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Abstract

Alzheimer’s disease (AD) is characterized by two major pathological lesions in the brain, amyloid 

plaques and neurofibrillary tangles (NFTs) composed mainly of amyloid-β (Aβ) peptides and 

hyperphosphorylated tau, respectively. Although accumulation of toxic Aβ species in the brain has 

been proposed as one of the important early events in AD, continued lack of success of clinical 

trials based on Aβ-targeting drugs has triggered the field to seek out alternative disease 

mechanisms and related therapeutic strategies. One of the new approaches is to uncover novel 

roles of pathological tau during disease progression. This review will primarily focus on recent 

advances in understanding the contributions of tau to AD.
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1. Introduction

1.1. A brief historical review

NFTs were first described as one of the major brain lesions in AD by Alois Alzheimer in 

1907 [1]. It wasn’t until 1985 that the primary component of NFTs was identified as tau, a 

microtubule associated protein that is expressed primarily in neurons [2–10]. 

Hyperphosphorylation of tau in NFTs was documented soon after [11–14], and autosomal 

dominant mutations in MAPT, the gene encoding for tau, were found to cause 

frontotemporal dementia with parkinsonism (FTDP-17) [15–18]. See Fig. 1 for a historical 

timeline of tau associated with neurodegenerative diseases.

The importance of tau in AD progression has been recognized by clinical studies of the close 

correlation between AD development with tau-positive NFTs and neuropil threads, defined 

as tau-tangle filaments in areas of the brain that are high in neuronal and glial processes but 

lacking in cell bodies [19]. Both NFTs and neuropil threads begin in the transentorhinal 
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region in the medial temporal lobar structures and progress to the neocortex and allocortex 

[20]. The number of NFT-positive cells correlates with disease stages, as measured by 

clinical parameters for cognitive decline and disease severity [20–24]. On the other hand, 

senile plaque density does not correlate with stages [25–27].

Besides AD, NFTs have been identified in over 20 different neurodegenerative diseases 

collectively termed “tauopathies” [28,29]. With the exception of AD, most of these diseases 

occur without amyloid deposition, and many are associated with tau mutations, suggesting 

that tau dysfunction and/or tangle formation contributes to the etiology of disease.

1.2. Characteristics of tau

Tau is encoded on chromosome 17 by the MAPT gene, which produces an overall 

hydrophilic protein with large natively unfolded regions enriched in the axons of developing 

and mature neurons [30–33]. Alternative splicing of 8 of the total 16 exons yields 6 isoforms 

in the central nervous system (CNS) and 6 additional isoforms in the peripheral nervous 

system (PNS), ranging from 58 kDa to 66 kDa and one 110 kDa isoform [34–37]. Tau 

protein is comprised of four primary domains (Fig. 2). Alternative splicing primarily affects 

the N-terminal projection region and microtubule-binding domain (MBD), producing 4-

repeat (4R) and 3-repeat (3R) tau. These two isoforms are maintained in a balanced ratio 

(1:1) in adult human brains with 3R tau being primarily produced during development and 

the 4R tau isoforms being produced in adulthood [38]. 4R tau demonstrates a stronger 

activity in promoting microtubule assembly than 3R tau does [39,40]. Disruption of 3R and 

4R ratio has been implicated in AD as well as other tauopathies and extensively reviewed 

elsewhere [41,42]. In brief, the ratio of 4R to 3R tau is increased in progressive supranuclear 

palsy [43,44], corticobasal degeneration [45], FTDP-17 [38,46,47] and argyrophilic grain 

disease [48], but decreased in Pick’s disease [49,50]. No clear pattern has emerged in AD 

[44,49,51] as vulnerable areas of the brain containing tau tangles show increased 4R tau 

isoforms in some cases [52,53] and 3R tau in others [44,54].

The most studied function of tau is its role in promoting microtubule assembly and stability, 

mainly supported by studies using in vitro cell-free systems [55]. However, knockout or 

knockdown of tau in mouse models and in primary neurons does not impair microtubule 

assembly or axonal transport [56–58]. The knockout mice do not have a severe phenotype, 

suggesting that the normal functions of tau might be compensated by various microtubule 

associated proteins (e.g., MAP1A, MAP1B, MAP2, etc.) [59–61]. Similar to tau knockout 

mouse brains (specifically axons) that develop normally, humans bearing disease-causing tau 

mutations or complete disruption are also developmentally normal [62]. In light of these 

unclear phenotypes in mice, in humans, a few individuals with microdeletions of the 

chromosome region containing MAPT and a few other genes, resulting in a 50% reduction 

in tau levels, do exhibit some delayed developmental issues in the CNS [63].

Nevertheless, a clear neuron-specific function for this protein is yet to emerge. The field 

would benefit from identifying non-redundant tau functions that are not developmentally 

important but can either 1) contribute to long-term cell survival functions that are essential 

for non-dividing cells like neurons, or 2) set off a cascade of events that may lead to 

neuronal death later in life. To date, over 60 disease-causing mutations in tau have been 
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identified, accounting for ~5% of all FTD cases [64,65]. These mutations, which are 

numbered by their locations in 2N4R human tau [66], are believed to cause disease via a 

toxic gain-of-function because tau is not required for neuronal survival, and mutations that 

affect alternative splicing of tau yet still produce wild type tau are also pathogenic [34]. 

Studies of these mutations show that they directly impact tau post-translational 

modifications, protein folding and aggregation, likely leading to toxic gain-of-function. We 

will discuss tau toxicity by reviewing recent advances in the consequences of tau post-

translational modifications, particularly in the context of synaptic dysfunction, aggregation 

and propagation of tau. We will also discuss the emerging roles of glia in tauopathy, new 3D 

modeling systems for studying tau, and the development of tau positron emission 

tomography (PET) tracers.

2. Tau and synaptic function

Memory deficits in AD are highly associated with synaptic defects in the hippocampus [67–

69]. Tau, as a promoter of axonal microtubule assembly, has been proposed to play a role in 

maintaining neuronal projections and affecting synaptic function. Loss of tau binding to 

microtubules may therefore contribute to synaptic dysfunction. Although tau knockout mice 

and flies do not exhibit any overt phenotypes [59,61,70–72], impairment of synaptic 

potentials and defects in spatial reverse learning have been observed in tau-null mice 

[73,74]. Consistently, tau knockdown in the adult hippocampus impairs motor coordination 

and causes morphological synaptic defects [75]. Tau hyperphosphorylation and aggregation 

are associated with impaired long-term synaptic plasticity and short-term plasticity. In the 

hippocampus of numerous transgenic tau mouse models expressing human wild type tau 

(hTau and triple transgenic PLB1), tau mutants (including P301 L, K257 T/P301S, 

TauRDΔK280 expressing pro-aggregated 4R fragment K18) or a model of genetically-

induced tau hyperphosphorylation by the PP2A inhibitor CIP2A, long-term potentiation 

(LTP) is reduced at an age correlated with an increase in tau phosphorylation and 

aggregation [76–85]. Furthermore, LTP is reduced in mouse hippocampal slices by tau 

oligomers extracted from AD patient brains independent of soluble Aβ oligomers [86]. 

Reducing tau phosphorylation by inhibiting tau kinases restores tau-dependent LTP deficits 

and attenuates synaptic loss in tau transgenic mice [85,87].

It is unclear how tau mechanistically maintains synaptic plasticity, or how pathogenic 

versions of tau impair it. Several possible mechanisms might be involved. At the pre-

synapse, pathogenic tau may interfere with normal synaptic vesicle release. Although tau 

protein was not found in the murine synaptic vesicle proteome by mass spectrometry [88], 

hyperphosphorylated tau was found to form more stable interactions with synaptic vesicles 

purified from AD brains but not in normal control brains [89–92]. This interaction may be 

mediated through the synaptic vesicle-anchored transmembrane protein synaptogyrin-3 

[89,93,94]. The outcome of this pathogenic association may cluster F-actin at the pre-

synapse and physically impede synaptic vesicle release, resulting in decreased 

neurotransmission [93].

On the other side of the synapse, normal tau is found to be involved in normal synaptic 

activity in the postsynaptic compartment [95]. Normal tau mainly associates with 
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microtubules in axons, but it can be recruited to dendrites and at the post-synapse under 

physiological or pathological conditions (recently reviewed by Ittner & Ittner, 2018) [96]. 

Synaptic activity drives tau to postsynaptic densities, where tau interacts with postsynaptic 

density proteins [95]. Dendritic tau is mostly hyperphosphorylated [78,97–100], unbound to 

microtubules and associated with dendritic spine loss [101]. In AD or other taupathies, these 

dendritic tau species play important roles in dendritic loss, aberant postsynaptic activity and 

cognitive dysfunction [102–104]. The molecular mechanisms likely involve regulation of 

NMDA or AMPA receptors, for example, dendritic tau has been shown to mediate Aβ-

dependent excitotoxicity by complexing with Fyn kinase to trigger NMDA receptor 

phosphorylation [100]. In tau models, AMPA-mediated currents are suppressed in dendritic 

spines [102,105]. This defect may be attributed to hyperacetylated tau, which disrupts 

AMPA receptor trafficking during plasticity by reducing KIBRA levels at synapses [106]. It 

remains unclear whether hyperphosphorylated tau disrupts AMPA receptor stability at 

synapses.

3. Post-translational modifications of tau

3.1. Phosphorylation

Tau phosphorylation has been heavily implicated in AD and extensively studied, mainly 

because NFTs purified from AD brains are enriched with highly phosphorylated tau species. 

Biochemical characterization of tau phosphorylation at disease-related sites demonstrates 

that phosphorylation reduces tau’s ability to bind to microtubules [107–110] and induces 

tau’s self-assembly into tangles/filaments [111], presumably by altering the charge and 

structure within the MBD [112,113]. Mass spectrometry analysis of tau filaments led to 

identification of numerous pathological tau phospho-sites [114,115]. To date, approximately 

45 out of 85 potential phosphorylation sites in tau have been reported experimentally. Some 

of these sites are differentially phosphorylated in AD or FTD brains but not in controls. Tau 

phosphorylation in the context of AD and other tauopathies has been extensively reviewed 

elsewhere, and therefore is not discussed further here [116–118].

3.2. Acetylation

Tau is a lysine-rich protein, particularly in the region spanning the MBD. Acetylation of tau 

was first described by Min and colleagues as a novel post-translational modification [119]. 

Tau acetylation at some specific lysine residues is associated with AD pathology in patient 

brains even at early Braak stages [119–121]. Multiple lysine residues in endogenous mouse 

tau have been identified to be acetylated by mass spectrometry analysis in both wild type 

and APP transgenic mice [122]. The histone acetyltransferases (HAT) p300 [119,123–125] 

and CREB binding protein (CBP) [126] acetylate tau, while SIRT1 [119,123] and HDAC6 

deacetylate tau in the brain [124,127,128].

Protein acetylation at lysine residues serves as an important regulatory mechanism for 

enzymatic activity, protein-protein interaction and protein stability [129–131]. Mimicking 

tau acetylation with glutamine (tauKQ) at lysines 174 and 280 slows down total tau turnover 

in PS19 transgenic mice and transgenic Drosophila, respectively, without altering soluble 
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and insoluble tau levels in the latter [120,132], suggesting that one of the outcomes of tau 

acetylation is to regulate its turnover.

The relationship between tau acetylation and phosphorylation has been heavily investigated. 

However, the interplay between these two kinds of modifications is complex, possibly 

residue-dependent and disease-specific. The distribution of acetylated tau resembles that of 

hyperphosphorylated tau in AD brains [133]. Although phosphorylation is generally 

assumed to precede acetylation in AD pathology, acetylation of lysine 280 actually precedes 

phosphorylation in chronic traumatic encephalopathy [121]. Acetylation of tau at certain 

lysines (164, 174, 180 and 280) is associated with decreased phospho-tau degradation and 

thus increased phospho-tau levels [119,132], while simultaneous pseudo-acetylation at 

multiple lysines (163, 280, 281 and 369) or in other regions (in the KIGS motif or at lysine 

321) is associated with decreased tau phosphorylation [124,134,135].

The influence of tau acetylation on aggregation is not conclusive yet and also seems residue-

specific. Recent studies propose that acetylation precedes aggregation, yet it is unclear if 

acetylation promotes, protects against, or is unrelated to aggregation propensity, as 

acetylation within the MBD alters the structure of tau such that it may be either more or less 

prone to aggregation [136]. Acetylation at certain residues promotes tau aggregation and 

makes it more vulnerable to template-directed misfolding [137]. Acetylated tau at lysine 280 

within the MBD is specifically associated with insoluble tau in AD brain and both PS19 and 

PS19/PDAPP mouse models [133,138], suggesting that acetylation promotes aggregation 

[128]. On the other hand, acetylation of tau is associated with decreased aggregation in some 

models. For example, CBP-mediated acetylation at lysine 321 inhibits recombinant tau fibril 

formation [126,135], and acetylation of recombinant tau at lysines 280 and 311 by p300 

prevents tau aggregation by disfavoring liquid-liquid phase separation [125]. These findings 

are consistent with one of the earlier studies that tau aggregation is prevented by acetylation 

in the KIGS motif, which is hypoacetylated and hyperphosphorylated in AD brain and the 

P301L mouse model; therefore, loss of acetylation at this site is detrimental [124].

Tau acetylation may be harmful by accounting for a possible loss-of-function mechanism. 

Tau acetylation may disrupt microtubule assembly by altering the structure and charge 

within the MBD [125,134,135,137]. In support, pharmacological HDAC6 inhibition 

increases tau acetylation [124,127] and causes a minor reduction in affinity for microtubules 

[127]. Another detrimental outcome of tau acetylation is synaptic dysfunction. A Drosophila 
model of tau acetylation (K163/280/281/369Q) and a mouse model of Aβ-induced tau 

acetylation exhibit memory impairment and locomotor dysfunction [123,134]. Double 

acetyl-mimic at AD-related sites lysines 274 and 281 leads to tau mislocalization to 

somatodendritic compartments in primary cultures [139], and results in LTP deficits and 

impairment of memory formation in mice [106]. Tau acetyl-mimics induce loss of 

postsynaptic protein KIBRA and reduce AMPA receptor trafficking, which may imply the 

underlying molecular mechanism [106]. The effect of acetylated tau on synaptic deficits has 

been reviewed by Tracy and Gan [105].
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4. Pathological aggregation and propagation of tau

Tau aggregation is the overt pathological hallmark of tauopathies. It still needs to be clarified 

whether the toxic species are the insoluble aggregates, pre-fibril soluble tau oligomers, 

fragments of already-formed aggregates, or the loss of soluble tau that is leeched into 

aggregates. The lengthy period of cognitive decline in AD indicates that toxicity is a slow, 

cumulative process. Likewise, formation of the initial aggregates occurs slowly, but 

subsequent fragmentation greatly facilitates formation of more aggregates [140].

NFTs are concentrated in the brainstem nuclei, especially the substantia nigra and locus 

coeruleus, in several tauopathies. There is variable involvement of the basal ganglia, 

thalamus and cortex in various neurodegenerative diseases that present with tauopathy [141–

144]. In AD, tau pathology may appear at a younger age than senile plaques do [145], 

though this timeline remains debatable. Braak suggests that tau pathology begins in the 

locus coeruleus and then spreads to other brainstem nuclei and to the entorhinal cortex. 

Since the development of tau pathology in AD brain correlates well with the brain regions 

related to cognitive impairment, the Braak stages of AD are classified into stages I–VI using 

the spreading pattern of tau pathologies as one of the important criterion [20].

Similar to the Braak stages, stereotypical temporospatial spreading of tau inclusions also 

occurs in other tauopathies such as argyrophilic grain disease. A key difference between 

these tauopathies is that the spread of tau progresses in different directions and to different 

brain regions [146–148].

Aberrant tau pathology follows a progressive pattern of spread in AD. However, no clear 

mechanism of cell-to-cell tau spread has been elucidated. Many studies over the past decade 

have demonstrated that tau is capable of spreading from one neuron to another. Today, the 

study of tau aggregation is focusing on the structure of these aggregates, as well as the 

mechanisms of tau secretion, uptake and aggregate seeding by distinct pathological tau 

strains.

4.1. Aggregation

Intracellular tau aggregate formation is believed to be mediated by the MBD, spanning 

between Ser214 and Glu372 [149]. The MBD binds tightly to MTs and tethers tubulin 

dimers together [109]. The third repeat, which contains the hexapeptide motif VQIVYK, is 

the most important for fibril assembly [150]. This motif, along with a second hexapeptide 

motif (VQIINK), allows for formation of β-sheet structures that are necessary for tau 

aggregation [151–154]. FTD mutations in tau that destabilize local structure around 

VQIVYK trigger spontaneous aggregation [155]. In support, structure-based inhibitors that 

target VQIINK, or introduction of β-sheet-breaking prolines in the MBD, prevent tau 

aggregate formation [156,157].

Paired helical filaments and straight filaments in AD are morphologically heterogeneous but 

generally range in diameter from 22 to 24 nm as determined by electron microscopy [158–

160]. Advancements in structure-based technologies helped finally solve high-resolution 

structures of tau filaments. Cryogenic electron microscopy revealed that a combined cross-β/
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β-helix structure consisting of residues 306–378 within the MBD makes up the core of tau 

filaments derived from an AD patient brain [161]. Variations in inter-protofilament packing 

between paired helical and straight filaments suggests that tau can adopt distinct folds in the 

human brain in different diseases [162].

Multiple factors including tau phosphorylation and cleavage are early steps that precede 

aggregation. One of the most significant findings regarding tau aggregation recently is that 

phosphorylation of tau promotes liquid-liquid phase separation under cellular protein 

conditions, resulting in molecular crowding of amyloid-promoting regions within the MBD 

that drives electrostatic amyloid-favoring coacervation [163]. Tau can be cleaved by many 

proteases, which may promote tau aggregation [164–166]. Aβ plaques are also capable of 

enhancing the aggregation of AD brain-derived tau injected into mouse brains [167]. As Aβ 
plaques and tau tangles are spatially distinct in AD brain, both regionally in the brain and 

topologically across membranes, the question remains as to how exactly Aβ drives tau 

pathology.

Chaperone machinery provides a molecular mechanism involved in tau aggregation and 

degradation. A class of chaperones, such as DnaJA2, Hsp60, clusterin, Hsp104 and Hsc70, 

demonstrates activities in inhibiting tau aggregation and seeding-capacity of tau aggregates 

[168]. However, Hsp90, the most abundant chaperone in cells, shows a distinct function by 

promoting pathological tau stability and aggregation in the diseased state [169]. It remains 

unclear whether these chaperones are able to reverse already-formed tau fibrils [168,170].

4.2. Propagation

Early in 1997, an AD case study revealed that a disconnected frontal cortex tissue due to 

surgical removal in brain was completely lack of tau positive tangles or neuropil threads, 

indicating that the development of tau pathology involves cortico-cortical fibers [171]. The 

spreading of tau from one cell to another long fibers conflicts with the biology of tau as an 

intracellular microtuble-binding protein. More and more recent studies have shown that tau 

can be secreted from neurons [172–175]. Tau is physiologically present in the cerebrospinal 

fluid (CSF) of normal, healthy individuals [176]. Tau is also detectable in the extracellular 

interstitial fluid from the brains of live mice using microdialysis technology, with a relatively 

long half-life of up to 11 h [177]. Using co-culture systems, it was found that extracellular 

tau fibrils induce transmissible aggregation in recipient cells [178–180]. The nature of 

secreted tau has not been fully characterized with consistent observations [172,181–184]. 

The secretion of tau is dependent upon neuronal activity and varies between different tau 

isoforms [185]. Paradoxically, FTD mutations reduce tau secretion [175,186].

Nevertheless, inoculation of pathological tau in tau transgenic mouse brains clearly 

demonstrates the transmission of tau pathology from one region to another [187]. Tau 

oligomers derived from AD patients that are injected into wild type mouse hippocampus 

cause memory impairments and the spread of phospho-tau to other regions of the brain 

including the cortex, corpus callosum and hypothalamus [188]. Confined expression of pro-

aggregation P301 L tau in the entorhinal cortex using genetic approaches leads to 

anterograde spread to the dentate gyrus, CA1 and CA3 regions in two regulatable tau mouse 

models [189,190]. These mice suffer from loss of excitatory neurons in the medial 
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entorhinal cortex which are associated with spatial memory [191]. The spreading patterns in 

these tau transgenic mouse brains strongly suggest that propagation of tau in mouse brain 

follows the connectivity of neurons in the brain.

How tau can move from one neuron to another is not well understood. Several recent 

findings started to explore the potential underlying mechanisms, including exosome release, 

synaptic release and other unconventional mechanisms of release as discussed in the 

following sections.

4.2.1. Exosomes—Exosomes are membrane-bound vesicles released by mammalian 

cells from intracellular multivesicular compartments. They play important functions in 

intercellular communication, as exosomes are potential vehicles for delivering cellular 

contents from origin cells to recipient cells [192]. Detection of tau in exosomes isolated 

from CSF [193] or plasma [194] of human AD patients suggests that tau is transported via 

exosomes. Tau secretion in association with exosomes was first observed in HEK293 cells 

[195]. However, other studies reported failures to detect tau in exosomes isolated from other 

cell lines [186] or cultured primary neurons [196]. These contradictory studies were re-

examined recently. It was found that tau is present only in exosomes from mature (older than 

DIV14) but not immature neurons [182]. Furthermore, only a minor fraction of secreted tau 

is actually associated with exosomes [174,182,197–200]. Therefore, the sensitivity of the 

assay matters for the detection of exosomal tau [198]. Using ultra-sensitive immunoassays 

specific for full-length and mid-region tau based on Simoa (named for single molecule 

array), the majority of free-floating tau secreted from human induced pluripotent stem cell 

(iPSC)-derived neurons was found to be mostly truncated [198]. However, the ratio of full-

length to truncated tau is higher in exosomes than in free-floating fractions [198]. A possible 

explanation is that exosomes are released from multivesicular bodies, where tau is captured 

for degradation by autophagy, before tau can be degraded. Exosomal tau is phosphorylated 

(at T181 and possibly other sites) and oligomerized [182,198]. Exosomes containing tau are 

capable of seeding tau aggregation in neighboring cells, including neurons and microglia 

[182]. Interestingly, recent studies showed that microglia take up extracellular tau and 

promote tau propagation via exosome secretion, and knockout of nSMase2, a key regulator 

of exosome release, in vivo blocks exosome-mediated tau propagation [201–205]. However, 

there is still a debate whether there is a significant difference in exosome-associated tau in 

CSF between AD patients and non-dementia controls [182,198], raising the concern of using 

exosomal tau as a useful biomarker for AD. Thus, the functional contribution of exosomal 

tau to AD still needs more investigation.

4.2.2. Synaptic release—Tau spread through neural networks may be due to a trans-

synaptic mechanism of release. Phosphorylated soluble tau oligomers are enriched in 

synapses from AD brains and may propagate along neuronal connections [177,206]. 

Intracerebral injections of tau seeds in P301S mice are associated with pathological spread 

via functionally connected neuroanatomical pathways: Injection into the entorhinal cortex 

leads to decreased synaptic plasticity in the CA1 region, while injection into the basal 

ganglia leads to motor deficits indicative of neurodegeneration [207]. Tau derived from 
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either AD, CBD or PSP patient brains that was injected into different brain regions spreads 

along neural networks independent of tau origin [208].

Spread through the neural connectome may depend upon neuronal activity. AMPA receptor 

activation stimulates release of tau in cultured neurons [172]. Similarly, reverse 

microdialysis of K+ into mouse brains increases tau secretion [175]. Chemogenetic or 

optogenetic activation of neuronal activity increases tau release in primary neurons and is 

associated with brain hippocampus atrophy and tau pathology in P301 L mice [209]. 

Seemingly in contradiction, stimulating neuronal activity in organotypic slices stimulates tau 

release in wild type but not 3xTg slices [181]. However, basal tau release is increased in 

3xTg organotypic slices compared to wild type. It is unknown if whether increased secretion 

is due to higher network activity in the tau transgenic mice compared to wild type [181]. It is 

possible that the 3xTg slices have enhanced network activity at baseline that could drive this 

increase in tau release. In this case, the additional tau release induced by adding high KCl 

could be occluded in 3xTg slices. In accordance with this idea, densely connected brain 

regions that have higher tau burden are more vulnerable to neurodegeneration in AD and 

progressive supranuclear palsy [210], potentially supporting the idea that these hubs may be 

centers of greater trans-synaptic tau spread.

4.2.3. Unconventional secretion—Other unconventional secretion pathways provide 

alternative avenues for non-vesicular tau release [211] including direct translocation across 

the plasma membrane. In several early studies, tau was observed to associate with the 

plasma membrane [212–214] as well as form pore-like annular protofibrils in vivo [215]. in 

vitro studies also revealed that interaction of tau with the lipid bilayer induces membrane 

disruption [216,217]. These studies indicate that tau may directly penetrate the membrane. 

Two recent papers showed that tau is secreted directly through plasma membrane, occurring 

in specific membrane micro-domains and depending on some specific lipids like cholesterol 

and sphingomyelin [197,200]. Both studies revealed that cell surface heparan sulfate 

proteoglycans (HSPGs) facilitate this unconventional tau secretion, likely by helping tau to 

be released from membranes at the end of the penetration process. The role of HSPGs has 

been reported for unconventional secretion of other proteins [218,219]. Importantly, tau 

phosphorylation and oligomerization is necessary for this secretion mechanism and these 

unconventionally secreted tau species can spread to adjacent cells and induce aggregation 

[197]. These studies did not rule out other forms of secretion of free tau. For example, a non-

canonical secretion pathway mediated by Hsc70/DnaJ complex and SNAP-23 can also 

facilitate release of proteins into the extracellular space [220,221]. Further investigations 

will help us understand the roles of these secretory pathways in tau spreading.

4.2.4. Tau uptake—Mounting evidences demonstrate that tau can be taken up by 

neuronal cells by receptor-mediated endocytosis or micropinocytosis [179,222–227]. Just as 

the topological conundrum plagues the poorly-defined mechanisms of tau release, the same 

paradox applies for tau to cross the membrane and enter the cytosol of recipient cells. If tau 

is secreted with exosomes, extracellular exosomes must somehow deliver tau seeds directly 

into the cytosol. However, direct fusion of exosomes with the plasma membrane is yet to be 

reported. Another potential mechanism for tau uptake into the cytosol is through direct 
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translocation across the plasma membrane, which has recently been shown to mediate tau 

release [197,200]. Again, no evidence directly supports this route in the literature so far. 

Many studies consistently show that internalized tau proteins enter through endosomes and 

can remain in a low-pH compartment for a long time [228]. Tau aggregates can also be 

internalized at axonal terminals and retrogradely transported toward the cell soma [227]. An 

unbiased CRISPRi screen of 3200 genes further found that extracellular tau is taken up by 

micropinocytosis via the HSPG biosynthetic pathway [229] that has been shown to mediate 

uptake of prion proteins [218,219,230,231]. Tau uptake and tau fibril seeding ability can be 

blocked chemically by inhibiting binding to HSPGs using heparin, chlorate or heparinase, or 

genetically by knocking down genes encoding enzymes involved in HSPG synthesis in 

neuroglioma cells, iPSC-derived neurons and mouse brain slice cultures [226,229,232]. 

Combining these studies, it seems that a two-step process is involved in tau entry, allowing 

for tau to act as a seed for aggregation in recipient cells: entering cells via a membrane-

based route followed by crossing the membrane boundary of these compartments and enter 

the cytosol in order to trigger aggregation. Exactly how tau escapes from those membranes 

remains to be resolved. Finally, further investigation should help clarify whether monomeric 

and aggregated tau species behave similarly in this entry process [197].

4.2.5. Seeding of aggregates by distinct strains—Tau is a highly soluble protein 

due to its flexible, hydrophilic composition. In other terms, it may either adopt many 

conformations or no particular conformation at all. Recent evidence suggests that pathogenic 

tau may form multiple, distinct structures [233].

Two different strains with seeding ability that were isolated from the brains of P301S mice 

[234] add to the growing list of protocols for generating or extracting tau fibrils [235]. 

Unique strains of tau that are associated with different tauopathies can be stably passaged in 

dividing cells, injected into mice, and then passaged back into cells, all while retaining the 

same unique conformation [236]. Although different tau strains are associated with different 

pathologies in various cell types and brain regions [237], they seem not to have effect on the 

direction of tau propagation [208]. There is tremendous variability in tau structure within 

each tauopathy, yet post-translational modifications and truncation have minimal effects on 

tau filament morphology [238]. Instead, phosphorylation may be more critical in the early 

steps of dissociating tau from microtubules rather than directly causing aggregation.

Tau monoclonal antibodies are capable of distinguishing tau aggregates in AD brains from 

those in other tauopathies [239]. One possible explanation for the selectivity of these 

antibodies is that there is an AD-specific tau strain. Another possibility is that these 

antibodies only recognize AD-specific post-translational modifications that do not occur in 

other tauopathies. Further study is required to determine if tau does acquire various 

morphologies and whether or not they are physiologically and pathologically relevant.

5. Role of glia and inflammation in tauopathy

Several pieces of data demonstrate the association between glia and tau pathology. Activated 

glia cells were observed near neurons containing hyperphosphorylated tau in postmortem 

tauopathy brains [240,241], and oligomeric tau colocalizes with glia cells in animal models 
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as well as in AD and FTD brains [242]. Clinically, an elevation of immune biomarkers such 

as soluble immune gene TREM2 and YKL-40 were observed in the cerebrospinal fluid of 

AD and other tauopathy patients, and these increases are correlated with CSF tau and 

phospho-tau levels [243–245]. In tau transgenic models, activated microglia and elevated 

inflammatory mediators in P301S tau models are associated with tau pathology [246–248]. 

These early observations suggest that tau pathology may contribute to the activation of glia 

cells and the development of neuroinflammation in AD and other tauopathies [249]. 

Genome-wide transcriptome studies in different tau transgenic models revealed that 

alterations in microglial phenotypes are driven by tau dysfunction: specifically, the 

inflammatory changes can be reversed by suppression of the tau transgene [250,251]. 

Furthermore, transcriptome analysis of isolated microglia cells from tau transgenic mouse 

brains revealed an age-dependent neurodegeneration-specific molecular signature involving 

the interferon-related pathway and innate immune pathways in tau animal models [252]. 

Recently, longitudinal gene expression changes were assessed in isolated microglia from tau 

transgenic animals, which revealed that NF-κB signaling and cytokinecytokine receptor 

interaction pathways may be the first to be activated in tau transgenic mouse brains, likely 

driven by the key upstream regulators RELA, STAT1 and STAT6 [253]. With the application 

of the new tools for single cell transcriptomics, mass cytometry and bioinformatic analyses 

[254–258], the spatial and temporal heterogeneity of microglia activation states in response 

to tau pathology would be better captured and understood. Lastly, how pathogenic tau 

activates microglia at the cellular and molecular level is unclear. A recent study 

demonstrates that aggregated tau, following microglia uptake and lysosomal sorting, can 

activate the NLRP3-ASC inflammasome, an important sensor of innate immunity [259], 

providing some initial insight into the mechanism involved in this process.

The impact of glia activation and neuroinflammation on tau pathology is not fully 

understood. Accumulating evidence suggests that these factors exacerbate tau pathology, 

likely through a non-cell autonomous impact on neuronal signaling via cytokine secretion 

[260], or by directly impacting features of brain tau metabolism such as tau degradation, 

aggregation and spreading [201,261–263]. Modulation of tau pathology by microglia is 

further supported by recent findings revealing the functions of two genetic risk factors, 

APOE and microglia-specific gene TREM2, in tau pathology by influencing microglia-

dependent inflammation [264–267]. The complement pathway, a tau-associated molecular 

signature, seems to influence tau pathology too. Inhibiting the complement C3ar pathway 

significantly reduces tau pathology in tauopathy animal models [268]. A recent proteomics 

study identified that C1q protein accumulates in the postsynaptic density of P301S mice and 

AD patients, and mediates microglial-dependent synapse engulfment, adding another 

dimension to the contribution of microglia in tau pathology-triggered neurodegeneration 

[269]. Finally, new topics such as the contribution of microglia senescence to the 

development of tau pathology during aging are emerging [270], providing us with more 

novel perspectives for the functions of microglia in tauopathies. Overall, active research in 

this area will bring more clarity to the roles of glia and neuroinflammation on tauopathy 

[271].
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6. New models for tau study: 3D culture and organoids

Developing technologies in 3D human neural cultures and cerebral organoids provide new 

systems for creating more relevant AD models. Although these new AD model systems that 

develop Aβ plaques and tau pathology are still being characterized, one significant 

advantage of 3D cultures for studying tau pathology is that they dramatically increase the 

expression of 4R adult tau isoforms compared to 2D cultures, which mainly express 3R tau 

isoforms [272]. A balanced expression of 3R and 4R isoforms is essential for recapitulating 

tauopathy from human brains. Consequently, high levels of detergent-resistant, silver-

positive aggregates of phosphorylated tau as well as filamentous tau are detectable in the 

soma and neurites of 3D-differentiated neuronal cells expressing fAD mutations [272], 

which have not been observed in either 2D cultures or animal models expressing human 

wild type tau [273]. Additionally, 3D cultures can incorporate various human cell-types, 

including neurons, astrocytes and microglia [274]. These improved 3D cell culture systems 

can be used to study intracellular tau aggregation and the consequences of tau modifications, 

as well as the function(s) of microglial on tau pathology [272,274,275] because tau 

aggregation can be quickly triggered by application of exogenous synthetic tau fibrils in 3D 

cultures [276]. Therefore, the ability to form tau pathology in AD patient-derived 3D 

cultures provides an accessible cell culture platform that more closely resembles 

physiological conditions than 2D cultures do [277].

3D cerebral organoids can be derived from human pluripotent stem cells and thus directly 

from AD patients [278,279]. Brain organoids derived from fAD patients recapitulate Aβ 
aggregation, tau hyperphosphorylation and aggregation [280,281]. They uniquely provide a 

platform for genetically manipulating human brain-like tissue and studying downstream 

effects such as tau phosphorylation state and tau spreading [87]. Although organoids lack 

endogenous microglia, human iPSC-derived microglial-like cells can be implanted and 

integrated into brain organoids, where they are capable of phagocytosing brain-derived tau 

oligomers [282]. It remains to be seen whether implanted induced microglia are capable of 

regulating existing tau pathology in organoids. Therefore, with further characterization and 

development of these new models, we will be equipped with more powerful tools to 

understand the mechanism for tau pathogenesis in AD.

7. Therapeutic strategies and diagnostic tools centered on tau

Tau is emerging as a marker and therapeutic target for AD and other dementias. Recent 

development of PET tracers targeting tau has allowed researchers to confirm in patients the 

spread of tau as characterized by Braak staging [283,284], as well as the correlation of tau 

but not Aβ with cognitive decline [283,285–288]. Recent efforts to improve live tau imaging 

in patients have led to progress in the development and characterization of several tracers 

[289]. The tracers PBB3, flortaucipir (formally known as T807 and 18F-AV-1451), 

THK-5351 and MK-6240 are capable of detecting tau [290–294]. Some are better than 

others for detecting aggregated, phosphorylated or soluble tau species. Using tau PET 

imaging, it was found that Aβ deposition precedes tau accumulation in fAD presenilin-1 

(PSEN1) cases in a long-term study in a Colombian community containing cognitively 

unimpaired and impaired carriers of the PSEN1 E280 A mutation. Elevated tau deposition in 
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the neocortex was associated with mild cognitive impairment and worse scores on cognitive 

tests [287]. It remains to be investigated whether this timeline holds in sporadic AD cases. 

Importantly, this study demonstrates that tau PET imaging may be useful as a biomarker to 

distinguish individuals at high risk to develop the clinical symptoms of AD and to track 

disease progression.

8. Conclusion

Recent works have advanced scientists’ understanding of the consequences of pathogenic 

tau. Targeting pathways such as synaptic activity, inflammation, tau protein stability, or post-

translational modifications/modifiers of tau may provide valid therapeutic strategies. En 

route toward that goal, the tauopathy field would benefit from exploring the elusive 

function(s) of tau other than its role in promoting microtubule-assembly.
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Fig. 1. 
A brief history of tau.
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Fig. 2. Domains of 2N4R tau.
Tau protein is comprised of four primary domains, the N-terminal domain (blue), the 

proline-rich domain (tan), the microtubule-binding domain (pink), and the C-terminal region 

(green). Alternative splicing of the N-terminal and microtubule-binding domains yields six 

isoforms in the CNS. Repeat domains R1, R3 and R4 (light pink) are constitutive, while R2 

(dark pink) is incorporated only in the three 4R isoforms. N1 and/or N2 may be skipped, but 

inclusion of N2 requires that N1 also be included. The final variants become: 0N3R, 1N3R, 

2N3R, 0N4R, 1N4R, and 2N4R tau, the last of which is depicted here.
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