±SD) of amino acids across all conditions assayed in ref. 45 was (132.60 ±
0.09) Da; the ribosome molecular weight is 2,306,967 Da; and the mean weight of
ternary complexes is (69,167 ± 1351) g mol−1. With these numbers, we obtain kcat
= 22 AA s−1 × (132.60 Da AA−1)/(2,306,967 Da) × 3600 s h−1= 4.55 h−1, and Km

= 40 × 3 × 10−6 mol l−1 × 69,167 g mol−1= 8.30 g l−1. For the predictions based
on Eq. (34), we set the total protein concentration to P= 127.4 g l−1 45.

For yeast, the concentration of actively translating ribosomes was determined
based on total ribosome concentration and the fraction of active ribosome at
different growth rates; the data was extracted from the figures of ref. 47 using the
GetData Graph Digitizer program (Version 2.26, obtained from http://getdata-
graph-digitizer.com/). The fraction of active ribosomes was estimated by fitting a
smooth saturation function s(μ)= μ/(μ+ z) over the fractions of active ribosomes
estimated in ref. 47, again using the nls() function in R. The best-fitting parameter
was z= 0.122 h−1, very close to the E. coli estimate. We again set K 0

m to the
diffusion limit38 Km= 3 × 10−6 mol l−1, multiplied with the number of different
ternary complexes, of which there are 41 in yeast70. The ribosome’s turnover
number was set to kcat= 10 AA s−1, the highest elongation rate observed
experimentally according to ref. 71. To convert to mass units, we used the mean
weight of amino acids (130 Da)72, the ribosome molecular weight 3,620,000 Da73,
and the molecular weight of ternary complex (240,000 Da)74–76. With these
numbers, we obtain kcat= 10 AA s−1 × (130 Da AA−1)/(3,620,000 Da) × 3600 s 1 h
−1= 1.29 h−1, and Km= 41 × 3 × 10−6 mol l−1 × 240,000 g mol−1= 29.52 g l−1.
In yeast, the mass fraction of ribosomes that is protein is rP= 0.4573. For the

predictions based on Eq. (34), we set the total protein concentration to the haploid
cell value P= 85.7 g l−1 77.

To quantify the fit of our predictions for ϕR to the observed ribosomal proteome
fractions, we calculated Pearson’s correlation coefficient r between observed and
predicted values as well as the coefficient of determination

R2 � 1� SSres
SStot

with the total sum of squares SStot ¼
P

iðϕR;i � �ϕRÞ2 (proportional to the variance

of the data) and the residual sum of squares SSres ¼
P

iðϕR;i � ϕpredictedR;i Þ2
(proportional to the variance of the residuals).

Dependence of maximal growth rate on cellular water content. Cayley et al.40,50

have shown that the internal water content of E. coli cells increases when these are
grown in environments with reduced osmolarity. This effect corresponds to a decrease
of cellular dry weight per volume, ρ, by δρ. ηρ quantifies the associated reduction in
relative fitness, δf= δμ*/μ* = ηρδρ, with μ* the maximal growth rate (Definition 5).
The relative change in the maximal growth rate per relative change in ρ is then

dlnμ�

dln ρ
¼ ρ

μ�
dμ�

dρ
¼ ρηρ ð37Þ

From Eq. (26), we know that ηP= κPηρ; if there are no dependent reactants for
P (i.e., ∀γ: DγP= 0), this simplifies to

ηρ ¼ η0P ¼ 1
P
�
X
j

qjP; ð38Þ

and thus

ρ

μ�
dμ�

dρ
¼ ρηρ ¼ ρ

1
P
�
X
j

qjP

 !
: ð39Þ

The mass fraction of total protein in cell dry weight P/ρ ≈ 0.55 has been shown to
be approximately constant for E. coli across growth conditions supporting
intermediate to high growth rates40,45,49.

To estimate the total protein production cost
P

jq
j
P, we consider the simplest

possible whole-cell model, comprising only a transport reaction and the ribosome
reaction (Supplementary Fig. 2). The active stoichiometric matrix A of this model
and its inverse A−1 are (written here with row and column labels):

A ¼
t R

1

P

1 �1

0 1

� �
;

A�1 ¼
1 P

t

R

1 1

0 1

� �
:

The density is determined only by its two components,

ρ ¼ P þ a1;

where

P ¼ pt þ pR:

From the inverse A−1 and Theorem 5, we obtain

vt ¼ μðP þ a1Þ ¼ μρ ð40Þ
and

vR ¼ μP: ð41Þ
From the inverse A−1 and Eq. (23), we getX

j

qjP ¼ 1
P

μ

kt
þ μ

kR

� �
¼ 1

P
μpT
vt

þ μpR
vR

� �
:

Combining this with Eqs. (40) and (41) and using ϕR= pR/P and ϕt= pt/P= 1
− ϕR, we obtain P

j
qjP ¼ 1

P
μpt
μρ þ μpR

μP

� �
¼ ð1� ϕRÞ

ρ þ ϕR
P :

Inserting this in Eq. (39) results in

ρηρ ¼ ρ 1
P � ð1�ϕRÞ

ρ � ϕR
P

� �
¼ ρ

P � 1þ ϕR � ρ
P ϕR

¼ ρ
P � 1

 �

1� ϕR

 �

:

ð42Þ

The growth rate in the reference growth condition of osmolarity Osm= 0.28 in
ref. 50 is μ= 1.0 h−1. From Eq. (34), we estimate the mass fraction of ribosomal
proteins in total protein ϕR at this growth rate as ϕR= 0.19. Substituting this value
into Eq. (42) together with P/ρ= 0.55, we estimate the relative change in the
maximal growth rate per relative change in ρ as

ρηρ ¼ 0:66:

Note that instead of a density constraint on total dry mass ρ, previous analyses of
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schematic and coarse-grained models of balanced growth3,5–9,19 utilized a constraint
only on the concentration of macromolecules P. Calculating PηP instead of ρηρ leads
to a replacement of the factor (ρ/P− 1) with (1− P/ρ) compared with the last line of
Eq. (42), and the same parameterization then leads to a prediction of PηP= 0.36.

Cayley et al.50 report cell growth at reduced osmolarities, summarized in
Supplementary Table 1. The cell-free water content Vfree in Supplementary Table 1

is calculated from the total cell water Vcell minus the observed constant bound
water Vb ¼ 0:40 ± 0:04 ml gCDW−140. Errors are estimated standard deviations
based on error propagation among normally distributed random variables.
Supplementary Fig. 3 plots the natural logarithms of μ and ρ. Linear regression over
the three available data points results in an estimated slope of 0.66,
indistinguishable from our estimate of dln μ�

dln ρ ¼ ρηρ ¼ 0:66.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The datasets used for Fig. 2 and Supplementary Figs. 3 and 4 are available from the
original sources (refs. 19,42,45–47,50,66).
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