
Research Article
Second-Generation Sequencing with Deep Reinforcement
Learning for Lung Infection Detection

Zhuo Liu, Gerui Zhang, Zhao Jingyuan, Liyan Yu, Junxiu Sheng, Na Zhang,
and Hong Yuan

�e First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

Correspondence should be addressed to Hong Yuan; yuanhonglab@163.com

Received 8 October 2019; Accepted 25 November 2019; Published 24 February 2020

Guest Editor: Liang Zou

Copyright © 2020 Zhuo Liu et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, deep reinforcement learning, associated with medical big data generated and collected from medical Internet of ,ings,
is prospective for computer-aided diagnosis and therapy. In this paper, we focus on the application value of the second-generation
sequencing technology in the diagnosis and treatment of pulmonary infectious diseases with the aid of the deep reinforcement
learning. Specifically, the rapid, comprehensive, and accurate identification of pathogens is a prerequisite for clinicians to choose
timely and targeted treatment. ,us, in this work, we present representative deep reinforcement learning methods that are
potential to identify pathogens for lung infection treatment. After that, current status of pathogenic diagnosis of pulmonary
infectious diseases and their main characteristics are summarized. Furthermore, we analyze the common types of second-
generation sequencing technology, which can be used to diagnose lung infection as well. Finally, we point out the challenges and
possible future research directions in integrating deep reinforcement learning with second-generation sequencing technology to
diagnose and treat lung infection, which is prospective to accelerate the evolution of smart healthcare with medical Internet of
,ings and big data.

1. Introduction

Nowadays, smart healthcare has appeared to be an inter-
disciplinary subject by integrating mixed computing tech-
niques into the health administration [1, 2]. ,e primary
purpose of smart healthcare is to offer pervasive and per-
sonalized medical services and health protection to people.
Computer-aided diagnosis and decision making of this
personalized treatment plan is one of the current develop-
ments in precision medicine [3, 4]. Smart healthcare aims to
provide intelligent comprehensive differentiation and pre-
scription recommendation for the diagnosis and treatment
of diseases by applying artificial intelligence technology and
cloud computing to the practice of clinical medicine. It has
been greatly developed through the applications of artificial
intelligence, cloud computing, big data analysis, and Internet
of,ings (IoT), and has been applied to many medical fields
such as intelligent Chinese medicine and intelligent testing.
Medical big data is to integrate the IoTsystem into medicine

and to integrate and classify the collected medical data
information by creating themedical Internet of,ings [5, 6].
,e deep learning model and the deep reinforcement
learning model are the most commonly used artificial in-
telligence models, which can be trained and simulated by
providing a large number of training examples through
medical big data. ,e computer aids of modern medicine
and traditional Chinese medicine have matured. ,us, there
are many well-trained deep learning models for clinical
medicine.

Pulmonary infectious diseases are common respiratory
diseases, whose clinical manifestations include cough, fever,
and chills. However, pathogens of lung infections are
complex, and it is difficult to carry out biological cultivation
and identification. Particularly, complex lung infections
have various clinical manifestations: the mortality rate is
high and the treatment is difficult, the traditional pathogen
detection methods have low positive rate; it is a long time-
consuming and complicated operation, and it is difficult to
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meet the requirements of diagnosis and treatment of
complex infectious diseases. Classical pathogen detection
methods include bacterial (fungal) culture, microscopy and
antibody testing, and PCR-based pathogen-specific nucleic
acid detection. ,ese methods have made great progress in
the diagnosis of pulmonary infectious diseases, but they have
low sensitivity and poor timeliness; pathogen identification
information and drug resistance information are not
comprehensive, so it is impossible to identify unknown and
rare pathogenic microorganisms. ,erefore, clinical diag-
nosis of pulmonary infectious diseases is very difficult.

Second-generation sequencing (SGS), also known as
next-generation sequencing technology and high-through-
put sequencing, can simultaneously sequence billions of
DNA molecules in parallel [7]. It is a group of sequencing
with high throughput, low cost, short time, and automated
sequencing technologies [8–10]. However, poor specificity is
a major problem that restricts the clinical applications of
SGS. Nonpathogenic pathogens, unrelated pathogens, and
ambiguous pathogens are often seen in SGS reports. In order
to clarify the diagnosis, the pathogen information detected
by SGS needs to be verified and interpreted using more
advanced methods [11, 12].

In this paper, we explore deep reinforcement learning for
computer-aided diagnosis and treatment of complex pul-
monary infectious diseases. We present several represen-
tative deep reinforcement learning models for the
diagnosis and treatment of potential lung infections first,
discuss the applications of the deep reinforcement learning
model in the diagnosis of second-generation genetic
testing for pulmonary infection, and summarize current
status of pathogenic diagnosis of pulmonary infectious
diseases and their main characteristics, and then we an-
alyze the results of second-generation genetic testing and
the main features of each type in common lung infections.
Finally, we point out the open challenges and possible
future research directions for intensive studies of second-
generation genetic testing integrated with deep rein-
forcement learning in lung infections, which is expected to
promote the development of intelligent healthcare and
medical Internet of ,ings.

In the reminder of this paper, Section 2 introduces the
deep reinforcement learning approaches that can be used for
second-generation sequencing for lung diseases detection
and treatment. Section 3 reviews the current status of
pathogenic diagnosis of pulmonary infectious diseases and
applications of SGS in detection of pulmonary pathogen
infection are discussed in Section 4. Section 5 gives the
challenges and possible future research directions for in-
tensive studies of second-generation genetic testing inte-
grated with deep reinforcement learning in lung infections.
Finally, Section 6 concludes the paper.

2. Deep Reinforcement Learning

Deep reinforcement learning (DRL) is a new research
hotspot in the field of artificial intelligence. It combines the
perception of deep learning with the decision-making ability
of reinforcement learning in a common form and enables

direct control from raw input to output through end-to-end
learning. With the rapid development of human society, in
more and more complex real-world task tasks, deep learning
(DL) is needed to automatically learn the abstract repre-
sentation of large-scale input data and to use this repre-
sentation as a basis for self-incentive reinforcement learning
(RL) to optimize problem-solving strategies. DRL is an end-
to-end sensing and control system with strong versatility.
,e learning process can be described as follows: (1) At each
moment, the agent interacts with the environment to obtain
a high-dimensional observation and uses the DL method to
perceive the observation to obtain a specific state feature
representation. (2) ,e value function of each action is
evaluated based on the expected return, and the current state
is mapped to the corresponding action through a certain
strategy. (3) ,e environment reacts to this action and gets
the next observation. By continuously cycling the above
processes, the optimal strategy for achieving the goal can be
finally obtained [13]. ,e framework of DRL is shown in
Figure 1.

At present, DRL technology has been widely used in
games, parameter optimization, machine vision, and other
fields. Its application is considered as an important way to
move toward general artificial intelligence [14, 15]. ,is
paper explores the application of DRL in second-generation
sequencing for lung infection detection.

2.1. Basic Concepts

2.1.1. Deep Learning. ,e concept of DL stems from artificial
neural networks. ,e DL model is usually composed of
multiple layers of nonlinear arithmetic units. It uses the
output of the lower layer as the input of the higher layer; in
this way, it automatically learns the abstract feature repre-
sentation from the large amount of training data to discover
the distributed characteristics of the data. Compared with
shallow networks, multi-hidden-layer network models have
better feature representation capabilities. It first uses the
unsupervised learning to conduct greedy pretraining on
layer by layer and then supervises the whole network with
supervised learning. ,is pretraining method provides ideal
initial parameters for deep neural networks and reduces the
optimization difficulty of deep neural networks [16, 17].
Typical DL models include Stacked Autoencoder (SAE),
Restricted BoltzmannMachine (RBM), Deep Belief Network
(DBN), and Recurrent Neural Network (RNN). With the
growth of training data and the improvement of computing
power, Convolutional Neural Network (CNN) has been
widely used in various fields.

2.1.2. Reinforcement Learning. Reinforcement learning (RL)
is a kind of learning that maps from environmental state to
action. ,e goal is to get the agent to get the maximum
cumulative reward in the process of interaction with the
environment [18]. ,e Markov decision process can be used
to model the RL problem, which is usually defined as
(S, A, ρ, f), where
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(1) S is a collection of all environmental states. And
st ∈ S stands for the state of agent at time t.

(2) A is a collection of execution actions for agent. And
at ∈ A stands for the action that agent takes at time t.

(3) ρ : S × A⟶ R is the reward function. And
rt ∼ ρ(st, at) stands for the immediate reward value
of agent at state st when executing action at.

(4) f : S × A × S⟶ [0, 1] is the state transition prob-
ability distribution function. And st+1 ∼ f(st, at)

stands for the probability of agent transforming from
state st to st+1 when executing action at.

In RL, strategy π : S × A is a map from state space to
action space, which indicated that the agent selects action
at in state st, performs the action, and transforms to the
next state st+1 with probability f(st, at), while accepting
rewards rt from environmental feedback. Assuming that
the immediate reward for each time step in the future
must be multiplied by a discount factor c, then from the
time t to the end of the time T, the sum of the rewards is
defined as

Rt � 􏽘
T

i�t

c
i− t

ri, (1)

in which c ∈ [0, 1] is used to weigh the impact of future
rewards on cumulative rewards.

State action value function Qπ(s, a) refers to the action a

in the current state s and always follows the strategy π to the
end of the plot, in which the cumulative return obtained by
the agent is expressed as

Q
π
(s, a) � Ε Rt st

􏼌􏼌􏼌􏼌 � s, at � a, π􏽨 􏽩. (2)

For all state action pairs, if the return of a strategy π∗ is
greater than or equal to the expected return of all other
strategies, then the strategy π∗ is called the optimal strategy.
,ere may be more than one optimal strategy, but they share
the same state action value function.

Q
π
(s, a) � max

π
Ε Rt st

􏼌􏼌􏼌􏼌 � s, at � a, π􏽨 􏽩. (3)

It is called the optimal state action value function, and
the optimal state motion value function follows the Bellman
optimal equation; namely,

Q
π
(s, a) � Εs′: S r + cmax

a′
Q s′, a′( 􏼁 | s, a􏼢 􏼣. (4)

In the traditional RL, the Q-value function is generally
obtained by iterative Bellman equation:

Qi+1(s, a) � Εs′: S r + cmax
a′

Qi s′, a′( 􏼁 | s, a􏼢 􏼣. (5)

Herein, when i⟶∞, π∗. By continuously iterating,
the state action value function will finally converge, and the
optimal strategy π∗ � argmax

a∈A
Q∗(s, a) will be obtained.

However, for practical problems, it is obviously not feasible
to solve the optimal strategy by iterative updating (5), be-
cause in the large state space, the method of solving the
Q-value function with the iterative Bellman equation is too
expensive. To tackle it, in the RL algorithm, a linear function
approximator is usually used to approximate the state action
value function, Q(s, a | θ) ≈ Q∗(s, a). Besides, nonlinear
function approximators such as deep neural networks can
also be used to approximate the value function or strategy.
,erefore, DRL has attracted extensive attention in recent
years. In the next subsection, we will discuss some deep
reinforcement learning techniques that are potential for
second-generation sequencing in lung infection detection
and treatment.

2.2. DRL Techniques. In this section, we first describe three
main types of deep reinforcement learning methods, in-
cluding deep reinforcement learning based on value func-
tion, deep reinforcement learning based on strategy
gradient, and deep reinforcement learning based on search
and supervision. Afterwards, some potential deep rein-
forcement learning directions in SGS applications are
summarized, such as hierarchical deep reinforcement
learning, multitask deep reinforcement learning, multiagent
deep reinforcement learning, deep reinforcement learning
based on memory and reasoning, and so on.

2.2.1. DRL Based on Value Function. Mnih et al. [19]
combined the convolutional neural network with the Q
learning algorithm in the traditional RL and proposed the
Deep Q-Network (DQN) model. ,is model is used to
process visual perception-based control tasks and is a
groundbreaking work in the field of DRL. ,e input of the
DQN model is the four preprocessed images closest to the
current time. ,e input undergoes a nonlinear transfor-
mation of 3 convolutional layers and 2 fully connected layers
and finally produces a Q value for each action in the output
layer. Figure 2 shows the architecture of DQN.

In order to alleviate the instability problem in the
nonlinear network representation value function, DQN
mainly made three improvements to the traditional Q
learning algorithm. (1) DQN uses the experience replay
mechanism during the training process to tackle the ob-
tained transferred samples online. (2) In addition to using
the deep convolutional network to approximate the current
value function, DQN uses another network to generate the
target Q value. (3) DQN reduces the bonus value and error
term to a limited interval, which ensures that the Q value and

Context
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Environment

ActionObservation

DL perception RL decision making

Figure 1: ,e framework of deep reinforcement learning.
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the gradient value are within a reasonable range, which
improves the stability of the algorithm. Inspired by the
DQN, many variants are proposed, such as deep dual Q
network, deepQ network based on superior learning, deepQ
network based on priority sampling, deep cycle Q network,
and so on.

2.2.2. DRL Based on Strategy Gradient. Strategy gradient is a
commonly used strategy optimization method, which up-
dates the strategy parameters by continuously calculating the
gradient of the strategy expectation total reward for the
strategy parameters and finally converges to the optimal
strategy. ,erefore, when solving the DRL problem, a deep
neural network with parameter θ can be used to parame-
terize the representation strategy, and the strategy gradient
method is used to optimize the strategy. It is worth noting
that when solving DRL problems, the first choice is to adopt
a strategy-gradient-based algorithm.,e reason is that it can
directly optimize the expected total reward of the strategy
and search for the optimal strategy directly in the strategic
space in an end-to-end manner, eliminating the cumber-
some intermediate links. ,erefore, compared with DQN
and its improved model, the DRL method based on strategy
gradient is more applicable and the effect of strategy opti-
mization is better.

Typical strategy-gradient-based DRL methods include
deep strategy gradient based on actor critic, asynchronous
dominant actor critic algorithm, and so on [20].

2.2.3. DRL Based on Search and Supervision. In addition to
value-based DRL and strategy-gradient-based DRL, the
process of strategy search can be promoted by adding ad-
ditional manual supervision, which is the core idea of DRL
based on search and supervision. Monte Carlo Tree Search
(MCTS) [21], as a classic heuristic strategy search method, is
widely used in action planning in game problems.,erefore,
in the DRL method based on search and supervision,
strategy search is generally done through MCTS. For ex-
ample, the AlphaGo algorithm combines deep neural net-
works with MCTS to achieve remarkable results. Its main
idea has two points: (1) using MCTS to approximate the
value function of each state; (2) using the CNN based on
value function to evaluate the current layout and walk of the
board. AlphaGo’s complete learning system consists of the
following components:

(1) Strategy Network. It is divided into a strategy net-
work for supervised learning and a strategy network
for RL. ,e role of the strategy network is to predict
and sample the next move based on the current
situation.

(2) Rollout Strategy. ,e goal is also to predict the next
step, but the speed of prediction is 1000 times that of
the strategy network.

(3) Value Network. According to the current situation,
the winning probability of both sides is estimated.

(4) MCTS. It integrates the strategy network, the rollout
strategy, and the value network into the process of
strategy search to form a complete system.

DRL based on search and supervision has achieved
promising results in the game areas, which has prompted
more and more researchers to transfer it to others.

2.2.4. Potential DRL in SGS. In addition to the above DRL
methods, some outstanding methods have be proposed in
recent years. In this subsection, we give a brief review of the
potential DRL in SGS, which may be used for detecting of
pulmonary pathogen infection.

(1) Hierarchical Deep Reinforcement Learning. In some
complex DRL tasks, the strategy is optimized directly to the
final goal, which is inefficient. ,erefore, Hierarchical Re-
inforcement Learning (HRL) can be used to decompose the
final goal into multiple subtasks to learn the hierarchical
strategy and form a valid global strategy by combining
multiple subtask strategies [22]. Figure 3 gives the structure
of the hierarchical DQN.

Typical HRL methods include spatiotemporal abstraction
and intrinsic-motivation-based methods, internal-option-based
methods, and deep follow-up reinforcement learning. All the
ideas can be used with the complex processes of SGS for
detection of pulmonary pathogen infection.

(2) Multitask Transfer Deep Reinforcement Learning. In the
traditional DRL method, the agent after completion of each
training can only solve a single task. However, in some
complex real-world scenarios, the agent needs to be able to
handle multiple tasks at the same time. At this time, mul-
titask learning and transfer learning are extremely impor-
tant. In the RL field, Wilson et al. [23] used a hierarchical
hybrid Bayesian model to provide prior knowledge of new
tasks, enabling agents to better adapt to new task scenarios.
For partially observable random multitasking scenarios, Li
et al. [24] developed a regionalized policy representation to
describe the behaviour of agents in different task scenarios.
,e method used the clustering properties contained in the
Dirichlet process to share training scenarios between similar
tasks and to pass valuable information between different
tasks. Compared with the single-task learning mode, the
multitask RL method has achieved more outstanding per-
formance in both lattice world navigation and multitarget
classification tasks. Taylor and Stone [25] proposed a way to
transfer value functions between different tasks. Fernfindez

Input Deep convolutional 
neural network

... ...

Fully connected layers
Output Q value

Figure 2: Architecture of DQN.
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Vdoso [26] used a mapping that reflects the relationship
between the agent’s current and past state action pairs,
enabling the previously learned strategies to be transferred to
new tasks in a timely manner. Wang et al. [27] concluded
that the transfer learning in RL falls into two broad categories:
behavioural transfer and knowledge transfer. ,ese two types
of transfer learning are also widely used in multitasking DRL
algorithms.

Regarding SGS for detecting of pulmonary pathogen
infection, multiple agents and multitask are promising.
,erefore, the deep reinforcement learning based on mul-
titask transfer learning is a feasible direction.

(3) Deep Reinforcement Learning Based on Memory and
Reasoning. ,e traditional visual-perception-based DRL
method is far worse than human beings in solving higher-
level cognition-inspired tasks. ,at is to say, in solving some
high-level DRL tasks, the agent not only needs strong per-
ceptual ability, but also needs certain memory and reasoning
ability to learn effective decision-making.,erefore, the ability
to give active learning and reasoning to existingDRLmodels is
very important.

In recent years, the research on neural network model of
external storage has made substantial progress. Graves et al.
[28] proposed a neural structure called Neural Turing
Machines (NTM), which updates the parameters of memory
structures by random gradient descent while reading and
writing data to optimize the content of memory. By adding
NTM, the neural network model has the ability to complete
some simple tasks such as copying, inversion, addition, and
subtraction, which shows that the deep neural network
model has preliminary memory and reasoning ability.
After that, Sukhbaatar et al. [29] proposed a memory
network model based on NTM for question-and-answer
system and language modelling tasks, which further im-
proved the long-term memory ability of the network.
,erefore, adding these external memory modules to the

existing DRL model can give the network a certain high-
level ability of long-term memory, active cognition, and
reasoning. In addition, the development of cognitive
neuroscience in recent years has also promoted the de-
velopment of artificial intelligence. Researchers are sim-
ulating the auxiliary learning system of the human brain to
construct an agent that can independently remember,
learn, and make decisions.

3. Current Status of Pathogenic Diagnosis of
Pulmonary Infectious Diseases

In recent years, as a result of the emergence of severe acute
respiratory syndrome (SARS) in new pathogens, a variety of
viruses, fungi, and resistant bacteria have emerged, and
infectious diseases have once again received attention.
However, there are many kinds of pathogens of infectious
diseases [30–32]. Traditional immunological tests and cul-
tivation of pathogenic microorganisms are limited; they are
not efficient and timely to provide a reliable diagnosis basis
for the clinic, especially the complex lung infection. How to
judge the pathogens? Difficulties have made many patients
with pulmonary infectious diseases fail to receive timely and
effective treatment and even death. Pulmonary infections are
mainly pneumonia and bronchiolitis and can also be
manifested as lung abscesses and granulomas. Pulmonary
infections are mainly collected from sputum and alveolar
lavage fluid. Due to the special feeding environment of the
lungs, routine detection of effective pathogen information in
serum is limited. However, patients with severe pneumonia
require mechanical ventilation, and lung tissue is difficult to
obtain. ,e small amount of specimens limits the detection
of pathogens of infectious lung diseases.

4. ApplicationofSGS inDetectionofPulmonary
Pathogen Infection

At present, pathogenic diagnostic methods based on mi-
crobial culture are still the main means for diagnosing the
pathogenic diagnosis of pulmonary infectious diseases, but
they are also largely influenced by culture conditions and
antibiotic use, and the culture positive rate is low. For lung
infections, second-generation sequencing technology can be
used for the detection of a variety of pathogens, such as
bacteria, fungi, viruses, mycoplasma, etc. Also, it can also be
used for the detection of a variety of respiratory specimens,
such as sputum, throat swab, alveolar lavage fluid and blood,
and other specimens. ,e second-generation sequencing
technology has a higher detection rate than the traditional
culture method [33, 34]. Compared with the traditional
single-plex PCR method, it not only reduces the sample
nucleic acid requirement and expands the detection range,
but also has better specificity and sensitivity [11, 12]. De-
tection of viral pathogens mainly includes virus antigen
detection, nucleic acid detection, and virus isolation and
culture. However, the traditional virus pathogen detection
has a low positive rate; thus, it is difficult to promote and
apply in clinical practice. Second-generation sequencing
technology is superior to traditional virus detection
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Figure 3: Architecture of hierarchical DQN.
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techniques in terms of sensitivity and accuracy. It theoret-
ically reveals all microbial information in the sample, which
can detect more virus types and its positive rate is higher
[35]. Detectable viruses include well-known upper respi-
ratory tract viruses and lower respiratory tract viruses such
as HSV and CMV in immunosuppressed hosts. With the
increasing range of pathogens based on second-generation
sequencing technology, it is found that the proportion of
viruses in respiratory infections is much higher than pre-
viously thought. ,e applications of SGS technology to
detect in-hospital-acquired viral pneumonia in real time and
rapid detection have shown that SGS technology can learn
evidence faster than traditional methods, so that timely
measures are taken to control outbreaks of nosocomial
infections.

Pulmonary fungal infections are characterized by high
lethality and difficulty in diagnosis and treatment. In recent
years, with the abuse of antibiotics, more and more resistant
bacterias and fungi have emerged. Pulmonary fungal in-
fection has become the leading cause of death in ventilator-
associated pneumonia, especially in patients with immu-
nosuppression. Among patients with drugs, the incidence of
fungal infections is also increasing [36]. Culture has long
dominated the diagnosis of fungal infections, but traditional
methods have inherent deficiencies in identifying mixed
infections and analyzing the flora structure and dynamics of
the flora and many fungi or undiscovered new ones. It is
difficult or even impossible to cultivate the strain. ,ese
kinds of problems all suggest that we urgently need a new
method to assist clinical diagnosis more accurately and
quickly. Different from the bacterial DNA extraction
method, the second-generation technology in the fungal
flora structure spectrum method mainly through the am-
plification, sequencing, and analysis of the fungus ITS1
(internal transcribed spacer) and ITS2 gene fragments, using
ITS1/ITS2 gene sequencing technology, generally, 50 to 60
genera were detected, and the sequence of fungal ITS gene
obtained by sequencing can be matched by the existing gene
database. However, for the most common clinical genera of
Candida and Aspergillus, ITS gene sequencing can well
identify their ITS gene sequences, and some pathogen strains
can be distinguished at the species level. Fungi not only cause
lung dysfunction, but also because of the long treatment
time, affect the prognosis of the disease, and the second-
generation sequencing technology helps to understand the
whole picture of airway microbes from the overall structure
of the community and in complex lung infections, especially
AIDS, etc. ,e diagnosis of Pneumocystis is important in
immunodeficient patients [37].

Mycobacterium tuberculosis also occupies an important
position in the pathogens of lung infection. At present, the
commonly used PCR method for collection of mycobacte-
rium tuberculosis has low sensitivity and low positive rate.
,e T-SPOTdetection method is also applied clinically, but
the specificity is low, and the false positive rate is high.
However, the second-generation sequencing technology, the
pathogen detection, epidemiology, and typing of myco-
bacterium tuberculosis have made a leap forward. ,e
second-generation sequencing technology can be applied

not only to conventional sputum, alveolar lavage fluid and
blood, but also to the detection of pleural effusion and
pericardial effusion, which greatly improves the accuracy
and sensitivity of detection, especially improving the diag-
nosis of tuberculous pleural effusion. At the same time, SGS
can classify the detectedM. tuberculosis, greatly improve the
typing efficiency, and also determine the variation and
propagation source among the strains in the transmission
chain.

It is well known that the clinical microbiology labo-
ratory’s real-time PCR technology for screening and con-
firming suspected viruses must be based on known pathogen
gene sequences, but not for unknown viral pathogens. ,e
second-generation sequencing technology not only dis-
covers known pathogens, but also discovers completely
unknown pathogens [38, 39]. About 70% of patients with
infectious diseases cannot determine pathogen information
due to traditional detection methods and cannot be treated
in a timely and effective manner, thus worsening the con-
dition. ,erefore, rapid and accurate pathogen detection
methods are of great significance for effective diagnosis and
timely control of infectious diseases.,ere are many types of
modern molecular typing techniques, and the most com-
monly used molecular techniques in the traceability and
monitoring of infectious diseases are multisequence typing
(MLST), pulsed-field gel electrophoresis (PFGE), and
multisite tandem repeats. Sequence analysis (MLVA), etc.,
and the emerging high-resolution WGS technology guar-
antee the accurate traceability and monitoring of infectious
diseases and can also complement each other with multiple
molecular technologies to improve the accuracy of detection.
WGS technology can track the prevalence of pathogens and
more accurately identify possible sources of pathogens
[40, 41]. And with the continuous development of this
technology, the current traceability and monitoring capa-
bilities for unknown pathogens are becoming more and
more prominent. ,e pathogens of severe pulmonary in-
fection are usually unclear. Currently, the clinical use of
antigen/antibody immunology methods and traditional
microbial culture techniques is used for diagnosis. However,
these methods have problems of long culture period and low
culture positive rate. ,e second-generation sequencing
technology is a novel DNA/RNA sequencing method based
on the detection of nucleic acid molecules, which has high
sensitivity and short time-consuming, and does not depend
on traditional pathogenic culture. ,e application of anti-
biotics in the early stage has little effect on the detection
results. Accurate and rapid identification of microbial
pathogens in patients with lung infections may result in
targeted antibacterial therapies, with fewer side effects and
lower costs. In particular, patients with tracheal intubation
are measured by sputum extraction from the lower respi-
ratory tract of the bronchus, which can more accurately
provide pathogenic bacteria analysis of ventilator-associated
pneumonia, further guiding clinical treatment and
prognosis. With the development of second-generation
sequencing technology, processing and sequencing time
will be further reduced. ,e SGS method will eventually
provide clinicians with rapid, accurate, independent
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culture-based identification of bacterial, fungal, and viral
pathogens and their antimicrobial sensitivity character-
istics [42].

Although the blood and alveolar lavage SGS tests have
revolutionized the pathogens of complex lung infections,
there are still many problems with the detection and in-
terpretation of SGS. Different from the application of SGS
detection in hereditary diseases, the complex composition of
infectious disease specimens and the low level of nucleic acid
of pathogenic microorganisms all restrict the detection of
SGS in pathogenic microorganisms of lung infection. ,e
first problem is sensitivity. Although SGS detection shows
great advantages over traditional methods in diagnosing rare
and rare pathogens, the sensitivity of common pathogens
such as Cryptococcus is not stronger than traditional
methods. Even if these pathogens detected by traditional
methods, SGS may not detect or detect only a very small
number of specific fragments, which affects the results. For
example, for the metagenomics detection ofM. tuberculosis,
the current optimal solution is still to perform SGS se-
quencing on the basis of MGIT960 liquid culture.,e reason
may be that theMycobacterium tuberculosis are intracellular
bacteria, and the current detection method is mainly to
detect the intracellular infection with M. tuberculosis by
using the sputum supernatant; and M. tuberculosis due to
nucleic acid of GC is relatively high (60% higher), and the
melting method of most bacteria cannot fully dissociate the
nucleic acid strand of M. tuberculosis. ,erefore, under the
condition of specimen processing suitable for most patho-
genic microorganisms, the detection of tuberculosis cannot
be effectively achieved. At present, direct SGS testing of
clinical specimens to diagnose M. tuberculosis infection is
very difficult. As an alternative, it is often the case that the
clinical specimens are cultured for tuberculosis and then
SGS is detected to improve the positive rate of clinical
specimen detection, which increases the financial burden of
the patient.

5. Discussion

Although SGS is a high-throughput test and can theoretically
detect almost all pathogenic microorganisms, it does not
completely replace all clinical pathogen detection methods.
,is requires us to continue to optimize the detection
method of SGS on the one hand, so that it can cover the
range of pathogens as much as possible and improve the
detection rate. On the other hand, we must understand that
SGS technology has limitations and cannot be completely
dependent on SGS detection [43]. At the same time, tra-
ditional methods cannot be ignored, and other effective
pathogen detection methods should be retained or ex-
plored as supplements or verifications. For patients with
partial lung abscess or granuloma, because the disease is
confined to the lungs, the amount of pathogens released
into the blood and alveolar lavage fluid is limited, so for
these diseases, pathogens can only be detected by SGS
detection of tissue samples. Deep reinforcement learning
can fully learn the potential results by simulating human
brain learning and decision making based on the given

complex data. ,us, it is a good choice to integrate DRL
with SGS for clinical pathogen detection.

Poor specificity is another major problem that restricts
the clinical application of SGS. Nonpathogenic, unrelated
pathogens, and ambiguous pathogens are often seen in SGS
reports. ,e lungs are an open environment, connected to
the outside world, there are airway and oral colonization
bacteria, many fragments of different species can be detected
in the sputum and alveolar lavage fluid, and many unex-
plained samples can often be detected in the specimen. Part
of the reason may be the contamination of specimens and
reagents, such as environmental microbes (such as plants,
plant viruses, etc.), which are difficult to discriminate. For
these contaminations, it is necessary to eliminate the
comparison between the laboratory quality control and the
data between the specimens. DRL can combine all the related
data to learn a favorable result through training and decision
making; thus, it may effectively solve the poor specificity of
the clinical application of SGS.

In summary, by combining the deep reinforcement
learning techniques with SGS, it can eliminate the valueless
results and analyze and evaluate the meaningful results of
SGS. ,e core of SGS testing for the diagnosis of lung in-
fections is the identification of responsible pathogens. Since
SGS testing often yields a large number of backgrounds or
unrelated microbial fragments, it is critical to find or identify
responsible pathogens. It is first necessary to establish a
knowledge database of common microorganisms for lung
infections: a database of background microorganisms
common to each laboratory and testing unit in SGS testing
and record the number of common fragments detected. If a
suspected pathogen fragment that is not in the range of
common background bacteria appears in the SGS test of
clinical specimens, or the number of fragments of a certain
microorganism is significantly higher than the data in the
background microbial database, it is included in the sus-
pected responsible pathogen, and further methods are used
for authenticating. In the alveolar lavage fluid, possible
responsible bacteria, fungi, or virus fragments were detected
by SGS, and the proportion of the total fragments was
often extremely low, even only a few fragments, which is
difficult to be diagnosed. SGS testing is often only useful
in the diagnosis of pulmonary systemic infections, and
when pathogens for nonclinical routine screening are
detected, further use of classical pathogen detection
methods is needed for diagnosis. ,is requires the de-
velopment of a well-developed pathogen verification test
system, especially for pathogenic microorganisms that
are not easily detected by some common methods. Be-
cause the current SGS testing cost is still high, it cannot be
widely used in the clinic, and it also affects its timeliness.
SGS is also only a pathogen detection method, and it has
just been applied in clinical practice. ,erefore, there are
also blind spots and misunderstandings of its monitoring.
,e excessive expectation and interpretation of SGS
detection results can not only push up the cost of clinical
testing, but also make it effective. ,e examination could
not be carried out smoothly, which also led to misdiagnosis
and missed diagnosis.
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However, because the optimal processing conditions and
bioinformatics analysis required for sequencing of different
specimens and pathogenic microorganisms are different, it is
currently not possible to adapt an SGS detection procedure
to all infectious pathogens. Moreover, the difference in the
location and method of the specimen will also affect the test
results. ,erefore, using the deep reinforcement learning,
based on the patient’s medical history and clinical exami-
nation, the possible pathogens are presumed, the specimens
are preprocessed and then sequenced, and even different
strategies are adopted for the biosignal analysis of the se-
quencing results. Taking into account various unknown
pathogens, the detection rate of specific pathogens and the
interpretation of the results are improved. ,e deep rein-
forcement learning is a diagnostic basis to reduce errors. It
sets certain standards and procedures to determine whether
the detected pathogen is a responsible pathogen, and de-
signing targeted evaluation sequencing methods based on
different types of pathogens to improve the effectiveness of
SGS. ,erefore, the deep reinforcement learning combined
with knowledge graph is a promising direction for SGS in the
application of pulmonary infectious diseases.

6. Conclusion

In this paper, we explore deep reinforcement learning for
computer-aided diagnosis and treatment of complex pul-
monary infectious diseases. We first present several repre-
sentative deep reinforcement learning models for the
diagnosis and treatment of potential lung infections.
Moreover, we discuss the applications of the deep rein-
forcement learning model in the diagnosis of second-gen-
eration genetic testing for pulmonary infection and
summarize the current status of pathogenic diagnosis of
pulmonary infectious diseases and their main characteris-
tics. After that, we analyze the results of second-generation
genetic testing and the main features of each type in
common lung infections. Finally, we point out the open
challenges and possible future research directions for in-
tensive studies of second-generation genetic testing inte-
grated with deep reinforcement learning in lung infections,
whichmay help the related researchers and medical workers.
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