
Natural variation in DNA methylation homeostasis and
the emergence of epialleles
Yinwen Zhanga,1

, Jered M. Wendteb,1, Lexiang Jia, and Robert J. Schmitzb,2

aInstitute of Bioinformatics, University of Georgia, Athens, GA 30602; and bDepartment of Genetics, University of Georgia, Athens, GA 30602

Edited by Xuemei Chen, University of California, Riverside, CA, and approved January 22, 2020 (received for review October 21, 2019)

In plants and mammals, DNA methylation plays a critical role in
transcriptional silencing by delineating heterochromatin from
transcriptionally active euchromatin. A homeostatic balance be-
tween heterochromatin and euchromatin is essential to genomic
stability. This is evident in many diseases and mutants for hetero-
chromatin maintenance, which are characterized by global losses
of DNA methylation coupled with localized ectopic gains of DNA
methylation that alter transcription. Furthermore, we have shown
that genome-wide methylation patterns in Arabidopsis thaliana
are highly stable over generations, with the exception of rare
epialleles. However, the extent to which natural variation in the
robustness of targeting DNA methylation to heterochromatin ex-
ists, and the phenotypic consequences of such variation, remain to
be fully explored. Here we describe the finding that heterochro-
matin and genic DNA methylation are highly variable among 725
A. thaliana accessions. We found that genic DNA methylation is
inversely correlated with that in heterochromatin, suggesting that
certain methylation pathway(s) may be redirected to genes upon the
loss of heterochromatin. This redistribution likely involves a feedback
loop involving the DNA methyltransferase, CHROMOMETHYLASE 3
(CMT3), H3K9me2, and histone turnover, as highly expressed, long
genes with a high density of CMT3-preferred CWG sites are more
likely to be methylated. Importantly, although the presence of CG
methylation in genes alone may not affect transcription, genes con-
taining CG methylation are more likely to become methylated at
non-CG sites and silenced. These findings are consistent with the
hypothesis that natural variation in DNA methylation homeostasis
may underlie the evolution of epialleles that alter phenotypes.
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Heterochromatin is abundant in eukaryotic genomes, and it is
important for the transcriptional silencing of repeats and

transposons (TEs), as well as for centromere function (1). Het-
erochromatin is composed of more tightly condensed chromatin
compared to euchromatin. At the molecular level, heterochro-
matin is typically demarcated by Histone H3 lysine 9 methylation
(H3K9me), and there are a variety of enzymes that “read” this
covalent histone modification to help establish and maintain het-
erochromatin (2–5). In plant and mammalian genomes, hetero-
chromatin is associated with an additional chromatin modification,
DNA cytosine methylation, which, in plants, is established in a
feedback loop with H3K9 methylation (5–13). Loss of maintenance
of heterochromatin leads to genome instability, resulting in nu-
merous phenotypic consequences. In humans, disease progression
in many cancer types is characterized by global losses of DNA
methylation, accompanied by ectopic gains of DNA methylation in
CpG islands that may silence transcription of tumor suppressors
(14). Similarly, in the model plant, Arabidopsis thaliana, mutations in
the nucleosome remodeler, DECREASE IN DNAMETHYLATION
1 (DDM1), result in a global decrease in DNA methylation in
heterochromatin and a redistribution of DNA methylation to
genes that results in pleiotropic developmental defects (15, 16).
Therefore, it is critical to maintain chromatin homeostasis, or
proper targeting of chromatin modifications that demarcate het-
erochromatin from euchromatin, through both mitotic and meiotic

cell divisions. Consistent with this, methylated regions were found
to be faithfully propagated genome-wide over multiple genera-
tions in A. thaliana with 99.998% accuracy (17). Yet, despite this
demonstrated stability in an individual accession of A. thaliana,
DNA methylation has been widely characterized both within and
between plant species and found to be highly variable in genome-
wide levels and distribution (18–20). This variation is due, at least
in part, to genetic variation in genes encoding the machinery re-
sponsible for the maintenance and targeting of DNA methylation
(19–24). As a whole, however, epigenetic diversity may be more
generally conceptualized as consequence of natural, population-
level variation in chromatin homeostasis, the extent, causes, and
phenotypic consequences of which remain to be fully explored.
Most angiosperm (flowering) plants studied to date encode

multiple functionally distinct DNA methyltransferase enzymes
that combine methylate cytosines in all sequence contexts, in-
cluding CG, CHG, and CHH (H = A, C, or T) (8, 9, 20, 23).
Methylation in all contexts is characteristic of silenced repeats in
constitutive heterochromatin (25, 26). Protein-coding genes lo-
cated in euchromatin can be characterized by DNAmethylation as
well, although the patterns of methylation can vary. Many con-
stitutively expressed genes in flowering plant genomes are char-
acterized by strictly CG context methylation, which is referred to
as gene body methylation (gbM) (27). Genes can also be charac-
terized by TE-like methylation (teM) that occurs in multiple
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sequence contexts, and, when teM is also associated with
H3K9me2, teM genes are generally transcriptionally silent. Fi-
nally, many genes in flowering plant genomes are essentially de-
void of DNA methylation and thus referred to as unmethylated
(UM; reviewed in ref. 28).
From an evolutionary standpoint, gbM has garnered much

interest, as it is a feature of not just flowering plants, but many
animal species as well, suggesting it may represent an ancestral
state conserved over long periods of evolutionary time (29–32).
Curiously, it is absent from fungal genomes that contain cytosine
DNA methylation (33). In general, although there is accumulation
of methylation variation at the level of individual cytosines within
genes, gbM is faithfully inherited over generational timescales (17,
34, 35). Furthermore, among flowering plant species, gbM is often
found on conserved orthologous genes between species (20, 24, 36–
41). GbM is also consistently associated with genes with charac-
teristic features including constitutive, but moderate, expression
levels and reduced expression variance between species relative to
UM genes (21, 25, 42–44). The correlations of gbM with higher but
less variable levels of expression have been interpreted as evidence
that gbM is functionally implicated in gene expression and main-
tained in populations by natural selection (29, 42, 45). However,
numerous studies of experimentally induced and natural losses of
gbM have found no evidence for expression changes directly as-
sociated with the loss of gbM, suggesting that the correlation be-
tween gbM and expression is not a functional relationship (19, 20,
22, 34, 37, 40, 43, 44). Also, although the presence of gbM on some
conserved orthologous genes between species is well established,
there is wide variation in the percentage of orthologous genes
characterized by gbM, both within and between species, with spe-
cies differences ranging from ∼0 to 60% of all genes characterized
by gbM in a given species (20).
Mechanistic studies that have identified the molecular processes

that underlie the establishment of gbM have provided evidence for
an alternative hypothesis for the conservation of gbM, which does
not invoke a conserved, universal function (22, 23, 46–51). The
establishment of gbM requires the activity of the DNA methyl-
transferase CHROMOMETHYLASE 3 (CMT3) (22, 24, 28, 46–
48). CMT3 preferentially methylates cytosines in the CHG se-
quence context (with a preference for CWG relative to CCG; W =
A or T) in a self-reinforcing feedback loop with H3K9me2 to
maintain constitutive heterochromatin (6, 12, 52–55). CMT3
physically binds H3K9me2 to activate methyltransferase activity
on nearby cytosines, whereas histone methyltransferases (HMTs)
can bind DNA methylation to methylate nearby histones (10, 12,
13, 52, 56). In addition to heterochromatin, evidence suggests that
CMT3 and HMTs are localized to transcribed genes with gbM in
euchromatin, where they may transiently establish DNA methyl-
ation and H3K9me2 that is characteristic of heterochromatin (46,
51). This activity can recruit additional methyltransferases that
methylate cytosines in CG and CHH contexts as well (46, 51).
However, heterochromatin and transcriptional silencing are not
ultimately established at these genic loci due to the activity of the
H3K9 de-methylase, INCREASED BONSAI METHYLATION
1 (IBM1), which removes H3K9me2 in a cotranscriptional process
(51, 57, 58). IBM1 activity disrupts the feedback loop between
CMT3 and H3K9me2, and DNA methylation in all sequence
contexts is lost passively following DNA replication except at CG
sites, which is characteristic of gbM (46). CG methylation is
maintained due to the preferential activity of the CG maintenance
methyltransferase METHYLTRANSFERASE 1 (MET1) for
hemimethylated CG sites, following DNA replication, to which it
is recruited to methylate the complementary strand (59–62).
The mechanism of gbM establishment is consistent with the

possibility that gbM may be a passive byproduct related to pertur-
bations to or constraints on chromatin homeostasis that promote the
transient off-targeting of the heterochromatin machinery to
genes. Indeed, variation of levels of gbM within and between

species has been correlated with genome-wide levels of CMT3-
preferred CHG methylation, and, in A. thaliana, gbM genes have
been found on average to be localized closer to dense, pericen-
tromeric heterochromatin relative to UM genes (19, 20, 42).
GbM genes also tend to be longer and have a higher frequency of
CMT3-preferred CWG context cytosines relative to UM genes,
which may increase the probability of CMT3 activity (22, 46).
Thus, a model has emerged that posits that gbM is a byproduct
resulting from machinery that facilitates heterochromatin for-
mation. The presence of molecular pathways that uncouple
DNA methylation from H3K9me2 at PolII transcribed loci, such
as IBM1, reduce deleterious consequences of gbM by preventing
transcriptional silencing, such that gbM is not eliminated from
populations via selection, but rather maintained passively by
maintenance methyltransferases. Under this model, the various
patterns of DNA methylation that characterize genes (UM, gbM,
or teM) are on a continuous spectrum, such that factors that
influence the balance between pathways that promote or remove
methylation dictate the methylation state of a given gene (Fig. 1)
(19, 48, 63).
We conducted a comprehensive within-species analysis of gbM

in 725 natural A. thaliana accessions derived from across the globe
to explore the relationship between the maintenance of hetero-
chromatin DNA methylation and gbM (19). We found that the
number of genes characterized by gbM varied widely in these
accessions, ranging from ∼9 to 20% of all genes, and that some of
the variation in the number of gbM genes likely has a genetic basis.
We categorized genes based on the conservation of gbM status
within A. thaliana and found that genic features associated with
gbM genes relative to UM genes, including expression charac-
teristics, gene length, and CWG frequency, among others, were
generally correlated with gbM status conservation. Using machine
learning, we created a model that could utilize genic features
alone, independent of methylation data, to accurately predict gbM
status, with gene length and CWG frequency being the most
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Fig. 1. Genic DNA methylation patterns represent a continuum of epige-
netic states. In A. thaliana, most genes located within euchromatin lack DNA
methylation (UM). Some genes are prone to off-targeting by the hetero-
chromatin machinery, which can result in transposable element-like DNA
methylation (teM), characterized by cytosine methylation in all sequence
contexts, CG, CHG, and CHH (H = A, C, or T), and transcriptional silencing. To
combat the negative consequences of off-targeting of DNA methylation to
genes, cells encode pathways that disrupt heterochromatin formation at
genes by promoting the loss of non-CG methylation. This allows CG meth-
ylation to be maintained passively by maintenance methyltransferases, as CG
methylation alone is inconsequential for transcription, which results in the
strictly CG methylation pattern characteristic of gene body methylation
(gbM). gbM then increases the probability of a gbM-to-teM shift due to
feedback loops associated with DNA and histone methylation. The pro-
portion of genes characterized by each methylation state within an indi-
vidual vary due to factors that influence homeostatic targeting of DNA
methylation. Percentages indicate the variation in the proportion of genes
classified with each methylation pattern across 725 A. thaliana accessions.
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important predictors. Importantly, we also experimentally dem-
onstrated that genes with conserved gbM status in A. thaliana are
preferentially methylated by CMT3 relative to other genes and
that CMT3 is further biased toward genes with preexisting gbM.
Finally, to explore possible phenotypic implications of gbM, we
examined the epiallelic states of gbM genes within these acces-
sions. Although the majority alternate epiallelic state of gbM
genes was UM, the most conserved gbM genes were more likely
than other gbM genes to exist as polyepialleles in the form of teM
in these accessions, and epiallelic shifts to teM were at times as-
sociated with transcriptional silencing. All together, we interpret
these findings to be consistent with a passive model for the con-
servation of gbM as a trait across angiosperm species, arising as a
byproduct of population-level variation in DNA methylation ho-
meostasis (Fig. 1). We further posit that the evolutionary rele-
vance of gbM derives from the predisposition of gbM loci to
epiallelic shifts from gbM to teM, which affects transcription and
could lead to phenotypic consequences.

Results
Distribution of Genic DNA Methylation Patterns within A. thaliana. To
gain insights into the within-species level variation in gbM, we
first classified all genes according to three genic DNA methyl-
ation patterns across 725 natural accessions of A. thaliana: (i)
gbM (strictly CG context methylation), (ii) teM (TE-like meth-
ylation, or methylation in CHH, CHG, or multiple sequence
contexts), and (iii) UM (unmethylated; Dataset S1). Methylation
patterns were defined based on cytosine methylation in exons only
(Materials and Methods). We found that, similar to prior results
(19), the methylation pattern of many genes was highly conserved
across accessions, whereas a subset of genes showed variability in
their methylation pattern within the population (termed poly-
epialleles; Dataset S1; Fig. 2A shows representative genome
browser views of genes with various epiallelic classes). On average,
in a given accession, ∼79.2% of genes are classified as UM, ∼3.6%
genes are classified as teM, and ∼17.2% are classified as gbM (Fig.
2B and Dataset S2). However, the number of genes in each cat-
egory in a given accession showed a wide range of variability across
accessions. The number of UM genes ranged from 18,488 to
21,605 (68.9 to 80.5% of all genes), the number of teM genes
ranged from 593 to 1,668 (2.2 to 6.2% of all genes), and the
number of gbM genes ranged from 2,428 to 5,221 (9.1 to 19.5% of
all genes; Dataset S2). Thus, although the presence of gbM as a
genic methylation pattern is conserved across species (20, 41),
there is considerable variation in the proportion of genes classified
as gbM within a single species, similar to results found between
species (20, 24).
We next classified all gbM genes according to their epiallele

frequency, or the proportion of the population in which a given
gene was classified as gbM. Within the accessions analyzed, more
than one third of all coding genes (10,940 of 26,834 total genes)
were classified as gbM in at least one accession (Dataset S3). For
the remaining analyses, we refer to these genes as gbM genes. Of
these gbM genes, approximately one fifth (n = 2,078) were found
to be highly conserved and classified as gbM in more than 90% of
the accessions analyzed (hereafter referred to as “core” gbM
genes; Fig. 2C and Dataset S3). In contrast, approximately half of
the gbM genes (n = 4,607) were rare events, as they had a gbM
frequency of less than 10% (Fig. 2C and Dataset S3). The
remaining gbM genes were fairly evenly distributed across the
frequencies between 10 to 90% (Fig. 2C and Dataset S3). In
comparison, 10,852 of 26,834 total genes were categorized as UM
across accessions and 4,712 of 26,834 total genes were classified as
teM genes (Dataset S3). For the remainder of the study, this
highly conserved set of unmethylated genes is referred to as the
UM genes and utilized for comparison to the gbM genes described
here earlier. The teM genes were excluded from further analyses
that focused on gbM genes, since the major alternative epiallelic

status of gbM genes is UM and not teM (Dataset S4). The
remaining genes were not classified due to missing data or low
coverage.

Genetic and Epigenomic Features Associated with gbM Gene Number.
There is a wide variation in the number of gbM genes across ac-
cessions (Fig. 2B). Thus, we considered number of gbM genes as a
trait and sought to determine whether there was a genetic basis for
this variation. First, we performed an SNP-based heritability
analysis, which determined that genetic variance explained 10.5%
of the variation in gbM gene number. Similarly, mapping the
number of gbM genes onto a phylogenetic tree was consistent with
gbM gene number being affected by genetic background (Fig. 3A).
We next conducted a genome-wide association analysis utilizing
gbM gene number as a trait, but found no clear association signal
(SI Appendix, Fig. S1). This is likely indicative that gbM gene
number is a multifactorial trait, and the influence of any one
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Fig. 2. Distribution of genic DNA methylation patterns within A. thaliana.
(A) Genome browser views demonstrating the three genic DNA methylation
patterns and distributions within A. thaliana, represented by six accessions.
Genic methylation patterns detected include gene body methylation (gbM),
which is restricted to mCG only (denoted by a red square); transposable
element-like methylation (teM), where methylation is detected in sequence
contexts other than or in addition to mCG (mCG and/or mCHG and/or mCHH;
denoted by a green square); and unmethylated genes (UM; denoted by a
yellow square). The methylation pattern of a given gene can vary within the
725 A. thaliana accessions, with some genes predominantly UM, whereas
others are rarely gbM in some individuals (first panel). Some genes are
predominantly gbM (second panel). Some genes are always UM (third
panel). Some genes are always teM (fourth panel). Finally, some genes are
variable between all methylation patterns (fifth panel). Within the browser
views, mCG is denoted by red lines, mCHG by blue lines, and mCHH by yellow
lines. (B) Classification of genes based on DNA methylation patterns within
A. thaliana. All annotated genes are listed on the y axis of the heat map,
ordered by the percentage of accessions in which the genes were classified
as a given DNA methylation pattern. Genes were classified as UM (yellow),
gbM (red), and teM (green) based on a binominal test. Black indicates genes
that were not classified due to low coverage. Accessions are arranged on the
x-axis by the number of gbM genes identified, denoted in the histogram at
the top. (C) Number of genes classified as gbM within A. thaliana. Genes
identified as gbM in at least one accession were categorized into 10 groups
based on gbM frequency, or the percentage of accessions a given gene was
classified as gbM. The histogram shows the number of genes classified in
each category, and UM genes are also shown for comparison.
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genetic factor could vary widely depending on the genetic back-
ground. To address this possibility, we refined the analysis to a
subset of 198 accessions with a similar mCG level (0.22 ± 0.01),
since the number of gbM genes is positively correlated with a
gene’s mCG level (19). Within this subpopulation, we identified a
QTL (18) on chromosome 5, nucleotides 2,811,722 to 2,890,303
(Fig. 3B). The association signal reveals a clear peak that passes
the threshold of 1e−6. Candidate genes in the peak region include
RUG1 (AT5G08710), a putative regulator of chromosome con-
densation and an RCC1 family protein (the top SNP is found in
the intron, chr5, 2,835,403; −log10 P = 6.40) (64, 65), and a linker
histone H1 and H5 family protein (AT5G08780; the top SNP is a
missense variant, Lys to Asn, chr5, 2857876; −log10 P = 5.23) (66).
Intriguingly, similar, but not identical, genes encoding an RCC1
family protein and a histone H1 family protein were identified in
GWAS that considered levels of gbM rather than number of gbM
genes (21).
Because gbM status and the number of CWG sites within a

gene are correlated (22), we also considered that genetic varia-
tion resulting in changes in CWG frequency could influence gbM
gene number across accessions. However, we found no re-
lationship between the total number of CWG sites within genes
and the gbM gene number across accessions (SI Appendix, Fig.
S2A). Another possible cause of variation in gbM gene number is
the expression level of CMT3, which is thought to facilitate the
origins of gbM (22, 28, 46). However, we found little correlation
between CMT3 expression and gbM gene number across natural

accessions of A. thaliana (Fig. 3C). Correspondingly, variation of
CMT3 expression also showed little correlation with whole-
genome CHG methylation levels (Dataset S5 and SI Appendix,
Fig. S2B). These results may be consistent with the possibility
that, given a uniform genetic background, altering expression of
CMT3 could influence gbM gene number and CHG methylation
levels, but there are likely many other factors influencing this
trait at the population level.
Finally, we considered the possibility that there may be a re-

lationship between whole-genome CHGmethylation and gbM gene
number. This was tested using phylogenetically independent con-
trasts (PICs), a method that removes the phylogenetic relationships
of accessions to account for genetic relatedness. Comparing
genome-wide CHG levels and gbM gene numbers across accessions
revealed that these two traits are negatively correlated (Pearson
correlation = 0.453; P = 4.034e−32; Fig. 3D). Importantly, the sig-
nificance of this correlation remained whether whole-genome CHG
methylation levels were estimated from reads mapped to the ref-
erence genome or independently of mapping, suggesting that this
variation was not significantly influenced by variation in repetitive
regions between accessions (SI Appendix, Fig. S2 C and D). Since
the majority of CHG methylation co-occurs with H3K9me2 in
dense pericentromeric heterochromatin (11), and if we assume that
gbM is an indirect readout of CMT3 activity on genes, as is sug-
gested by other studies (22, 28, 46), this result is consistent with the
conclusion that there is a tradeoff between CMT3 activity in het-
erochromatin and genic loci. This tradeoff is not necessarily related
to the intrinsic enzymatic activity of CMT3, but rather the robust-
ness of properly targeting CMT3 to heterochromatin.

Genic Features Are Predictive of gbM Status and Correlate with
Epiallele Frequency. gbM genes are generally distinguished from
UM genes by being characterized as having longer gene lengths;
more moderate, but on average higher, expression levels; a greater
number of associated transcripts; lower substitution rates (dN/dS);
a higher frequency of CMT3-preferred CWG (W = A or T) con-
text cytosines; and a lower frequency of MET1-preferred CG
context cytosines (22, 41, 57, 67). Thus, we next sought to de-
termine the relationship between these features and the epiallele
frequency of gbM genes in A. thaliana and to identify the extent to
which these genomic features were predictive of gbM status. The
gbM genes were divided into 10 groups based on gbM frequency
within A. thaliana. Next, pairwise comparisons between adjacent
groups based on their gbM frequencies were completed for each
genic feature, with gbM loci with the lowest gbM frequency (0 to
0.1 in the population) compared to UM genes (Fig. 4 A–F and
Dataset S6). The results revealed that all genic features show
general trends relative to gbM frequency. This was most pro-
nounced with gene length and CWG frequency, which demon-
strated the most significant differences in pairwise comparisons,
with higher gbM frequencies associated with higher values for each
feature (Fig. 4 A and B). For CG frequency, dN/dS, and transcript
number, significant differences between pairwise comparisons were
limited to genes with lower epiallele frequencies and UM genes
(Fig. 4 C–E). Finally, for gene expression levels, no significant
differences were detected between pairwise comparisons, but a
general trend toward more moderate and slightly higher expression
was evident as gbM frequency increased (Fig. 4F).
Recent work has demonstrated that the establishment of gbM is

initiated by CMT3 (22, 46), which mainly methylates cytosines in
dense, pericentromeric heterochromatin (11, 13). We therefore
hypothesized that location on the chromosome relative to peri-
centromeric heterochromatin may be related to a gene’s gbM
status, as a correlation was noted previously by using methylation
data from microarrays (42). We first compared the distance to the
centromere of gbM genes relative to UM genes using seven A.
thaliana accessions, including the reference accession, Col-0 (note
that gene positions were based on the reference genome, but
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Fig. 3. Genetic and epigenetic factors associated with gbM gene number.
(A) Close genetic relatives have similar gbM gene numbers within A. thali-
ana. The number of gbM genes, indicated by a color gradient, is projected
on a neighbor-joining tree of 725 A. thaliana accessions. (B) Manhattan plots
of GWAS of gbM gene number using the CMLMmodel in the GAPIT package
in R. The horizontal gray line indicates a threshold of 1e−6, and the red line
indicates genome-wide threshold P = 0.05 with a Bonferroni correction. The
candidates in the peak region include RUG1 (AT5G08710), regulator of
chromosome condensation RCC1 family protein (the top SNP is found in the
intron, chr5, 2,835,403, −log10 P = 6.40), and a linker histone H1 and H5
family protein (AT5G08780; the top SNP is a missense variant from Lys to
Asn, chr5, 2857876, −log10 P = 5.23). (C) The correlation between the
number of gbM genes and CMT3 gene expression levels. The density of
samples is represented by brighter colors on the scatter plot. (D) The cor-
relation between the number of gbM genes and the genome-wide mCHG
levels estimated by mapping bisulfite sequenced reads to the Col-0 reference
genome.
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methylation status was identified individually in each accession).
Results demonstrated that, on all or nearly all five chromosomes in
each accession, gbM genes were significantly closer, on average,
than UM genes to the centromere (SI Appendix, Fig. S3 and Dataset
S7). A notable exception was chromosome 3, in which gbM genes
were found to be significantly closer to the centromere than UM
genes in only two of the seven accessions (SI Appendix, Fig. S3 and
Dataset S7). Next, we examined the relationship between the dis-
tance to the centromere and the epiallele frequency of gbM genes.
Similar to other genic features, a significant difference in distance to

the centromere was found in the pairwise comparison between gbM
genes with the lowest gbM frequency and UM genes, yet no addi-
tional significant differences were detected between the additional
gbM frequency groups (Fig. 4G). These results further demonstrate
that gbM is correlated with multiple genic features, which are also
related to the gbM frequency of a locus in A. thaliana.
We next sought to determine whether genic properties could

be utilized to predict the gbM status of a gene. To do so, we
combined the 10,940 gbM genes identified in A. thaliana with the
10,852 UM genes and randomly divided the genes into two equal
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Fig. 4. Genic features are predictive of gbM status and correlate with gbM frequency. (A–G) Association of seven gene features across the gbM frequency
categories: (A) gene length, (B) frequency of CWGs relative to gene length, (C) frequency of CGs relative to gene length, (D) dN/dS rate, (E) transcript number, (F)
gene expression level, and (G) chromosomal location relative to the centromere. The significance of differences between neighboring groups was calculated using
a Welch’s two-sample t test for most features with normal distributions except for the number of transcripts category, which was tested using a Chi-square
goodness-of-fit test. Significance and direction are indicated. (H) Predictability of gbM based on seven gene features. The scatter plot shows the prediction
probability of a gene being classified as gbM on the x-axis based on a random forest prediction model and each gene’s empirically determined gbM frequency in
A. thaliana on the y axis. Red dots show gbM genes that were successfully predicted as gbM, and blue dots show gbM genes that failed to be predicted as gbM. (I)
Plot of gbM genes divided into 20 groups in 5% intervals based on their gbM frequency (x-axis) relative to the sensitivity of the random forest prediction model
(the proportion of successfully predicted gbM genes; y axis) shows that genes that are classified as gbM in a higher percentage of individuals in the population are
more likely to be successfully predicted as gbM based on gene features alone. Dot size and color are proportional to the number of genes in each group. (J)
Importance ranking of gene features in predicting gbM status shows that gene length and frequency of CWG context cytosines are the most predictive features.
***P < 0.001, **P < 0.01, *P < 0.05.
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groups that maintain the same proportion of gbM genes and UM
genes. We utilized one group as a training data set to build a
machine learning binary prediction model based on the seven
genic features described here earlier, which we then used to
predict the gbM vs. UM status of the remaining test group (SI
Appendix, Fig. S4A). We evaluated machine learning prediction
models trained using 12 different machine learning algorithms.
The random forest algorithm was found to have the highest
prediction accuracy by cross-validation of the training data set
(SI Appendix, Fig. S4B) and was chosen to predict a gene’s
methylation status in the test group.
For all genes in the test group, the methylation status of ∼79%

of the genes could be accurately predicted, which is greater than
the 50% accuracy that would be expected by chance (Fig. 4H). The
sensitivity of the model was also high, with ∼77% of all gbM genes
correctly identified (Fig. 4H). The sensitivity of the model in-
creased with increasing gbM frequency, and genes with a gbM
frequency of more than 90% could be predicted with ∼97% ac-
curacy (Fig. 4I and Dataset S8). In contrast, for genes with less than
10% gbM frequency, the prediction accuracy was ∼59%, and there
was much more uncertainty associated with the prediction (the
probability of random prediction for these genes was 50.2%; Fig. 4I
and Dataset S8). Within the model, the various genic features
differed in their importance for predicting gbM status (Materials
and Methods describes how importance was determined). Most
important was gene length, followed by CWG and CG frequency,
which showed similar levels of importance (Fig. 4J). Next, in order
of importance, were dN/dS, relative distance to the centromere,
expression level, and, finally, transcript number was the least im-
portant factor (Fig. 4J). Collectively, these results show that several
genomic features are correlated with gbM and frequency of gbM in
A. thaliana and can be used to accurately predict the gbM status of
a given gene.

Genes with High gbM Frequencies Are Preferentially Methylated by
CMT3. Given the role of CMT3 in the establishment and main-
tenance of gbM (22, 28, 46), we hypothesized that the genic
features associated with gbM status and gbM frequency would
also be predictive of CMT3 targeting. To test this hypothesis, we
utilized data from previously described experimental systems
that promote persistent CMT3 targeting to genes (15, 46) to
determine whether CMT3 is preferentially targeted to genes with
high gbM frequencies and associated genic features.
The first experimental system we examined was A. thaliana ddm1

mutants (15). DDM1 is a nucleosome remodeler, and it is required
for DNA methylation on heterochromatin (68–70). Mutation of
ddm1 results in a hypomethylation of heterochromatin, and a
previous study discovered that propagation of ddm1 mutants for
nine generations resulted in a genome-wide redistribution of DNA
methylation to euchromatin (15). These results support a model
whereby a reduction in the ability to maintain heterochromatin can
lead to widespread ectopic off-targeting to genes of the hetero-
chromatin maintenance machinery. This mutant phenotype is
reminiscent of our finding of a negative correlation between
genome-wide CHG methylation levels (a proxy for heterochroma-
tin) and gbM gene numbers, which could be a symptom of variation
in the ability to maintain homeostatic targeting of DNA methyl-
ation across accessions. Therefore, we used these ddm1 mutant
data to test the hypothesis that disruption to maintenance of het-
erochromatin could lead to preferential CMT3-mediated ectopic
CHG methylation of high-frequency gbM genes. We observed the
gradual accumulation of CHG methylation on 3,372 genes over
nine generations (Materials and Methods). Enrichment tests of these
3,372 genes showed that 2,435 genes are classified as gbM genes
(P = 1.27 × 10−342, Fisher’s exact test; Fig. 5A and Dataset S9).
Importantly, these genes are specifically enriched for genes with
high gbM frequencies in the population (>0.9; P = 2.78 × 10−360,
Fisher’s exact test; Fig. 5A and Dataset S9), suggesting that genic

features predictive of gbM status are also predictive of CMT3
targeting.
An important caveat of the ddm1 system is that gbM genes

that gained CHG methylation possessed preexisting gbM, which
could influence CMT3 targeting via a self-reinforcing feedback
loop between cytosine methylation and H3K9me2 (12), as H3K9
methyltransferases are recruited to targets via their SRA-domain,
which binds cytosine methylation (10, 13). Therefore, we also ex-
amined a second experimental system, Eutrema salsugineum, which
is an angiosperm species that has naturally lost the gene encoding
CMT3 and gbM, and thus provides a model to examine the tar-
geting to CMT3 to genes independent of preexisting gbM (22, 46).
Heterologous expression of CMT3 in E. salsugineum results in
CHGmethylation on a subset of genes, and it was previously shown
that this subset of genes was significantly enriched in orthologs of
gbM genes in A. thaliana, Col-0 accession (46). We further ex-
panded this analysis and identified 4,076 A. thaliana orthologs of
the genes that gain CHG methylation in CMT3-expressing E. sal-
sugineum and examined their gbM status across all 725 A. thaliana
accessions (Dataset S10). Of these, 2,706 were classified as gbM in
at least one A. thaliana accession, which is significantly more than
expected by chance (P = 5.50 × 10−162, Fisher’s exact test; Fig. 5B
and Dataset S9). These gbM loci were also specifically enriched in
the core gbM genes (P = 5.57 × 10−99, Fisher’s exact test; Fig. 5B
and Dataset S9). Thus, even without prior gbM, CMT3 preferen-
tially methylates orthologs of gbM loci in A. thaliana, with a sig-
nificant enrichment found at the core gbM genes, again suggesting
that there are intrinsic features of these genes that promote CMT3
targeting.

GbM Genes Are More Susceptible to Epiallelic Shifts That Lead to
Transcriptional Silencing. Similar to proposals by others, we hy-
pothesized that gbM loci and teM loci might represent a con-
tinuous spectrum of chromatin states (Fig. 1) (19, 48) resulting
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from the balance between factors that promote or disrupt DNA
methylation homeostasis (63). Factors that push this balance to
one end of the spectrum or the other may therefore explain the
formation of some naturally occurring epialleles, such as those
previously described to be dependent on CMT3 (71–73). We
reasoned that the core gbM genes, which are preferentially
methylated by CMT3, may be more prone to transitions to teM
status characteristic of heterochromatin, which is promoted by
CMT3. Indeed, genes with the highest gbM frequency showed a
significantly higher teM frequency than genes with lower gbM
frequencies (Fig. 6A). In addition, the number of gbM genes and
teM genes are positively correlated in the population (SI Ap-
pendix, Fig. S5A), further supporting the conclusion that gbM
and teM status are on a continuous spectrum.
We next sought to more carefully examine examples of genes

that exist as a teM gene in certain accessions but are otherwise
categorized as a gbM gene in the majority of accessions (>0.9, or
the core gbM genes), as these could provide clues to mechanisms
underlying polyepiallelic states. We identified several accessions
that possessed greater than 100 teM genes that were otherwise
classified as core gbM genes across all accessions (Dataset S11).
We focused on the three accessions with the highest number of
transitions from core gbM to teM methylation states, Cnt-1,
Monte-1, and UKSE06-533 (Fig. 6B, SI Appendix, Fig. S5B,
and Dataset S11), and sought to identify possible causative fac-
tors for these epimutations. Previous studies have demonstrated
that mutations in the H3K9me2 demethylase, IBM1, results in
gbM-to-teM transitions that affect transcription (51). Functional
expression of IBM1 requires the presence of intronic methyl-
ation, the removal of which promotes expression of a truncated,
nonfunctional transcript (74). Interestingly, IBM1 intronic meth-
ylation in Cnt-1, Monte-1, and UKSE06-533 is reduced compared
to Col-0, which we predicted may preclude proper accumulation
of functional IBM1 transcripts in these lines (Fig. 6C). By con-
ducting qRT-PCR to detect truncated (nonfunctional) vs. full-
length (functional) IBM1 transcripts in these accessions, we
found that the ratio of nonfunctional vs. functional transcripts was
higher in Cnt-1 and Monte-1 compared to Col-0 (Fig. 6D). The
ratio was also slightly higher in UKSE06-533, although not sig-
nificantly higher. Also consistent with loss of IBM1 function in
Cnt-1 and Monte-1, genes gaining CHG methylation also gained
methylation in additional contexts, including CG, and demon-
strated reduced expression (Fig. 6 E–H). Importantly, Cnt-1 and
Monte-1 are located on different branches of the phylogenetic
tree (SI Appendix, Fig. S5C), suggesting that this reduction of
methylation in the intron of IBM1 happened independently in
multiple lineages. Although alternative mechanisms are possible,
especially in the case of UKSE06-533, these results suggest that
the ectopic, non-CG DNA hypermethylation on genes in these
accessions may be caused by abnormal processing of IBM1 tran-
scripts, which promotes epiallelic transitions from gbM to teM
preferentially on core gbM genes.

Discussion
The comprehensive analysis of gbM in A. thaliana revealed gbM
to be a highly variable trait in this species. We found that, within
the accessions tested, 10,940 of 26,834 total genes (∼41% of
coding genes) were classified as gbM in at least one accession,
yet only ∼2,078 genes (∼8% of coding genes) were found to be
characterized as gbM in the majority (>90%) of the accessions.
These data are consistent with other within- and between-species
comparisons of the conservation of gbM on orthologous genes,
which also found a wide range of variation (19–21, 36, 40, 43).
We interpret these results to be consistent with the hypothesis
that gbM is the result of a passive process related to the variation
in the robustness of the maintenance of heterochromatin. Overall,
our analyses suggest that the establishment and maintenance of
gbM is likely a multifactorial trait and is likely the sum result of

genetic and/or environmental factors that influence DNA meth-
ylation homeostasis, including but not limited to the following.
First is the activity and subgenomic targeting accuracy of DNA

methyltransferases and other enzymes involved in establishing
heterochromatin-associated modifications exclusively to sequences
that require heterochromatinization. Second is the efficiency with
which cells can sequester genomic regions targeted for silencing
into higher-order structures associated with dense heterochromatin
that distinguish them from transcriptionally active regions. Third
are genic features that expose genes to targeting by the hetero-
chromatin machinery, including especially gene length and fre-
quency of CMT3-preferred CWG context cytosines, but also
expression levels and proximity to TEs and pericentromeric het-
erochromatin. Finally, fourth is the efficiency of the cotranscrip-
tional machinery, including IBM1, that removes H3K9me2 from
genes.
The interplay between these factors dictates the spectrum of

loci that are gbM and may have increased susceptibility to epi-
allelic shifts to teM, which can alter expression and thus have
phenotypic consequences (Fig. 1). Under this model, what are
the evolutionary implications of gbM as a trait? As gbM loci are
generally housekeeping genes without a consensus molecular
function, most alterations to transcription would be expected to
have negative consequences. In support of this, A. thaliana mu-
tant backgrounds (e.g., ibm1 mutants) that result in gbM-to-teM
shifts have altered transcriptional states associated with pleio-
tropic developmental defects (51, 58). Yet, it is also clear that
polyepialleles are present within this species (Fig. 5B) (19, 71, 72,
75–79). In well-studied examples of genes that exist as poly-
epialleles, polyepiallelic states have been found to be associated
with genomic rearrangements that position genes closer to TEs
or with genes that have undergone duplications (19, 71, 72, 79).
In the case of HISN6 (a histidine biosynthesis gene) and TAD3 (a
transfer RNA deaminase), which are essential genes that have
undergone duplications in some accessions, the duplication event
is associated with CMT3-dependent methylation and silencing of
one of the paralogs (71, 72). In this case, silencing of one paralog
may be beneficial in correcting for gene dosage. However, these
epialleles may also contribute to speciation, as they have been
demonstrated to contribute to hybrid incompatibility in crosses
to accessions where the gene is not duplicated and inheritance of
the silent copy is lethal (71, 72). Thus, there are clear precedents
for polyepialleles potentially affecting fitness. However, it is also
important to consider that it is currently unclear whether an
epiallele can act as a substrate for natural selection and change
frequencies in populations over time, as epialleles are also prone
to reversions from silent to expressed states (71, 72, 80, 81).
Given the current data, it is parsimonious to conclude that, as a
whole, gbM, and the associated susceptibility to epiallelic switch-
ing associated with silencing, is a mildly deleterious condition
present more or less in populations due to trade-offs with se-
lective pressures related to the maintenance of DNA meth-
ylation homeostasis and associated constraints to this process
imposed by environmental factors and genome architecture.
Thus, variation in the robustness of targeting heterochromatin
DNA methylation is likely a symptom of the broader phenom-
enon of population-level variation of chromatin homeostasis,
which may contribute to a diverse array of epigenetic phenom-
ena, including epigenetic drivers of disease.

Materials and Methods
Data Acquisition.Methylomes, transcriptomes, and genomic variants (SNPs) of
725 accessions used in this analysis were obtained from published datasets of
the Arabidopsis 1001 Genomes database (http://signal.salk.edu/1001.php)
(19, 82) and reanalyzed.

The methylomes of the ninth generation of ddm1mutants, including four
lines of ddm1 mutants that were independently self-pollinated eight times
(9G ddm1) (15), were obtained and reanalyzed. The list of CHG-gain genes
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that showed a minimum 5% increase in CHG methylation in E. salsugineum
AtCMT3-L2–expressing lines relative to wild type was obtained from ref. 46,
and ortholog gene pairs between E. salsugineum and A. thaliana were those
identified in ref. 20.

Methylome Mapping.WGBS data were processed using “single-end-pipeline”
function from Methylpy as described in ref. 83. Quality filtering and adapter
trimming were performed using cutadapt v1.9.dev1 (84). Qualified reads
were aligned to the A. thaliana TAIR10 reference genome (68) (downloaded
from https://phytozome.jgi.doe.gov) using bowtie 2.2.4 (80). Only uniquely
aligned and nonclonal reads were retained. Chloroplast DNA (which is fully

unmethylated) was used as a control to calculate the sodium bisulfite re-
action nonconversion rate of unmodified cytosines. A binomial test was used
to determine the methylation status of cytosines with a minimum coverage
of three reads.

RNA-Seq Mapping. Quality filtering and adapter trimming were performed
using Trimmomatic v0.33 with default parameters (85). Qualified reads were
aligned to the A. thaliana TAIR10 reference genome using HISAT2 v2.0.5
(86). Gene expression (FPKM) values were computed using StringTie v1.3.3b
(87). Genes with zero FPKM values among all investigated accessions were
removed from expression analyses.
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methylation in Cnt-1, Monte-1, and UKSE06-533 relative to other accessions shown that do not have these patterns of methylation (UKNW06-403 and HR-10, most
closely related to Cnt-1 on the phylogenetic tree) in addition to the reference accession, Col-0, as controls. (C) A genome browser view (Left) shows that accessions
with high CHG methylation within core gbM genes show reduced methylation on the longest intron of IBM1, which is known to be important for proper splicing
of IBM1 transcripts. Functional IBM1 is required to prevent CHG accumulation at gbM loci. (D) A qRT-PCR result shows that the three highest CHG-gain accessions
tend to have a higher proportion of short IBM1 transcripts compared to functional, full-length transcripts that encode a functional protein. (E) A genome browser
view shows a representative core gbM genewith additional CGmethylation (highlighted with gray background) around CHGmethylation inMonte-1 relative to a
control (Sarno-1 is most closely related to Monte-1 on the phylogenetic tree). (F) A genome browser view shows a representative core gbM gene possessing teM
status in Monte-1 and lower expression level relative to other accessions. (G) In the first panel, the distribution of CG methylation levels of genes that exist as teM
genes in Cnt-1 but are otherwise categorized as gbM genes in a majority of accessions (shown in yellow bar) were compared with their pairs in a control (green
bar), which were the averaged values across all accessions. Significance of the comparison was given byWilcoxon signed-rank test, and effect size of the difference
is shown as Cohen’s d. The same analysis for Monte-1 and UKSE06-533 are shown in the second and third panels, respectively. (H) In the first panel, the distribution
of expression levels of genes that exist as teM genes in Cnt-1 were compared with their pairs in a control group, which were the averaged values across all
accessions. The same analysis for Monte-1 and UKSE06-533 are shown in the second and third panels, respectively.
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Gene Methylation Status Classification. The coding genes for each of 725
accessionswere classified as gbM, teM, orUMby applying a binomial test to the
number of methylated sites in a gene, similar to the methods described in ref.
67. Further details are described in SI Appendix, Supplementary Methods.

Gene Features Preparation. Gene length, exon length, exon number, and
number of transcripts for all coding genes were obtained directly from the A.
thaliana reference protein-coding gene annotation file in the GFF format
(TAIR11) (88). Calculation procedures for determining CWG and CG fre-
quencies, distance to the pericentromere, expression levels, and substitution
rates are described in SI Appendix, Supplementary Methods. Differences in
gene features between UM genes and genes with varied gbM epiallele
frequencies (the proportion of gbM accessions) was assessed using the
Welch two-sample t test statistic in R, except for transcript number, which
was tested using a χ2 goodness-of-fit test, as this was a discrete datatype.

Prediction Model for Gene’s Methylation Status. A total of 10 features (Dataset
S6) that had shown different distributions between gbM and UM genes
from previous studies (41, 67) and our preliminary analysis were selected to
train a prediction model of a gene’s methylation status. Machine learning
algorithm training, prediction, and evaluation are described in detail in SI
Appendix, Supplementary Methods.

Additional Genome-Wide Analyses. A neighbor-joining tree of 725 accessions
was constructed by using MEGA7 (89) using SNPs (82) from coding sequences.
SNPs were filtered using a minor allele frequency cutoff of 0.05 and a
minimum data integrity cutoff of 0.5, and then the VCF-formatted SNPs
were converted into sequence alignments readable by MEGA7.

The number of CWG sites in the CDS was calculated by replacing the
reference sequence with each accession’s genotype, and then the number of
CWG sites were tabulated based on the replaced CDS for each accession.

Reference mapping-based genome-wide percent methylation was calcu-
lated by dividing the total number of aligned methylated reads to the ge-
nome by the total number of methylated plus unmethylated reads. To
evaluate the accuracy of this estimate, we compared percent methylation
values of 17 accessions that possess publicly available reference genomes (90,
91). We observed that the methylation levels estimated by mapping se-
quence reads to each accession’s own assembly is generally higher than that
estimated from mapping to the reference (SI Appendix, Fig. S2C).

To address the possibility of sequence variation among accessions, reads-
basedgenomemethylation levels were also calculated by using a nonreference-
based DNAmethylation predictive model, FASTmC (92). This method estimates
methylation levels directly from WGBS reads. Methylation levels estimated in
this way generally show a higher value than the value estimated by align-
ments to their own assembly, but this method also reveals more variation (SI
Appendix, Fig. S2C). Because of computational efficiency, this method was
based on random sampling on a subset of 10,000 reads, which may include
sampling bias. Regardless, this method used to estimate genome CHG meth-
ylation levels also shows a significant negative correlation with the number of
gbM genes within each accession (SI Appendix, Fig. S2D).

Correlations between number of gbM genes, methylation levels, number
of CWG sites, and CMT3 gene expression were performed using R, and the
data were corrected for phylogenetic signals among accessions using a
phylogenetically independent contrasts (PICs) method in APE (93). Because
extremely low pair-wise distances (little genetic variance) between acces-
sions will generate outliers after PIC correction, a cutoff of 0.01 pair-wise
distance was applied to prune clades with almost no genetic differences,
which resulted in a final set of 620 accessions that were used in the corre-
lation tests. This same set of individuals was also used for GWAS, where the
number of gbM genes was used as the phenotype. GWAS analysis was
performed with a compressed mixed linear model (94) implemented in the
GAPIT package (95) of R.

SNP-based heritability (h2) of the trait is the proportion of the total var-
iance (σ2e + σ2a) explained by the genetic variance (σ2a), and σ2e is the re-
sidual variance. Both σ2e and σ2a were estimated by maximum likelihood
method in the compressed mixed linear model during GWAS analysis.

Genome-wide SNPs that satisfied a minor allele frequency of 0.05 were
used for association studies, and the genome-wide threshold was modified
using the Bonferroni method. If a significant SNP, which passed a threshold of
1e−5, lied within 10 kb of another significant SNP, they were combined into a
block. Using this block as a starting point, all other significant SNPs within
10 kb of either end of the block were further combined into the block. The
procedure was repeated until no significant SNPs could be found within
10 kb of the block ends. These blocks were referred to as QTLs (18). Genes
that located within the QTL were identified as candidate genes of the trait.

Characterizing Genes That Are Predisposed to mCHG. The methylomes of
ninth-generation ddm1 mutants (15) were mapped to reference genome
using Methylpy (83), and the methylation status of each gene was de-
termined using a binomial test as described earlier. Genes that had reads
mapping to at least 20 CHGs, an mCHG q-value < 0.05 in ninth-generation
ddm1 mutants, and mCHG q-value > 0.05 in wild type were identified as
mCHG-gain genes. The remaining genes were classified as genes that do not
gain mCHG. All coding genes of A. thaliana were also categorized into gbM,
teM, and UM based on their methylation status in A. thaliana population as
defined earlier. Then, a Fisher’s exact test was used to examine the significance
of the association between the gene’s mCHG-gain status and their methyl-
ation categories. Similarly, all gbM genes defined from the A. thaliana pop-
ulation were categorized into different groups with varied gbM epiallele
frequency. Those gbM genes were also classified into two groups based on
whether they gain mCHG in ninth-generation ddm1 mutants. A Fisher’s exact
test was used to examine the significance of the association between the
gene’s mCHG-gain status and groups with varied gbM epiallele frequency.

The genes that gain CHG methylation in E. salsugineum AtCMT3-L2–
expressing lines were obtained from published data (46). A. thaliana
orthologs of the genes in E. salsugineum were classified into two classes
based on whether they gain mCHG in CMT3-expressing E. salsugineum.
Those A. thaliana orthologs were also categorized into gbM, teM, and UM
based on their methylation status in A. thaliana population (Dataset S10).
Then, a Fisher’s exact test was used to examine the significance of the as-
sociation between the gene’s mCHG-gain status and their methylation cat-
egories. The significance of the association between the gene’s mCHG-gain
status and groups with varied gbM epiallele frequency were also examined
as in ddm1 mutants.

q-RT PCR. RNA was extracted from cauline leaves of individual plants using
TRIzol according to the manufacturer’s instructions. Synthesis of cDNA was
completed using SuperScript III with random hexamers (Invitrogen) accord-
ing to the manufacturer’s instructions. Real-time qRT-PCR was conducted
using LightCycler 480 SYBR green master mix in a Light Cycler 480 in-
strument (Roche). Primers used to detect short and long IBM1 transcripts are
those published in ref. 74. Relative expression of the short (nonfunctional) to
full-length (functional) IBM1 transcripts was calculated using the double
delta threshold cycle (Ct) method (96). Average Ct values were calculated
from three technical replicates.

Analysis of Gene Expression and CG Methylation Levels in Cnt-1, Monte-1, and
UKSE06-533. For gene expression analysis in Cnt-1, the Cnt-1 library and FPKM
values were averaged across all accessions to create a “control library” and
used for further comparisons. Only genes with an FPKM >0 in both libraries
were retained. Then, Cnt-1 and control libraries were collectively normalized
using quantile normalization method to remove global variation across
samples (97). Then, the expression level of genes that exist as teM in Cnt-1
but are otherwise categorized as a gbM gene in a majority of accessions
(>0.9 or the core gbM genes) were compared with their gene pairs in the
control library. A Wilcoxon signed-rank test was used for comparisons be-
tween pairs of genes. In addition to statistical significance, Cohen’s d was
used to assess effect size of differences in gene expression. The same pro-
cedure was applied to Monte-1 and UKSE06-533.

For mCG level analysis in Cnt-1, the mCG level of core gbM genes in Cnt-1
and the averaged mCG levels across all accessions were normalized using the
quantile normalization method (97). Then, among those core gbM genes,
genes that exist as a teM gene in Cnt-1 were compared with their gene pairs
in the control group. Statistical analysis was the same as that in the ex-
pression comparison. The same procedure was applied to Monte-1 and
UKSE06-533.

Data Availability. All sequencing data used in this study were previously
published and are available under NCBI GEO accession numbers (GSE43857,
GSE80744) and DDBJ Sequence Read Archive (DRA002551). Code used in
processing and analysis of these data can be found at GitHub (https://
github.com/schmitzlab/Natural_variation_in_DNA_methylation_homeostasis_
and_the_emergence_of_epialleles).
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