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Interplay between DNA damage repair and
apoptosis shapes cancer evolution through
aneuploidy and microsatellite instability
Noam Auslander1✉, Yuri I. Wolf 1 & Eugene V. Koonin 1✉

Driver mutations and chromosomal aneuploidy are major determinants of tumorigenesis that

exhibit complex relationships. Here, we identify associations between driver mutations and

chromosomal aberrations that define two tumor clusters, with distinct regimes of tumor

evolution underpinned by unique sets of mutations in different components of DNA damage

response. Gastrointestinal and endometrial tumors comprise a separate cluster for which

chromosomal-arm aneuploidy and driver mutations are mutually exclusive. The landscape of

driver mutations in these tumors is dominated by mutations in DNA repair genes that are

further linked to microsatellite instability. The rest of the cancer types show a positive

association between driver mutations and aneuploidy, and a characteristic set of mutations

that involves primarily genes for components of the apoptotic machinery. The distinct sets of

mutated genes derived here show substantial prognostic power and suggest specific vul-

nerabilities of different cancers that might have therapeutic potential.
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Acquisition of genetic alterations is thought to drive the
progression of normal cells through hyperplastic and
dysplastic stages to invasive cancer and, ultimately, to

metastatic disease. In recent years, analysis of the increasingly
abundant cancer genomics, transcriptomics and proteomics data
has substantially improved our understanding of tumor devel-
opment through the activation of oncogenes and inactivation of
tumor suppressors1–3. In addition to driver mutations in onco-
genes and/or tumor suppressors, the majority of solid tumors
display widespread whole chromosome or chromosome arm
imbalances (here termed aneuploidy), as well as large deletions,
inversions, translocations, and other genetic abnormalities4.
Despite the fact that numerical and structural chromosome
abnormalities are the most pronounced, distinguishing char-
acteristics of cancer genomes, the role of arm and chromosome
level aneuploidy in tumor development remains poorly under-
stood5–7. In particular, the genes and pathways that might be
affected by aneuploidy remain largely unknown.

Several studies have investigated the relationships between
different genetic alterations in cancer and reported an inverse
correlation between the number of recurrent copy number
alterations and the number of somatic mutations8,9. However,
more recent work has demonstrated that the correlation between
aneuploidy and non-silent somatic mutation rate is actually
positive for the majority of tumors, but for several cancer types,
including gastrointestinal and endometrial tumors, this correla-
tion is significantly negative10–12. TP53 is the only gene for which
the mutation rate has been shown to positively correlate with the
aneuploidy level across tumor types, consistent with previous
findings8,10,13. For other genes, the pan-cancer associations of
mutation rates with aneuploidy have been found to be largely
negative and less significant8.

Here we perform a pan-cancer analysis of the interplay
between mutations, specifically in cancer driver genes and
chromosomal-arm level aneuploidy, and its consequences for
clinical outcome. In similar to the reported for mutation load and
all aneuploidies10–12, we find positive correlations between
chromosomal arm level aneuploidy and driver mutations load for
the majority of cancers, but in gastrointestinal and endometrial
tumors, the correlation is strongly negative. The latter cancers
also show an unexpected association of driver mutations with
improved overall survival rate. Identification of unique muta-
tional gene sets shows that, in the two clusters of tumors, the load
of driver mutations is associated with distinct DNA Damage
Response (DDR) pathways. In gastrointestinal and endometrial
tumors, high load of oncogenic mutations is predominantly
observed in tumors mutated in DNA repair genes, whereas in the
other tumor types, high load of oncogenic mutations corresponds
to apparent inactivation of the apoptosis network and DNA
damage checkpoints. The ratio of the mutation load in the DNA
repair system to that in the checkpoint and apoptotic machinery
is shown to be a pan-cancer correlate of aneuploidy and overall
survival which subdivides tumors into two major classes. In the
first class, tumorigenesis appears to be driven, primarily, by
mutations in repair genes that allow mutations to accumulate
increasingly but preclude chromosomal aberrations. In the sec-
ond class of cancers, tumor development is apparently driven by
mutations in DNA damage checkpoint and apoptosis genes
which allow uncontrolled cell division accompanied by diverse
chromosomal alterations. For the first class that consists of gas-
trointestinal and endometrial tumors, we additionally derive a
mutational gene set that captures the mutual exclusivity between
aneuploidy and microsatellite instability (MSI). This set reflects
differences in therapeutic vulnerabilities and can be used as an
independent prognostic marker within this tumor class. Overall,
our analysis reveals genomic determinants of aneuploidy and

clinical outcome, uncovering their relations with driver mutations
and distinguishing DDR pathways that appear to promote tumor
development through separate courses.

Results
Associations of driver mutations, aneuploidy, and survival. For
the purpose of this analysis, we integrated mutational, aneuploidy,
and clinical data from 8686 tumor samples from 32 solid tumor
types represented in The Cancer Genome Atlas (TCGA)11,14

(Table 1, Supplementary Data 1). First, we analyzed the correla-
tion between the number of mutations15 in cancer driver genes
(which is used as a proxy for the number of actual driver
mutations) and aneuploidy levels in each tumor type. In agree-
ment with the previous observations for the overall mutational
load10,11, the correlations were positive for most tumor types, but
significantly negative for gastrointestinal and endometrial tumors
in which we also noticed a higher load of driver mutations
(Fig. 1a). We next investigated the association between the
number of driver mutations and overall survival rates. We found
that, although in most tumor types, a large number of driver
mutations is predictably associated with poor outcome, most of
the gastrointestinal and endometrial tumors show an inverse
relationship (Fig. 1a, b). This trend is recapitulated with aggre-
gated data from these two classes for tumor types although the
different survival rates in different tumor types are likely to be a
confounding factor in this analysis (Fig. 1c). However, the overall
mutational burden is positively correlated with survival rates
mostly in hypermutated tumors (including those with a negative
association between driver mutations and survival, such as lung
carcinomas; Supplementary Fig. 1), consistent with previous
findings16. Similar associations are observed when using Poly-
Phen17 and SIFT18 scores to predict functional alterations in
driver mutations (Supplementary Fig. 2). Furthermore, these
associations are reproduced when controlling for the total
mutation burden and when considering whole chromosome
aneuploidy or separately analyzing arm gains and losses. Toge-
ther, these observations further support the unique associations
characteristic of gastrointestinal and endometrial tumors (Sup-
plementary Figs. 3, 4). We also examined the associations
between focal Somatic Copy Number Alteration (SCNA) levels
and driver mutations for the 13 tumor types with available focal
SCNA data12 and found that these do not necessarily fully con-
form with the pattern observed for whole chromosome aneu-
ploidy or arm gains and losses (Supplementary Fig. 4). A more
complete analysis of focal SCNA remains to be performed. The
unexpected, complex relationship between the load of driver
mutations, arm-level aneuploidy and patient survival partitions
tumors into two classes: one in which different types of genetic
alterations are positively correlated and appear to jointly account
for poor survival, and a second one where these events are
observed in distinct tumors, such that aneuploidy seems to be
uniquely associated with poor prognosis (Fig. 1d, Supplementary
Fig. 5).

Driver mutations and aneuploidy are genetic alterations that
are facilitated by genome instability, which is are a result of
impairment of DNA Damage Response (DDR19–21). Conse-
quently, we next sought to identify the specific DDR pathways
that are affected in the two tumor classes, and to investigate how
impairment of different forms of DDR might promote tumor
evolution through alternative routes.

Distinct DDR pathways characterize the two tumor classes.
Starting with a set of 746 genes implicated in DNA damage
response (DDR) pathways (based on Gene Ontology annota-
tions22, Supplementary Data 2), we aimed to derive distinct
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mutational gene sets of DDR genes that might be associated with
the load of driver mutations in each of the two tumor classes. To
this end, we applied 100 repetitions of a genetic algorithm for
every tumor type and calculated a selection score for each DDR
gene, along with the corresponding binomial P-value (see
Methods for details). Genes with a significant combined P-value
for one of the two classes of cancer types (Fisher P-value < 0.1 for
a single class) were selected, and two distinct mutational gene sets
of DDR genes were derived, each uniquely associated with one of
the two tumor classes (Fig. 2a). The mutational gene set for the
gastrointestinal and endometrial tumors predominantly includes
DNA repair genes (hereafter repair set), in particular, base exci-
sion repair (XRCC1 and XRCC6), nucleotide excision repair
(NER, ERCC1-6), mismatch repair (MSH2-4 and MSH6, MLH1,
and MLH2), non-homologous end joining (PARP1 and BRCA1),
and homologous recombination (RAD51, XRCC2, and XRCC3).
In contrast, the mutated gene set for the second, larger tumor
class encompasses numerous genes involved in DNA damage
checkpoints and damage-induced apoptosis (hereafter, for

brevity, apoptosis set, Supplementary Fig. 6), primarily, TP53 and
the associated apoptosis and checkpoint factors, such as BCL3,
BRCA2, CHEK2, PML, TOPORS, TP63, AEN, and SIRT1, which
are involved in the P53-dependent damage response. The muta-
tion loads of these sets show highly significant, positive correla-
tions with the loads of driver mutations across tumors in the
respective class (Fig. 2b, which is not observed for most of the
randomly chosen sets of mutation; Supplementary Fig. 7). The
unique identities of the two mutated gene sets are further cor-
roborated by the observed distinctive, highly significant enrich-
ment of multiple DDR pathways (according to GO) with genes
from the respective sets (Fig. 2c, Supplementary Fig. 6). Crucially,
these sets show a pan-cancer correlation with the clinical out-
come, whereby a high ratio of apoptosis to repair mutations
strongly correlates with lower overall survival (Fig. 2d), as well as
lower progression-free interval and disease-specific survival
(Supplementary Fig. 8).

The two mutation sets show opposite associations with
aneuploidy across cancers: 30 of the 32 tumor types exhibit
positive correlations between aneuploidy and the apoptosis set
mutations count, of which 13 were significant (Spearman rank-
correlation P-value < 0.05), whereas the correlations between
aneuploidy and the repair set mutation count were negative for 25
cancer types, and significant for 5 of these (Fig. 3a). The negative
association of aneuploidy with the repair mutation set is most
pronounced in gastrointestinal and endometrial tumors (right
end of the spectrum in Fig. 3a), whereas the positive association
with the apoptosis set is mainly manifested at the left end of the
spectrum that includes tumors with lower loads of driver
mutations (Fig. 1a). The ratio of the mutation load in the
apoptosis set to that in the repair set positively correlates with
aneuploidy for nearly all tumor types (and significantly for 18 of
these, Fig. 3a), with the exception of brain lower grade glioma
(LGG). Thus, samples with a higher load in the repair set, as
opposed to the apoptosis set, show significantly elevated
aneuploidy levels across cancers (Fig. 3b). Moreover, the samples
with the highest ratio (top 5%) of apoptosis to repair set
mutations completely lack mutations in the repair set genes
(whereas the samples with the lowest ratio carry mutations in
both sets, Fig. 3c). Indeed, TP53 shows the strongest positive
association with aneuploidy as the only gene that is positively and
significantly associated with aneuploidy in gastrointestinal and
endometrial tumors (Supplementary Fig. 9). Nevertheless,
excluding TP53 (as well as BRCA2) from the apoptosis mutated
gene set does not eliminate the association of the ratio between
the repair and apoptosis sets with aneuploidy (Supplementary
Fig. 10)

Associations between MSI, aneuploidy, and clinical outcome.
Our analyses show that gastrointestinal and endometrial cancers
form a separate class of tumors in which aneuploidy is antic-
orrelated with the load of driver mutations. Furthermore, these
tumors are characterized by predominant mutations in DNA
repair genes and a paradoxical, inverse dependency between
driver mutations and survival. Additionally, a subset of tumors in
this class shows high MSI. Similarly to the previous findings for
colorectal tumors23,24, we demonstrate an inverse association
between MSI and aneuploidy across all gastrointestinal and
endometrial TCGA tumors, and a positive association between
MSI and driver mutations except for those in TP53 and APC
genes (Supplementary Fig. 9). Accordingly, we derived a third
mutated gene set to represent the apparent mutual exclusion
between aneuploidy and MSI in these tumors, so that to simul-
taneously maximize the positive association with MSI and the
negative association with aneuploidy, focusing on DDR and

Table 1 TCGA pan-cancer datasets.

Tumor type TCGA ID Number
of cases

Cases
with MSI

Pancreatic adenocarcinoma PAAD 161
Sarcoma SARC 227
Cholangiocarcinoma CHOL 36
Lymphoid neoplasm diffuse
large B-cell lymphoma

DLBC 37

Prostate adenocarcinoma PRAD 469
Lung squamous cell
carcinoma

LUAD 495

Liver hepatocellular
carcinoma

LIHC 349

Lung adenocarcinoma LUSC 463
Testicular germ cell tumors TGCT 128
Bladder urothelial carcinoma BLCA 401
Adrenocortical carcinoma ACC 89
Kidney chromophobe KICH 65
Kidney renal clear cell
carcinoma

KIRC 344

Breast invasive carcinoma BRCA 757
Glioblastoma multiforme GBM 292
Skin cutaneous melanoma SKCM 456
Pheochromocytoma and
paraganglioma

PCPG 160

Thyroid carcinoma THCA 458
Ovarian serous
cystadenocarcinoma

OV 61

Thymoma THYM 105
Mesothelioma MESO 79
Cervical squamous cell
carcinoma and endocervical
adenocarcinoma

CESC 278

Kidney renal papillary cell
carcinoma

KIRP 273

Head and neck squamous
cell carcinoma

HNSC 491

Brain lower grade glioma LGG 502
Esophageal carcinoma ESCA 162
Uveal melanoma UVM 84
Rectum adenocarcinoma READ 80 3
Uterine carcinosarcoma UCS 56 0
Stomach adenocarcinoma STAD 423 49
Colon adenocarcinoma COAD 278 53
Uterine corpus endometrial
carcinoma

UCEC 427 118
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cancer driver genes (using a feature selection process similar to
that employed for the other sets; see Methods for details). The 17
genes in the selected optimal set reflect the tradeoff between
aneuploidy and MSI in gastrointestinal and endometrial cancers
(Fig. 4a, b), and are strongly enriched in mismatch repair and
double strand break repair genes (MLH1, MSH2, PMS2, DNA2,

FBXO18, RAD21, and RPA1). The MSI-aneuploidy set was highly
predictive of MSI not only in the TCGA data on which it was
trained, but also in two independent test data sets for colorectal
adenocarcinoma (COADREAD, Receiver operating characteristic
Area Under the Curve (AUC)= 0.85 and 0.95), one test data set
for stomach adenocarcinoma (STAD, AUC= 0.85), and one for
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Fig. 1 Pan-cancer association between the number of driver mutations, levels of aneuploidy and overall survival. a Top panel: Boxplots showing the
distribution of the number of driver mutations per sample in each tumor type. Center lines indicate medians, box edges represent the interquartile range,
whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually. Bottom panel: the corresponding
correlation coefficients between the number of driver mutations and aneuploidy scores, and the hazard ratio values (log10 transformed) resulting from
Kaplan–Meier overall survival curves for samples with high vs. low number of driver mutations (separated by the median). Positive log10-hazard ratio
values indicate that high load of driver mutations is associated with worse survival, and negative log10-hazard ratio values indicate that high load of drivers
is associated with improved survival. Statistical significance (log-rank and Spearman rank-correlation P-value < 0.05) is indicated with asterisk. b The
hazard ratio values resulting from Kaplan–Meier overall survival prediction curves for samples with high vs. low number of driver mutations for different
thresholds (y-axis), for different tumor types (x-axis). The circle sizes represent the significance level measured as log-rank P-value. c Kaplan–Meier curves
predicting overall survival for gastrointestinal and endometrial tumors (bottom panels) and for all other tumors (top panels), for tumors with high vs. low
number of cancer driver mutations separated with two thresholds. The log-rank P-values are indicated. d tumor clustering based on the associations
between aneuploidy and driver mutations (columns) for each tumor type (rows). Source data are provided as a Source Data file.
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uterine corpus endometrial carcinoma (AUC= 0.92, Fig. 4c). The
high mutation load of this set is associated with better survival
across the integrated patient cohort of all gastrointestinal and
endometrial tumors (Fig. 4d), and individually in each tumor type
excluding rectal adenocarcinoma (READ), where the sample size
is likely to be a confining factor (Fig. 4e).

MSI has been associated with improved survival in gastro-
intestinal and endometrial tumors25–27, whereas chromosomal
instability has been linked to poor survival28,29. Because of the

strong inverse associations observed between aneuploidy and
MSI, we next explored the individual contributions of MSI and
aneuploidy to the overall survival, compared with microsatellite-
stable (MSS) diploid tumors. We found that aneuploid tumors are
associated with the worst outcome, whereas no significant
differences were observed between MSS and MSI diploid tumors
(Fig. 5a). These findings imply that the favorable outcome
associated with MSI could be only due to the diploid karyotype
nature of the MSI tumors, as opposed to being caused by MSI as
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such. Supporting this notion, we found that MSI mutational
signatures, which expectedly exert negative associations with
aneuploidy, are associated with poor survival in diploid tumors
(COSMIC signatures 6, 14, 15, 20, 21, and 2630,31, that have been
associated with MSI31,32; see Supplementary Fig. 11). The MSI-
aneuploidy set mutation load was associated with improved
survival independently of MSI and aneuploidy, supporting the
considerable prognostic power of the mutations in this set
(Fig. 5b, c). To find out whether these survival correlates of MSI
and aneuploidy reflect differences in therapeutic vulnerabilities,
we obtained chemotherapy response data for this cluster of
TCGA tumor types. MSI has been previously linked to improved
prognosis, but also has been proposed as a marker of non-
response to chemotherapy26,33–35. Indeed, we found the rate of
complete or partial response to chemotherapy to be considerably
higher among MSS compared to MSI tumors, and for diploid vs.
aneuploid tumors (Fig. 5d). In accord with these observations,
mutation load of the MSI-aneuploidy set was higher in
responders for some chemotherapeutic agents (Fig. 5e). Single
mutations in the MSI-aneuploidy set were not highly predictive of
the response to multiple chemotherapeutic agents, so that the set
load performed better than individual mutations (Fig. 5f).

Discussion
Although aneuploidy is a pervasive characteristic of cancer cells,
the molecular basis of aneuploidy and implications for patient
prognosis are not well understood for most cancers36,37. Here, we
partition tumor types into two classes showing opposite

associations of driver mutations with aneuploidy and patients
survival. These association patterns reflect distinct sets of muta-
tions in different DDR pathways (Fig. 6). Specifically, the mutated
gene set for the gastrointestinal and endometrial tumors that are
characterized by a negative association between the driver
mutation load and aneuploidy consists primarily of various DNA
repair genes (this association is not limited to MSI tumors;
Supplementary Fig. 12). In this class of tumors, we also observed
a paradoxical, negative association between the driver mutation
load and patient survival. Conceivably, this could be caused by
the multiple mutations in repair genes that introduce a vulner-
ability to DNA damage. In contrast, for the rest of the analyzed
tumor types, where the association between driver mutations and
aneuploidy is positive, the mutational set is dominated by genes
encoding components of the apoptosis machinery and DNA
damage-related cell cycle checkpoints. An additional facet of
cancer genome instability is the inverse relationship between
aneuploidy and MSI in the gastrointestinal and endometrial
tumors (Fig. 6), for which we derived a third mutational set that
was highly enriched in a distinct set of repair genes. Crucially, the
mutational sets derived here strongly correlate with patient sur-
vival. In particular, the ratio of the mutation loads for the
apoptotic set to that of the repair set was found to be a universal
correlate of survival: a high ratio corresponds to poor survival,
suggesting that this ratio could have a prognostic value.

Our pan-cancer analysis connects different genomic aberra-
tions with distinct DDR pathways and segregates gastrointestinal
and endometrial tumors into a separate class, where tumorigen-
esis might be predominantly driven by defects in specific DNA
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repair pathways. It has been established previously that mutated
apoptosis and DNA damage checkpoint signaling pathways sus-
tain growth with genomic abnormalities38–40. The results
described here suggest that major deficiencies in DNA repair
permit accumulation of oncogenic mutations but not aneuploidy.
This finding is in agreement with the inverse relation between
MSI and aneuploidy in colorectal tumors41, and with the diploid
karyotype of NER-deficient skin cancer42. The inverse relation-
ship between repair and aneuploidy might reflect a direct func-
tional link, whereby intact DNA repair pathways promote the
emergence of aneuploidy, or conversely, survival and reproduc-
tion of aneuploid cells requires active repair. One possible
mechanism underlying such a functional link could be chromatin
remodeling. While chromatin relaxation is crucial for DNA
repair43,44, condensed chromatin structure in necessary for
chromosomal segregation45. Tumor cells that are actively engaged
in DNA repair might maintain relaxed chromatin structures that
hinder chromosomal segregation and increase aneuploidy,
whereas tumor cells with dysfunctional repair systems would
preserve condensed chromatin that sustain proper chromosomal
segregation and preclude aneuploidy. Indeed, several of the genes
in the repair set are involved in chromatin remodeling, such as
ALC1 (CHD1L), PARP1, and DDB2. In particular, ALC1 is a
chromatin remodeling enzyme that relaxes chromatin at early
stages of DNA repair46 through PARP1 and DDB2 recruitment47.
Together with the inclusion of several other chromatin
remodeling-associated genes in the repair set (POLE3, EPC2,
BRCC3, HMGA1, and HMGB1) and the MSI-aneuploidy set
(EP300, CUL4B, RPA1, ARID1A, and NFATC4), this could

suggest that inhibition of chromatin relaxation resulting from
impairing mutations in DNA repair genes prevents the emer-
gence of aneuploidy in tumor cells.

There is, obviously, a complex relationship between aneuploidy
and patient prognosis. Although aneuploidy has been associated
with poor patient survival and linked with intrinsic drug
resistance28,48, evidence is accumulating that extreme aneuploidy
might also be associated with improved patient outcome29,49,50. We
demonstrate that aneuploidy is compatible with impairment of
apoptotic and DNA damage checkpoint signaling pathways51–53,
but is suppressed by inactivation of DNA repair pathways. Fur-
thermore, although MSI has been previously associated with
favorable prognosis, the present findings indicate that this con-
nection could result from the lack of aneuploidy in the MSI
tumors rather than from any effect of MSI as such. These findings
are in agreement with the observed association of aneuploidy
with multi-drug resistance54,55. Indeed, the loss of DNA repair
sensitizes cells to various drugs that induce DNA damage,
whereas cells deficient in checkpoint and apoptotic signaling in
response to damage lack this type of vulnerability. In addition,
MSI tumors show enhanced immune infiltration levels and
improved response to immunotherapy56,57, whereas the reduced
mutational load in gastrointestinal and endometrial aneuploid
tumors is likely to restrict the benefits of immunotherapy and
several targeted therapies. However, the mutual exclusivity
between the loss of DNA repair and aneuploidy raises another
possibility, namely, that co-occurrence of aneuploidy with
defective DNA repair is lethal, suggesting a therapeutic potential
for targeting repair processes in aneuploid cells.
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In summary, we reveal here alternative regimes of tumor-
igenesis that involve different, either synergistic or mutually
exclusive relationships between driver mutations and chromo-
somal aberrations in different cancer types (Fig. 6). By using large
human cancer cohorts, we show that these distinct tumorigenic
regimes are underpinned by unique DDR mutational set that
appear to govern accumulation of driver mutations and aneu-
ploidy. The derived mutational sets are predictive of patient
survival and suggest specific vulnerabilities of different cancer
types that might have therapeutic potential.

Methods
Data. TCGA samples of primary and metastatic solid tumors were selected for
analysis. The complete mutational data for 32 tumor types in each TCGA study
was obtained from the UCEC Xena browser58, considering all non-silent muta-
tions. Arm-level gain or loss values were obtained for each TCGA sample11, where
the ploidy was determined using the ABSOLUTE algorithm59. Each segment was
designated as amplified, deleted, or neutral compared with the ploidy of the cor-
responding sample. The scores assigned to each arm were −1 if lost, +1 if gained,
and 0 otherwise. The aneuploidy score for each tumor is calculated as the sum of
altered arms, within a range of 0 to 39 (long and short arms for each non-
acrocentric chromosome, and only long arms for chromosomes 13, 14, 15, 21, and
22). Sample-wise clinical data was obtained from the TCGA Pan-Cancer Clinical
Data Resource (TCGA-CDR14). Altogether, 8686 TCGA samples containing all
data types including somatic point mutations, aneuploidy scores and clinical data
were analyzed (Table 1).

Cancer driver genes were obtained15, for the drivers analysis a list of pan-cancer
driver mutations were used, encompassing the 200 driver mutations15 that are
categorized pan-cancer drivers (i.e. general drivers and not associated with a
subgroup of the tumor types, Supplementary Data 3).

Microsatellite Instability (MSI) classification was obtained60 for uterine corpus
endometrial, stomach, colon and rectal carcinomas (UCEC, STAD, COAD, and
READ, respectively), for a total of 718 samples of the 8686 with available molecular
and clinical data. Drug response data for all drug-patient pairs was obtained61,62

for these tumor types (considering drugs with sufficient number of samples, n >
15), and categorized into responders (complete or partial response, CR/PR) and
non-responders (progressive or stable disease, PD/SD).

To test the MSI-aneuploidy set for MSI prediction in independent test sets, four
additional tumor mutational datasets were obtained with MSI classification
including two datasets of colorectal adenocarcinoma (n= 61962 and 7263 with 91
and 15 MSI samples, respectively), one for stomach adenocarcinoma (n= 10064

with 10 MSI samples) and one of uterine corpus endometrial carcinoma (n= 19565

with 28 MSI samples).

Tumor clustering. Hierarchical clustering of driver-aneuploidy associations in
each tumor type, with the average linkage function and Euclidian distance metric,
was performed to classify tumors based on these associations. The clustering was
applied to a matrix of correlation coefficients between each driver mutation and
aneuploidy (rows) in each tumor type (columns), where missing values (corre-
sponding to missing mutations in the datasets) were assigned the mean correlation
value for each tumor type.

DDR mutational sets predicting driver mutations load. DDR mutational sets
predictive of the driver mutational load were derived for each tumor cluster
individually using a Genetic Algorithm (GA) search to produce sets of DDR
mutations predictive of drivers load in individual tumor types. For each tumor
type, 100 repetitions of the genetic algorithm were run, where the initial population
of size of n

4 (n is the sample size of the tumor type), was (a) initialized randomly
with the p= 0.05 probability of each mutation in the population set. The objective
set was the Spearman correlation coefficient ρ between the population DDR set
load and the driver mutation load, which was (b) evaluated for each item in the
population (for its unique set of DDR mutations) on the true population of tumor
samples. Then, the top half of the population with the highest ρ with the driver
mutation load in the test set was (c) selected for reproduction, where randomly
selected pairs from this selected half of the population were chosen for (d)
crossover, with p= 0.05 ×Mi probability of mutations in the crossover process (Mi

is the number of mutations of item in the population), until a population size of n
4

was reached. Twenty iterations of the steps (b–d) were performed, and the best
solution (set of mutations with the highest correlation with the load of drivers), was
retained. When 100 iterations were completed, the solutions obtained were eval-
uated to generate a selection score for each DDR mutation mi.

Selection score mið Þ ¼
X

iteration j

IijP
mutation k Ikj

where Iij is the selection of gi in iteration j, thus giving higher weight to mi that is
selected in iterations with fewer selected mutations.

A binomial P-value pt was assigned to each DDR mutation via the resulting scores
distribution for each tumor type t. For each DDR gene, the P-values assigned to
tumors in each cluster were combined into test statistic X2 using the Fisher method

X2
2CT � �2

XCT

t¼1

ln ptð Þ

where pt is the P-value assigned to a mutation in tumor type t, and CT is the number
of tumor types in a cluster.

The X2 P-values were then derived for each mutation in the two tumor classes
individually. The final set derived for each cluster consisted of mutations with
significant X2 P-values (with α < 0.1 cutoff) only in the corresponding tumor class (i.e.
not significantly associated with the other class; see Supplementary Data 4 and Fig.
13). Using a stricter cutoff did not change the selected genes in the apoptosis set, and
yielded 45 of the 53 genes in the repair set, with performance similar to the original
one (Supplementary Fig. 14).

Repeating this analysis without limiting the search for enriched mutated gene sets
to DDR genes (i.e. starting from all genes) did not yield a DNA-repair enriched set of
genes for the gastrointestinal and endometrial tumors. This is likely to be the case
because tumors with impaired mismatch repair contain mutations in many different
genes, thus making in difficult to identify the initial set of mutated DNA repair genes.
By contrast, the set selected for other tumor types was still enriched with genes
involved in apoptotic pathways. Crucially, the ratio between these sets showed similar
associations with aneuploidy and overall survival rates as the DDR-limited search
(Supplementary Fig. 15).

MSI-aneuploidy set. To derive a mutational set that would be simultaneously pre-
dictive of MSI and low aneuploidy, different sets predicting MSI and low aneuploidy
were obtained independently. The genetic algorithm described above was applied to
the cluster of gastrointestinal and endometrial tumor samples using (a) 100 repetitions
aiming to maximize the Spearman correlation coefficient ρ between each set and the
aneuploidy level and (b) 100 repetitions aiming to maximize the performance (AUC of
ROC curve) of each set in predicting the MSI status. Mutations significantly selected
for both tasks (with combined X2 P-value < 0.1 for the selection scores over 100
repetitions for both (a) and (b)) were chosen to compose the final MSI-aneuploidy set.

Statistical analysis. Boxplots and comparisons: for all boxplots, center lines indicate
medians, box edges represent the interquartile range, whiskers extend to the most
extreme data points not considered outliers, and the outliers are plotted individually.
Points are defined as outliers if they are greater than q3+w × (q3–q1) or <q1–w × (q3
− q1), where w is the maximum whisker length, and q1 and q3 are the 25th and 75th
percentiles of the sample data, respectively. All differential expression and distribution
comparisons P-values are obtained via one-sided Rank-sum test.

Survival analyses: Kaplan–Meier analyses are performed by comparing the survival
of patients with high scores to those with low scores, using a one-sided log-rank test.

Correlation coefficients: correlations coefficients and P-values were obtained
using the Spearman rank correlation test.

Pathway enrichment analysis: enrichment P-values were calculated using the
hypergeometric enrichment test, using GO annotation pathway definitions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The TCGA datasets referenced during the study are available from the Xena browser
[https://xenabrowser.net] and cBioPortal [https://www.cbioportal.org]. The source data
underlying Figs. 1–5 and Supplementary Figs. 1–4 and 7–10 are provided as a Source
Data file. All the other data supporting the findings of this study are available within the
article and its supplementary information files and from the corresponding author upon
reasonable request. A reporting summary for this article is available as a Supplementary
Information file.

Code availability
All code was implemented in MATLAB_R2018a and is publicly and freely available in
the GitHub repository:

[https://github.com/noamaus/INTERPLAY-TUMOR-CODES]

Received: 27 August 2019; Accepted: 14 February 2020;

References
1. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein

mutations: application to cancer genomics. Nucleic Acids Res. https://doi.org/
10.1093/nar/gkr407 (2011).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15094-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1234 | https://doi.org/10.1038/s41467-020-15094-2 |www.nature.com/naturecommunications 9

https://xenabrowser.net
https://www.cbioportal.org
https://github.com/noamaus/INTERPLAY-TUMOR-CODES
https://doi.org/10.1093/nar/gkr407
https://doi.org/10.1093/nar/gkr407
www.nature.com/naturecommunications
www.nature.com/naturecommunications


2. Tomczak, K., Czerwińska, P. & Wiznerowicz, M. The Cancer Genome Atlas
(TCGA): an immeasurable source of knowledge. Wspolczesna Onkologia
https://doi.org/10.5114/wo.2014.47136 (2015).

3. Chin, L., Andersen, J. N. & Futreal, P. A. Cancer genomics: from discovery
science to personalized medicine. Nat. Med. https://doi.org/10.1038/nm.2323
(2011).

4. Vogelstein, B. et al. Cancer genome landscapes. Science 340, 1546–1558
(2013).

5. Ricke, R. M., van Ree, J. H. & van Deursen, J. M. Whole chromosome
instability and cancer: a complex relationship. Trends Genet. 24, 457–466
(2008).

6. Teixeira, M. R. & Heim, S. Multiple numerical chromosome aberrations in
cancer: what are their causes and what are their consequences? Semin. Cancer
Biol. 15, 3–12 (2005).

7. Weaver, B. A. & Cleveland, D. W. Does aneuploidy cause cancer? Curr. Opin.
Cell Biol. 18, 658–667 (2006).

8. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human
cancers. Nat. Genet. https://doi.org/10.1038/ng.2762 (2013).

9. Zehir, A. et al. Mutational landscape of metastatic cancer revealed from
prospective clinical sequencing of 10,000 patients. Nat. Med. https://doi.org/
10.1038/nm.4333 (2017).

10. Buccitelli, C. et al. Pan-cancer analysis distinguishes transcriptional changes of
aneuploidy from proliferation. Genome Res. https://doi.org/10.1101/
gr.212225.116 (2017).

11. Taylor, A. M. et al. Genomic and functional approaches to understanding
cancer aneuploidy. Cancer Cell 33, 676–689.e3 (2018).

12. Davoli, T., Uno, H., Wooten, E. C. & Elledge, S. J. Tumor aneuploidy
correlates with markers of immune evasion and with reduced response to
immunotherapy. Science 355, eaaf8399 (2017).

13. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat.
Genet. 45, 1134–1140 (2013).

14. Liu, J. et al. An integrated TCGA pan-cancer clinical data resource to drive
high-quality survival outcome analytics. Cell https://doi.org/10.1016/j.
cell.2018.02.052 (2018).

15. Matthew Bailey, A. H. et al. Comprehensive characterization of cancer driver
genes and mutations article comprehensive characterization of cancer driver
genes and mutations. Cell 173, 371–376.e18 (2018).

16. Persi, E., Wolf, Y. I., Leiserson, M. D. M., Koonin, E. V. & Ruppin, E.
Criticality in tumor evolution and clinical outcome. Proc. Natl Acad. Sci. USA
115, E11101–E11110 (2018).

17. Adzhubei, I. A. et al. A method and server for predicting damaging missense
mutations. Nat. Methods https://doi.org/10.1038/nmeth0410-248 (2010).

18. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the
functional effect of amino acid substitutions and indels. PLoS ONE https://doi.
org/10.1371/journal.pone.0046688 (2012).

19. Janssen, A., Van Der Burg, M., Szuhai, K., Kops, G. J. P. L. & Medema, R. H.
Chromosome segregation errors as a cause of DNA damage and structural
chromosome aberrations. Science https://doi.org/10.1126/science.1210214
(2011).

20. Lord, C. J. & Ashworth, A. The DNA damage response and cancer therapy.
Nature https://doi.org/10.1038/nature10760 (2012).

21. Curtin, N. J. DNA repair dysregulation from cancer driver to therapeutic
target. Nat. Rev. Cancer https://doi.org/10.1038/nrc3399 (2012).

22. Carbon, S. et al. Expansion of the gene ontology knowledgebase and resources:
the gene ontology consortium. Nucleic Acids Res. 45, D331–D338 (2017).

23. Grady, W. M. Genomic instability and colon cancer. Cancer Metast. Rev.
https://doi.org/10.1023/A:1025861527711 (2004).

24. Goel, A. et al. Characterization of sporadic colon cancer by patterns of
genomic instability. Cancer Res. 63, 1608–1614 (2003).

25. Maxwell, G. L., Risinger, J. I., Alvarez, A. A., Barrett, J. C. & Berchuck, A.
Favorable survival associated with microsatellite instability in endometrioid
endometrial cancers. Obstet. Gynecol. https://doi.org/10.1016/S0029-7844(00)
01165-0 (2001).

26. Sanz-Pamplona, R. et al. Clinical value of prognosis gene expression
signatures in colorectal cancer: a systematic review. PLoS ONE 7, e48877
(2012).

27. Falchetti, M. et al. Gastric cancer with high-level microsatellite instability:
target gene mutations, clinicopathologic features, and long-term survival.
Hum. Pathol. https://doi.org/10.1016/j.humpath.2007.10.024 (2008).

28. Walther, A., Houlston, R. & Tomlinson, I. Association between chromosomal
instability and prognosis in colorectal cancer: a meta-analysis. Gut. https://doi.
org/10.1136/gut.2007.135004 (2008).

29. Birkbak, N. J. et al. Paradoxical relationship between chromosomal instability
and survival outcome in cancer. Cancer Res. https://doi.org/10.1158/0008-
5472.CAN-10-3667 (2011).

30. Huang, P. J. et al. MSignatureDB: a database for deciphering mutational
signatures in human cancers. Nucleic Acids Res. https://doi.org/10.1093/nar/
gkx1133 (2018).

31. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer.
Nature https://doi.org/10.1038/nature12477 (2013).

32. Haradhvala, N. J. et al. Distinct mutational signatures characterize concurrent
loss of polymerase proofreading and mismatch repair. Nat. Commun. https://
doi.org/10.1038/s41467-018-04002-4 (2018).

33. Des Guetz, G. et al. Does microsatellite instability predict the efficacy of
adjuvant chemotherapy in colorectal cancer? A systematic review with meta-
analysis. Eur. J. Cancer https://doi.org/10.1016/j.ejca.2009.04.018 (2009).

34. Kim, G. P. et al. Prognostic and predictive roles of high-degree microsatellite
instability in colon cancer: a National Cancer Institute-national surgical
adjuvant breast and bowel project collaborative study. J. Clin. Oncol. https://
doi.org/10.1200/JCO.2006.05.8172 (2007).

35. Nojadeh, J. N., Sharif, S. B. & Sakhinia, E. Microsatellite instability in
colorectal cancer. EXCLI J. https://doi.org/10.17179/excli2017-948 (2018).

36. Friedlander, M. L., Hedley, D. W. & Taylor, I. W. Clinical and biological
significance of aneuploidy in human tumours. J. Clin. Pathol. https://doi.org/
10.1136/jcp.37.9.961 (1984).

37. Giam, M. & Rancati, G. Aneuploidy and chromosomal instability in cancer: a
jackpot to chaos. Cell Div. https://doi.org/10.1186/s13008-015-0009-7 (2015).

38. Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature https://
doi.org/10.1038/nature03097 (2004).

39. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer.
Nature https://doi.org/10.1038/35077213 (2001).

40. Lengauer, C., Kinzler, K. W. & Vogelstein, B. Genetic instabilities in human
cancers. Nature https://doi.org/10.1038/25292 (1998).

41. Nassif, N. T. et al. PTEN mutations are common in sporadic microsatellite
stable colorectal cancer. Oncogene 23, 617–628 (2004).

42. Rajagopalan, H. & Lengauer, C. Aneuploidy and cancer. Nature https://doi.
org/10.1038/nature03099 (2004).

43. Downey, M. & Durocher, D. Chromatin and DNA repair: the benefits of
relaxation. Nat. Cell Biol. https://doi.org/10.1038/ncb0106-9 (2006).

44. Ataian, Y. & Krebs, J. E. Five repair pathways in one context: chromatin
modification during DNA repair. Biochem. Cell Biol. https://doi.org/10.1139/
o06-075 (2006).

45. Verdaasdonk, J. S. & Bloom, K. Centromeres: unique chromatin structures
that drive chromosome segregation. Nat. Rev. Mol. Cell Biol. https://doi.org/
10.1038/nrm3107 (2011).

46. Ahel, D. et al. Poly(ADP-ribose)-dependent regulation of DNA repair by the
chromatin remodeling enzyme ALC1. Science https://doi.org/10.1126/
science.1177321 (2009).

47. Pines, A. et al. PARP1 promotes nucleotide excision repair through
DDB2 stabilization and recruitment of ALC1. J. Cell Biol. https://doi.org/
10.1083/jcb.201112132 (2012).

48. Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A
signature of chromosomal instability inferred from gene expression profiles
predicts clinical outcome in multiple human cancers. Nat. Genet. https://doi.
org/10.1038/ng1861 (2006).

49. Tang, Y. C., Williams, B. R., Siegel, J. J. & Amon, A. Identification of
aneuploidy-selective antiproliferation compounds. Cell https://doi.org/
10.1016/j.cell.2011.01.017 (2011).

50. Roschke, A. V. & Kirsch, I. R. Targeting cancer cells by exploiting karyotypic
complexity and chromosomal instability. Cell Cycle https://doi.org/10.4161/
cc.4.5.1687 (2005).

51. Watanabe, T. et al. Molecular predictors of survival after adjuvant
chemotherapy for colon cancer. N. Engl. J. Med. https://doi.org/10.1056/
nejm200104193441603 (2002).

52. Zhou, W. et al. Counting alleles to predict recurrence of early-stage colorectal
cancers. Lancet. https://doi.org/10.1016/S0140-6736(02)07448-2 (2002).

53. Risques, R. A. et al. Genetic pathways and genome-wide determinants of
clinical outcome in colorectal cancer. Cancer Res. 63, 7206–7214 (2003).

54. Duesberg, P. et al. Cancer drug resistance: the central role of the karyotype.
Drug Resist. Updat. https://doi.org/10.1016/j.drup.2007.02.003 (2007).

55. Lee, A. J. X. et al. Chromosomal instability confers intrinsic multidrug
resistance. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-10-3604
(2011).

56. Xiao, Y. & Freeman, G. J. The microsatellite instable subset of colorectal
cancer is a particularly good candidate for checkpoint blockade
immunotherapy. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-14-
1397 (2015).

57. Koido, S. et al. Immunotherapy for colorectal cancer. World J. Gastroenterol.
https://doi.org/10.3748/wjg.v19.i46.8531 (2013).

58. Goldman, M. et al. The UCSC cancer genomics browser: update 2015. Nucleic
Acids Res. https://doi.org/10.1093/nar/gku1073 (2015).

59. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in
human cancer. Nat. Biotechnol. https://doi.org/10.1038/nbt.2203 (2012).

60. Cortes-Ciriano, I., Lee, S., Park, W. Y., Kim, T. M. & Park, P. J. A molecular
portrait of microsatellite instability across multiple cancers. Nat. Commun.
https://doi.org/10.1038/ncomms15180 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15094-2

10 NATURE COMMUNICATIONS |         (2020) 11:1234 | https://doi.org/10.1038/s41467-020-15094-2 | www.nature.com/naturecommunications

https://doi.org/10.5114/wo.2014.47136
https://doi.org/10.1038/nm.2323
https://doi.org/10.1038/ng.2762
https://doi.org/10.1038/nm.4333
https://doi.org/10.1038/nm.4333
https://doi.org/10.1101/gr.212225.116
https://doi.org/10.1101/gr.212225.116
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1016/j.cell.2018.02.052
https://doi.org/10.1038/nmeth0410-248
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1371/journal.pone.0046688
https://doi.org/10.1126/science.1210214
https://doi.org/10.1038/nature10760
https://doi.org/10.1038/nrc3399
https://doi.org/10.1023/A:1025861527711
https://doi.org/10.1016/S0029-7844(00)01165-0
https://doi.org/10.1016/S0029-7844(00)01165-0
https://doi.org/10.1016/j.humpath.2007.10.024
https://doi.org/10.1136/gut.2007.135004
https://doi.org/10.1136/gut.2007.135004
https://doi.org/10.1158/0008-5472.CAN-10-3667
https://doi.org/10.1158/0008-5472.CAN-10-3667
https://doi.org/10.1093/nar/gkx1133
https://doi.org/10.1093/nar/gkx1133
https://doi.org/10.1038/nature12477
https://doi.org/10.1038/s41467-018-04002-4
https://doi.org/10.1038/s41467-018-04002-4
https://doi.org/10.1016/j.ejca.2009.04.018
https://doi.org/10.1200/JCO.2006.05.8172
https://doi.org/10.1200/JCO.2006.05.8172
https://doi.org/10.17179/excli2017-948
https://doi.org/10.1136/jcp.37.9.961
https://doi.org/10.1136/jcp.37.9.961
https://doi.org/10.1186/s13008-015-0009-7
https://doi.org/10.1038/nature03097
https://doi.org/10.1038/nature03097
https://doi.org/10.1038/35077213
https://doi.org/10.1038/25292
https://doi.org/10.1038/nature03099
https://doi.org/10.1038/nature03099
https://doi.org/10.1038/ncb0106-9
https://doi.org/10.1139/o06-075
https://doi.org/10.1139/o06-075
https://doi.org/10.1038/nrm3107
https://doi.org/10.1038/nrm3107
https://doi.org/10.1126/science.1177321
https://doi.org/10.1126/science.1177321
https://doi.org/10.1083/jcb.201112132
https://doi.org/10.1083/jcb.201112132
https://doi.org/10.1038/ng1861
https://doi.org/10.1038/ng1861
https://doi.org/10.1016/j.cell.2011.01.017
https://doi.org/10.1016/j.cell.2011.01.017
https://doi.org/10.4161/cc.4.5.1687
https://doi.org/10.4161/cc.4.5.1687
https://doi.org/10.1056/nejm200104193441603
https://doi.org/10.1056/nejm200104193441603
https://doi.org/10.1016/S0140-6736(02)07448-2
https://doi.org/10.1016/j.drup.2007.02.003
https://doi.org/10.1158/0008-5472.CAN-10-3604
https://doi.org/10.1158/2159-8290.CD-14-1397
https://doi.org/10.1158/2159-8290.CD-14-1397
https://doi.org/10.3748/wjg.v19.i46.8531
https://doi.org/10.1093/nar/gku1073
https://doi.org/10.1038/nbt.2203
https://doi.org/10.1038/ncomms15180
www.nature.com/naturecommunications


61. Ding, Z., Zu, S. & Gu, J. Evaluating the molecule-based prediction of clinical
drug responses in cancer. Bioinformatics https://doi.org/10.1093/bioinformatics/
btw344 (2016).

62. Giannakis, M. et al. Genomic correlates of immune-cell infiltrates in colorectal
carcinoma. Cell Rep. 15, 857–865 (2016).

63. Seshagiri, S. et al. Recurrent R-spondin fusions in colon cancer. Nature 488,
660–664 (2012).

64. Soumerai, T. E. et al. Clinical utility of prospective molecular characterization
in advanced endometrial cancer. Clin. Cancer Res. https://doi.org/10.1158/
1078-0432.CCR-18-0412 (2018).

65. Wang, K. et al. Whole-genome sequencing and comprehensive molecular
profiling identify new driver mutations in gastric cancer. Nat. Genet. https://
doi.org/10.1038/ng.2983 (2014).

Acknowledgements
We thank Koonin group members for helpful discussions. The authors’ research is
supported by intramural research program funds of the National Institutes of Health
(National Library of Medicine). This work utilized the computational resources of the
NIH HPC Biowulf cluster. (http://hpc.nih.gov).

Author contributions
E.V.K. initiated the study; N.A. performed research; N.A., Y.I.W., and E.V.K. analyzed
the data; N.A. and E.V.K. wrote the manuscript that was edited and approved by all
authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-15094-2.

Correspondence and requests for materials should be addressed to N.A. or E.V.K.

Peer review information Nature Communications thanks Teresa Davoli and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work. Peer
reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

This is a U.S. government work and not under copyright protection in the U.S.; foreign
copyright protection may apply 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15094-2 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:1234 | https://doi.org/10.1038/s41467-020-15094-2 |www.nature.com/naturecommunications 11

https://doi.org/10.1093/bioinformatics/btw344
https://doi.org/10.1093/bioinformatics/btw344
https://doi.org/10.1158/1078-0432.CCR-18-0412
https://doi.org/10.1158/1078-0432.CCR-18-0412
https://doi.org/10.1038/ng.2983
https://doi.org/10.1038/ng.2983
http://hpc.nih.gov
https://doi.org/10.1038/s41467-020-15094-2
https://doi.org/10.1038/s41467-020-15094-2
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Interplay between DNA damage repair and apoptosis shapes cancer evolution through aneuploidy and microsatellite instability
	Results
	Associations of driver mutations, aneuploidy, and survival
	Distinct DDR pathways characterize the two tumor classes
	Associations between MSI, aneuploidy, and clinical outcome

	Discussion
	Methods
	Data
	Tumor clustering
	DDR mutational sets predicting driver mutations load
	MSI-aneuploidy set
	Statistical analysis
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




