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ABSTRACT

Insulin-stimulated glucose transport is a characteristic property of adipocytes and
muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-
containing vesicles from intracellular stores to the cell surface. Fusion of these
vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an
attempt to overcome some of the limitations associated with both primary and
cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4
(HA-GLUT4-GFP) in HeLa cells. Here we report the characterisation of this system
compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of
HA-GLUT4-GFP to the surface of both cell types with similar kinetics using
orthologous trafficking machinery. While the magnitude of the insulin-stimulated
translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a
useful, experimentally tractable, human model system. Here, we exemplify their
utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential
novel regulators of GLUT4 trafficking in human cells.

Subjects Biochemistry, Cell Biology
Keywords Membrane, Transport, Insulin, Diabetes, GLUT4, Endosome

INTRODUCTION

Insulin-stimulated glucose transport in peripheral tissues is largely achieved by the
delivery of intracellular glucose transport-4 (GLUT4)-containing vesicles to the cell
surface where they dock and fuse (Bryant, Govers ¢ James, 2002; Jaldin-Fincati et al.,
2017; Klip, McGraw ¢ James, 2019). This increases the numbers of functional
transporters at the cell surface thereby raising the V.« for glucose entry into the cell
(Klip, McGraw & James, 2019). Insulin-stimulated glucose transport is impaired in Type-2
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diabetes, providing a significant impetus into understanding the molecular
mechanisms involved in this event (Kahn, 1992; Garvey et al., 1993, 1998; Klip, McGraw &
James, 2019).

Many of the studies which investigate the mechanism of GLUT4 translocation use
adipocytes either from animal or human tissues, or the 3T3-L1 adipocyte cell model.
Primary tissue suffers from difficulty in employing many routine molecular manipulations
(e.g. RNAI, over-expression, etc.) as cells de-differentiate in culture over time, and the
3T3-L1 adipocyte cell line is difficult to transfect, requiring usually either electroporation
or viral nucleic acid delivery mechanisms (Orlicky ¢ Schaack, 2001; Puri et al., 2007).
Furthermore, 3T3-L1 adipocytes require extensive periods in culture which can make high
throughput screening difficult.

Recently, we and others have established HeLa cells expressing epitope-tagged GLUT4
as a model system which facilitate studies into aspects of GLUT4 biology by virtue of the
ease of genetic manipulation of this commonly employed cell line (Kawase et al., 2006;
Haga, Ishii & Suzuki, 2011; Kioumourtzoglou et al., 2015; Gulbranson et al., 2017; Camus
et al., 2020). Here, we describe characterisation of these cells compared to 3T3-L1
adipocytes expressing the same GLUT4 reporter. We show that these two lines, while
differing in the magnitude of the insulin response, show many similar characteristics.
While we advocate working on cell types as close to physiologically relevant tissues as
possible, we nevertheless believe our beta-testing analysis of HeLa cells expressing GLUT4
indicate these cells provide a useful system for initial trials or larger scale screening
analyses which cannot be readily undertaken in either primary cells or differentiated cell
culture systems. In support of this, we present data analysing the effects of vSNARE
knockdown on GLUT4 trafficking and a small-scale RNAi screen for novel effectors of
GLUTH4 trafficking that suggest an important role for GOSR1 and YKT6 on GLUT4
trafficking and stability. We conclude that HeLa cells are a useful model for preliminary or
high-throughput studies of GLUT4 traffic.

MATERIALS AND METHODS

Cells

HeLa and 3T3-L1 cells were obtained from the ATCC. A HeLa cell line stably expressing
HA-GLUT4-GFP was created following infection with a lentiviral construct encoding
GFP-tagged GLUT4 carrying an HA epitope in the first extracellular loop; clones were
isolated by limited dilution (Muretta, Romenskaia ¢ Mastick, 2008; Muretta ¢» Mastick,
2009). 3T3-L1 adipocytes expressing the same construct were generated from 3T3-L1
fibroblasts engineered to express this construct stably as outlined (Muretta, Romenskaia ¢
Mastick, 2008). Cells were grown and differentiated as previously described (Muretta,
Romenskaia & Mastick, 2008; Sadler, Bryant ¢ Gould, 2015). Cells were plated on a
Total Internal Reflection Microscopy (TIRFM)-compatible observation chambers (Ibidi,
Glasgow, Scotland) which contained a 170 um coverslip base. HeLa cells were plated to a
density of 4 x 10” cells per chamber to distinguish single cells from the population for
observation. Cells were left to attach to the surface of the coverslip overnight. Prior to
measurement, all cells were serum starved for 2 h.
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TIRFM

Total Internal Reflection Microscopy images were acquired using an in-house constructed
objective based TIRFM system. The light from a 481 nm diode laser (HORIBA) was
directed to the far aperture of a 1.45 NA objective (Zeiss) using a Till Photonics TIRF
condenser. The condenser contains a micrometre screw gauge for lateral manipulation of
the beam relative to the optical axis. The resultant fluorescence light was collected by
the same objective and focussed to an Andor Ixon EMCCD using a C-mount 1.6x
expansion lens. The penetration depth of the evanescent field was measured using 10 pm
fluorescent particles and was found to be 110 nm. For discrete membrane intensity
imaging a series of 10 individual frames were acquired at each time point with an exposure
time of 500 ms. For all time-lapse image sets the rate of acquisition was set to two frames
per second.

Live cell imaging

All cells were imaged in Ibidi chambers as above. A temperature of 37 °C was maintained
using a temperature control microscope insert (PeCon, Erbach, Germany). Insulin
stimulation was achieved by replacing 50% of the chamber’s media with media containing
200 nM insulin to provide an overall concentration of 100 nM.

Membrane associated fluorescence image analysis

All image analysis was performed using the Image]/Fiji platform. For imaging of
membrane associated fluorescence intensity, a perimeter was defined around the footprint
of an individual cell for the initial images prior to insulin stimulation. Within this
footprint the average pixel-wide fluorescence intensity was measured at discrete time
points before and after the addition of 100 nM insulin.

Mobile and static vesicle analysis

Images were processed as follows: The signal from GLUT4 vesicles versus the uneven
diffuse fluorescent background was enhanced through the implementation of a rolling ball
algorithm (Sternberg, 1983). Subsequently, noise was removed through the use of the
‘de-speckle’ and ‘outlier removal’ subroutines of Image]. To differentiate between static
and mobile vesicles located at the membrane, image stacks were accumulated for 2 min
prior to insulin stimulation and for 25 min after. Stacks for individual cells were segmented
to 1 min time bins for analysis. The average projection image was generated for each

1 min stack and was subtracted pixel by pixel from each image of the original stack.
The resultant image stack contained data relating only to moving GLUT4-containing
vesicles. This secondary image stack was subsequently subtracted from the original stack to
provide a series of images containing only stationary vesicles.

Individual vesicles were defined by the following criteria using the FindFoci algorithm
(i) that the fluorescent point had a local maxima value, (ii) 75% of the peak intensity was
contained within a 5 pixel radius and (iii) the point was larger than a minimum 2 pixel
radius (Herbert, Carr & Hoffmann, 2014).
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siRNA transfection

The day prior to transfection, cells were plated onto glass coverslips in a 24-well plate at a
density of 7,500 cells/well. The following day, cells were transfected with 200 nM
SMARTYpool siRNAs (GE Healthcare Ltd., Chicago, IL, USA) specific for VAMP isoforms
or Syntaxin-16, as indicated in the figure legends using DharmaFECT (ThermoFisher,
England, UK), according to the manufacturer’s instructions (Simpson et al., 2007; Simpson,
2009). Cells were assayed between 48 and 72 h after transfection. Prior to use, cells were
incubated in serum-free media for 2 h; 1 uM insulin was added for a further 20 min as
indicated on the figure legends.

For cell lysates, transfected cells were washed twice with ice-cold PBS then solubilised
in RIPA buffer: 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na,EDTA, 1 mM
EGTA, 1% (v/v) NP-40, 1% (v/v) sodium deoxycholate, 2.5 mM sodium pyrophosphate,
1 mM B-glycerophosphate, 1 mM Na;VO, and proteinase inhibitors. Anti-VAMP2
(#104 202), anti-VAMP3 (#104 103), anti-VAMP4 (#136 002), anti-VAMP5 (#176 003),
anti-VAMP?7 (#232 003) and anti-VAMPS8 (#104 302) were from Synaptic Systems,
Germany; gels and blots were performed as in Sadler, Bryant ¢» Gould (2015).

For the screening experiments, the day prior to transfection 9,000 HeLa cells
expressing HA-GLUT4-GFP were plated onto each well of a glass bottomed 96-well plate.
Cells were transfected with 3 uM siRNA using the transfection reagent Lipofectamine 2000
and Opti-MEM reduced serum medium according to the manufacturer’s instructions.
After 4 h exposure to siRNA, growth media was added to each well and cells were
incubated for 48 h prior to fixation; cells were washed in PBS containing DAPI to visualise
nuclei and representative fields of cells (five from each well, performed from four
experimental replicates). Images were collected using a 63x/1.4NA objective and analysed
using Image]/FU]JI software. Details of the siRNA sequences employed are provided in
Table S1.

HA-GLUT4-GFP translocation: immunofluorescence

HeLa cells were washed three times in ice-cold PBS then fixed in 3% para-formaldehyde
(PFA) for 20 min. After quenching and washing in PBS containing 1% BSA and 5% goat
serum, cells were incubated with anti-HA monoclonal antibody (Covance Research
Products t# MMS 101P) at 1:500 for 45 min at room temperature, then washed three times
and surface bound monoclonal antibody detected using Alex-Fluor labelled secondary
antibodies (1:200). Cells were washed and mounted using Immuno-mount and imaged
using a Zeiss Pascal unit. Images were collected using a 63x/1.4NA objective and analysed
using Image]/FU]JI software. Typically, between four and six random fields of view

were captured from each coverslip, and each experiment replicated four times on
independent passages of cells. Note that within a particular experiment, the intensity and
pinhole settings on the confocal were kept constant to allow direct comparison between
experimental conditions. Fluorescence intensity values from Image] were expressed as
an HA/GFP ratio and the value in unstimulated cells set = 1.0 to allow comparison between
independent experiments.
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HA-GLUT4-GFP translocation: FACS

HA-GLUT4-GFP HelLa cells were seeded onto six well plates (~300,000 cells/well) 24 h
pre-analysis. On the experiment day cells were serum-starved for 2 h and half of the
HA-GLUT4-GFP HeLa cell samples were stimulated with 1 uM insulin for 40 min at
37 °C. The plates were then placed on ice where all subsequent steps were performed
with use of ice-cold solutions. Surface GLUT4 was detected by immunostaining with
anti-HA antibodies in intact cells. Cells were incubated with labelling medium containing
primary anti-HA antibody at a concentration of 1:200 in DMEM with 10% (v/v) FCS for
1 h. Cells were washed 3 times with PBS and incubated in labelling medium containing
1:300 secondary antibody conjugated with AlexaFluor® 647 for 1 h. Cells were washed
with PBS and gently dissociated with collagenase type I (2 mg/ml (w/v)) in PBS
supplemented with 0.5 mM EDTA and 10% (v/v) FCS at 37 °C for 10 min. Samples were
diluted in PBS and gently filtered through a 100 um cell strainer to remove clumps of cells
and analysed on a BD™ LSR II flow cytometer. Events of 50,000 cells were collected

for each experimental condition. Identical methodology was employed when assaying
translocation in 3T3-L1 adipocytes expressing HA-GLUT4-GFP by FACS. In both cases,
cells not expressing HA-GLUT4-GFP or stained with HA-antibodies/secondary
antibodies were used to determine background values. Fluorescence intensities were
calculated form geometric means.

Co-localisation assays

HA-GLUT4-GFP Hela cells were cultured on 96 well plates with a glass bottom. Prior to
staining, they were washed 3x with PBS and fixed with PFA for 20 min at room
temperature. Cells were washed 3x with PBS and incubated in permeabilisation buffer
(PBS containing 0.1% w/v Triton X100) for 4 min, then washed 3x with PBS and blocked
with PBS containing 0.2% (w/v) fish skin gelatine and 0.1% (v/v) goat serum for 30 min.
Cells were stained by incubating with the primary antibody recognising a marker for
the ER, the Golgi, or the ERGIC for 60 min. and with a secondary Alexa Fluor 568 tagged
antibody for 45 min. Nucleus staining was carried out by incubation with 1 pg/ml
DAPI for 5 min. Representative fields of cells (four from duplicate coverslips for each
condition, repeated four times) were imaged using a Zeiss Pascal unit. Images were
collected using a 63x/1.4NA objective and analysed using Image]/Fiji software and the
JaCoP plugin (Bolte & Cordeliéres, 2006).

Statistical analysis
Statistical analysis was conducted using Prism software; tests are described in the figure
legends or text.

RESULTS

GLUT4 in HelLa cells exhibits insulin-dependent translocation to the

cell surface

The majority of current investigations of GLUT4 recruitment to the plasma membrane
suffer from a low throughput due to the lengthy isolation and culturing of adipocytes,
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which are also difficult to experimentally manipulate. As a result, there is a clear need for a
robust insulin-sensitive experimental cell model expressing GLUT4 as a useful ‘test-tube’
for initial experiments. Such a system would provide a platform for high throughput
investigations. The HeLa cell line is an immortal cervical cancer cell line, originally isolated
in 1951, and is the most widely investigated cell model (Macville et al., 1999). While
HeLa cells do not contain any endogenous GLUT4, they do possess insulin sensitivity,
and exhibit insulin-stimulated phosphorylation of Akt and AS160, two key signalling
intermediates in insulin-stimulated GLUT4 translocation (Camus et al., 2020).

We therefore generated stable clones of HeLa cells expressing HA-GLUT4-GFP. In the
absence of insulin this construct was intracellularly sequestered and was present in
intracellular peripheral vesicles and within a large perinuclear depot a distribution
highly similar to that observed in 3T3-L1 adipocytes (Fig. 1). This well-characterised
construct allows for detection of total GLUT4 levels (using the GFP signal) and the
quantification of cell surface exposed molecules via the HA epitope inserted into the large
exofacial domain between transmembrane helices I and II. This construct has been
extensively validated in numerous laboratories (Lampson et al., 2000; Eyster, Duggins ¢
Olson, 2005; Eyster et al., 2006; Muretta, Romenskaia ¢ Mastick, 2008; Zhao et al.,

2009; Lizunov et al., 2012). Figure 1 show the effect of insulin on HA-GLUT4-GFP
translocation in HeLa cells (Fig. 1A) compared to 3T3-L1 adipocytes (Fig. 1B). In both cell
types, a robust insulin-stimulated delivery of GLUT4 to the cell surface is observed.
Figures 1A and 1B shows a typical set of confocal images in which the extent of
translocation is revealed by the increase in HA staining upon insulin stimulation, and
Fig. 1C shows the result of quantification of insulin-stimulated HA-GLUT4-GFP
translocation using FACS. The latter allows quantification of many thousands of cells
per condition and is the most reliable method for quantifying translocation in either
cell type as a result. However, image analysis of fluorescence intensity of confocal
images can also be readily used to quantify translocation—see further examples below.
Insulin-stimulated translocation of HA-GLUT4-GEFP to the cell surface was inhibited
robustly by 50 nM wortmannin in both cell types (data not shown) (Clarke et al., 1994;
Wang et al., 2019), suggesting similar insulin-dependent signalling processes underly these
responses. Others have reported similar magnitudes of translocation using HeLa cells
expressing HA-GLUT4-GEFP across several studies of this type, insulin elicited a 2.5-3 fold
increase in cell surface GLUT4 staining (Haga, Ishii ¢» Suzuki, 2011; Kioumourtzoglou
et al., 2015; Gulbranson et al., 2017; Wang et al., 2019). The roughly 3-fold increase in
GLUT4 translocation in HeLa cells is broadly comparable with other human tissues—for a
recent review of this issue see N.J. Bryant & G.W. Gould, 2020, unpublished data.

Insulin-stimulated delivery of GLUT4 into the TIRF zone

Time-lapse live cell TIRFM was employed to quantify mobile and stationary vesicles

located adjacent to the plasma membrane following insulin stimulation in both cell types.
We first quantified the extent of translocation by measuring the time-dependent

increase in GFP signal in the TIRF zone (a typical data set for 3T3-L1 adipocytes is shown

in Fig. 2A). Both analyses reveal that insulin stimulates translocation of HA-GLUT4-GFP
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Figure 1 HA-GLUT4-GFP translocation in HeLa cells and 3T3-L1 adipocytes. (A) HeLa cells stably
expressing HA-GLUT4-GFP were incubated without (Basal) or with 100 nM insulin for 1 h in ser-
um-free media, washed fixed and stained for cell surface GLUT4 using the exofacial HA-epitope as
described in “Materials and Methods”. Shown are representative fields of cells in which the GFP moiety
is pseudo-coloured green and the HA staining is pseudo-coloured blue. A merged image is presented as
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Figure 1 (continued)

shown. The data shown is typical of more than 10 experiments of this type on different batches of stable
HelLa cell clones expressing HA-GLUT4-GFP. (B) 3T3-L1 cells stably expressing HA-GLUT4-GFP
were incubated with or without (Basal) 100 nM insulin for 20 min in serum-free media, washed fixed and
stained for cell surface GLUT4 using the exofacial HA-epitope as described in “Materials and Methods”.
Shown are representative fields of cells exactly as outlined in (A). Data from a representative experiment
is shown, replicated on four different batches of stable cell clones. (C) Translocation of HA-GLUT4-GFP
to the cell surface in HeLa cells and 3T3-L1 adipocytes was assayed using FACS. Shown is the change in
HA/GFP signal in response to insulin, expressed relative to the basal, in n = 3 experiments for each of the
cell types shown with 50,000 cells per condition. A significant increase in cell surface GLUT4 levels was
detected in both cell types, *p < 0.05 and **p ~ 0.01. Full-size k&) DOT: 10.7717/peerj.8751/fig-1

to the surface, but that HeLa cells exhibit a smaller response than 3T3-L1 adipocytes,
1.89 + 0.4-fold versus 3.3 + 0.85-fold. Note that the magnitude of the insulin response in
these experiments is likely underestimated; quantification of the GFP signal does not
represent only GLUT4 in the plasma membrane but will also report GLUT4 vesicles in the
TIRF zone that are not fused with the plasma membrane. Figure 2B shows that the rate
of translocation of GLUT4 in these cells exhibited half-times of 12.3 + 2.2 min in
adipocytes (n = 15 cells) and 17.1 + 6.3 min in HeLa cells (n = 12). The value measured in
3T3-L1 adipocytes is somewhat slower than has been reported by others (5-10 min,

see Bogan, McKee ¢ Lodish (2001) and Govers, Coster ¢ James (2004)). The slower rate of
translocation in observed in our studies in 3T3-L1 adipocytes and HeLa cells may reflect a
slower accumulation of total vesicles into the TIRF zone compared to levels of GLUT4
in the plasma membrane (Gibbs, Lienhard & Gould, 1988; Subtil et al., 2000; Coster,
Govers & James, 2004; Martin, Lee ¢ McGraw, 2006; Gonzalez ¢ McGraw, 2006; Muretta,
Romenskaia & Mastick, 2008; Muretta ¢ Mastick, 2009; Xiong et al., 2010). This may
also in part be a reflection of the temperature homeostasis on the stage being less than
ideal due to the home-built nature of the incubation system; nevertheless, these data
indicate that insulin-stimulated translocation of GLUT4 in these cell types are broadly
comparable.

Comparison of GLUT4 vesicle movement near the plasma membrane
Stacks of time-lapse images were separated into 1-min segments to determine the
time-dependent nature of vesicle dynamics as described in “Materials and Methods”.
GLUT4-containing vesicles were identified and the time dependent vesicle dynamics were
compared for both cell lines. These values were measured for three individual cells within
ten different 100 um? regions of interest across three separate platings of cells (Fig. 3A).
In adipocytes, at the point of insulin stimulation, t = 0, a notable increase in mobile
GLUT4-containing vesicles was observed (note t = 0 constitutes the first ~60 s after
insulin addition). This period of increased mobility lasted ~5 min before returning to a
rate similar to that prior to insulin stimulation. This is in contrast to the behaviour of
static GLUT4 vesicles. This is consistent with Fujita et al. (2010) who observed an
insulin-dependent increase in the number of rapidly moving GLUT4-containing vesicles
approaching the plasma membrane in 3T3-L1 adipocytes, and an insulin-dependent
increase in their tethering.
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Figure 2 Translocation of HA-GLUT4-GFP assayed by TIRFM. HA-GLUT4-GFP expressing 3T3-
L1 adipocytes were serum-starved for 2 h and mounted on a heated stage in a home-built TIRF system.
Images corresponding to GFP fluorescence were collected prior to insulin addition (0 min) then at the
indicated times after addition of 100 nM insulin. Scale bar: 20 pm. Data from a representative
experiment is shown in (A). (B) Quantification of the time course of insulin-stimulated increase in GFP
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Figure 2 (continued)

fluorescence in the TIRF zone in either HeLa or 3T3-L1 adipocytes. (C) The magnitude of the increase in
GFP signal in the TIRF zone upon exposure of the cells to 100 nM insulin. For both (B) and (C), the data
is the mean + SEM of 12 HeLa cells and 15 3T3-L1 cells imaged at each time point from at least three
biological replicates. *Statistically significant compared to basal p = 0.05; **p = 0.01 statistical significance
analysed by 2-way ANOVA. Full-size Kal DOI: 10.7717/peerj.8751/fig-2

Stenkula et al. (2010) and Lizunov et al. (2013a) report a dramatic increase in the
rate of vesicle fusion with the plasma membrane between 1 and 5 min post insulin.
The observed increase in dynamic GLUT4-containing vesicles over a similar time frame in
this study would suggest vesicle activity in line with the previously presented kinetic
model (Stenkula et al., 2010; Lizunov et al., 2013a). The gradual increase in stationary
GLUT4-containing vesicles was predicted as vesicles continue to tether and fuse to the
membrane upon stimulation (Fujita et al., 2010), and several studies have reported an
insulin-stimulated increase in vesicle tethering (Lizunov et al., 2005, 2009, 2013b; Bai et al.,
2007; Stenkula et al., 2010).

In HeLa cells, the quantity of mobile GLUT4-containing vesicles underwent a
similar insulin-dependent increase (Fig. 3B). The duration of this increased activity was
observed to last ~8 min after insulin stimulation. After the increase in activity the number
of mobile GLUT4-containing vesicles returned to a density of roughly 2 per 100 um®.
The slightly longer duration and lower final density is consistent with the extended t,,,
noted above for insulin-stimulated GLUT4 translocation. One potentially interesting point
of divergence between the two cell types is that the density of static GLUT4-containing
vesicles decreased in response to insulin in HeLa cells (Fig. 3B) whereas this remained
static or even increased in 3T3-L1 adipocytes. This may explain the lower fold increase in
GLUT4 translocation in HeLa cells. The explanation for this is not clear, but it is worth
noting that the larger more rounded phenotype of 3T3-L1 adipocytes mean that the
area of the cytoplasm sampled by TIRF is likely a smaller fraction than that sampled in
HeLa cells. These observations support the hypothesis that behaviours of GLUT4-
containing vesicles differ subtly between different cell types, and that this may explain
variations in the magnitude of GLUT4 translocation. Nevertheless, these data demonstrate
that insulin-dependent mobilisation of GLUT4 to the cell surface is an inherent, common,
property of a diverse array of cell types.

Common trafficking pathways for GLUT4 in HeLa and 3T3-L1
adipocytes

Previous studies have established important roles for VAMP2 and VAMP4 in GLUT4
trafficking in adipocytes (Williams ¢ Pessin, 2008; Zhao et al., 2009; Sadler, Bryant ¢
Gould, 2015). VAMP2 plays an important role in insulin-dependent GLUT4 translocation
to the cell surface, and VAMP4 in the delivery of newly synthesised GLUT4 into the
intracellular GLUT4-storage vesicle compartment (Williams ¢ Pessin, 2008). To further
test the validity of HeLa cells expressing HA-GLUT4-GFP as a model, we recapitulated
the above experiments in this system. For this analysis, we quantified effects by measuring
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Figure 3 Quantification of vesicle dynamics in the TIRF zone. Counts of mobile and stationary vesicles
for 3T3-L1 adipocytes (A) and HeLa cells (B) stimulated by 100 nM insulin were determined as outlined
in “Materials and Methods”. A total of 10 individual 100 um? regions of interest were analysed from three
cells from three separate platings of cells. Error bars correspond to standard deviation for 30 measured
ROIs. Images were recorded at a frame rate of 2 Hz for 15 min where time point 0 corresponds to point of
insulin addition. Full-size K] DOI: 10.7717/peerj.8751/fig-3

the fluorescence intensity of confocal images (see “Materials and Methods”), as FACS
analysis was not practical for reasons of scale/cost. Representative confocal images and
quantitation of these experiments are shown in Fig. 4 (blots of lysates from knockdown
cells are shown in Fig. S1).
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Figure 4 The effect of knockdown of VAMP isoforms on HA-GLUT4-GFP translocation. HeLa cells
expressing HA-GLUT4-GFP were grown and transfected with 200 nM scrambled control sequence
(SCR), VAMP2, 4 or 8 SMARTpool siRNA as described. Cells were serum-starved (basal) before being
treated with or without 1 pM insulin (insulin) for 20 min. Cells were fixed and surface HA was stained as
described. (A) Immunofluorescence images of a typical field for each condition are shown. (B) The
fold-change in the HA/GFP ratio with insulin-stimulation. Values were compared using Student’s ¢-test
(*p < 0.05 and **p > 0.05) and are means * SD of 16 random fields of view, taken from four independent
experiments. In this analysis, the HA/GFP ratio in the absence of insulin is set equal to 1 for each siRNA.
VAMP?2 knockdown significantly inhibited insulin-simulated HA-GLUT4-GFP translocation, *p = 0.01.
The apparent reduction in translocation upon VAMP4 knockdown did not reach statistical significance.
(C) Quantifies the basal HA/GFP ratio for each VAMP knockdown compared to that observed in SCR
siRNA treated cells; values represent the means + SD of 16 fields of view, taken from four independent
experiments **p < 0.05. Full-size K&l DOL: 10.7717/peerj.8751/fig-4
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We quantified the ability of insulin to increase plasma membrane GLUT4 levels after
siRNA treatment, Fig. 4B, in which the basal (unstimulated levels) of plasma membrane
GLUT4 are set at 1. In these experiments scrambled siRNA treated cells exhibited a
robust insulin response (~3-fold increase). Figure 4B shows that knockdown of VAMP2
significantly impaired insulin-stimulated GLUT4 translocation to the cell surface.
Consistent with published results (Williams ¢ Pessin, 2008) we observed no impairment of
HA-GLUT4-GFP translocation in VAMP8 (Figs. 4A and 4B) or VAMP3, VAMP5 or
VAMP?7-depleted cells (Fig. S2). However, we observed insulin-independent increases
in HA-GLUT4-GFP levels in the plasma membrane upon VAMP2 and VAMP4
knockdown; this was larger following VAMP2 depletion than VAMP4 (2.7-fold versus
1.8-fold; Fig. 4C). VAMP2 knock down completely abolished any increase in GLUT4 in
the plasma membrane following insulin stimulation. Conversely, following VAMP4
depletion, insulin still appeared to increase GLUT4 in the plasma membrane, although the
increase did not reach statistical significance (Fig. 4C; ~1-7-fold, compared to ~3-fold
in control cells, p = 0.18). Direct comparison of our data with that in 3T3-L1 adipocytes is
difficult, as different methodologies have highlighted areas of contention. Williams and
Pessin observed reduced levels of cell surface GLUT4 in VAMP2-depleted cells, with no
increase in basal levels (Williams & Pessin, 2008). Zhao et al. (2009) report no effect of
VAMP?2 knockout on GLUT4 translocation, but the preponderance of evidence argues that
VAMP2 is the key vSNARE for GLUT4 translocation (Bogan, 2012; Sadler, Bryant ¢
Gould, 2015; Klip, McGraw ¢ James, 2019). It is interesting though that in the muscle cell
line L6, tetanus toxin-induced VAMP?2 cleavage resulted in enhanced basal GLUT4 levels
(Randhawa et al., 2000), a result strikingly similar to that reported here.

These data might be taken to imply that in human cells, GLUT4 passes through a
VAMP2-dependent trafficking step, whereas not all GLUT4 passes through a VAMP4-
dependent trafficking step. This explanation is in line with the data of Williams and Pessin,
who found that VAMP4 was required for the sorting of newly synthesised GLUT4 into
the GLUT4-storage compartment (Williams ¢» Pessin, 2008). As VAMP2 and VAMP4
act at different trafficking steps, depletion of either protein affects GLUT4 localisation
differently. Consistent with this, VAMP2 has been proposed to regulate GLUT4-
containing vesicle fusion with the plasma membrane and VAMP4 to regulate sorting into
the GLUT4 storage compartment (Randhawa et al., 2000; Williams & Pessin, 2008;
Sadler, Bryant ¢ Gould, 2015). However, the potential that (for example) VAMP2 may
regulate GLUT4 trafficking in other endosomal compartments, as has been suggested for
example for early to recycling endosome cargo traffic (Aikawa et al., 2006; Ma & Burd,
2019), is not unreasonable. The relative balance of different endosomal pathways may
differ between these cell types and thus reveal different facets of GLUT4 trafficking.
Consistent with this, studies have suggested that GLUT4 trafficking differs between human
and murine cells (Camus et al., 2020), and hence some distinctions between these two cell
systems are not entirely unsurprising.

These data suggest that HeLa cells can offer clear insight into GLUT4 trafficking
pathways in a robust fashion. Using this system, rapid screening of the VAMP isoforms
would have quickly focussed upon VAMP2 and VAMP4, isoforms which are known to
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contribute to GLUT4 trafficking in 3T3-L1 adipocytes (Williams ¢ Pessin, 2008). Such
studies argue that HeLa cells can offer a reliable and rapid screening system for analysis of
GLUT4 trafficking which can be used to focus on key targets for further studies in less
tractable cell systems. We therefore attempted to perform such a screen.

Identification of new components of GLUT4 trafficking

The use of RNAi screens has opened up new avenues of investigation (Simpson et al., 2007;
Simpson, 2009). siRNA in adipocytes, although achievable, is difficult, often requiring
multiple rounds of transfection and is thus not easily transferred to larger screening
platforms. Hence, we have examined the use of HeLa cells as a tool for screening

using transfection of a library of siRNAs targeting a sub-set of SNARE proteins.

Recent studies have suggested that movement of GLUT4 from the ERGIC towards the
GLUT4-storage compartment plays a key role in the trafficking of newly synthesised
GLUT4 in human cells (Camus et al., 2020). The SNARE proteins BET1, BET1L,
GOSR1, GOSR2, SEC22A, SEC22B, SEC22C, Stx5 and YKT6 are known to be
involved in trafficking to or from the ERGIC (Zhang ¢» Hong, 2001; Appenzeller-Herzog ¢
Hauri, 20065 Adnan et al., 2019; Linders et al., 2019). We therefore examined the effect of
knockdown of these SNAREs on the distribution of HA-GLUT4-GFP by examining
overlap of GFP with the ERGIC marker ERGIC-53 or the Golgi marker GM130.

In addition, the GFP signal was used as an indication of GLUT4 levels. Details of the
SMARTDpools are provided in Table S1. The results are shown in Figs. 5A-5D. The subtle
changes observed in these experiments highlight a major advantage in using HeLa cells.
The ability to screen the required large numbers of cells allowed statistical significance to
be established even for small changes in signal overlap. The plastic nature of membrane
protein trafficking pathways predicates that interference with one pathway may be
compensated for by another, resulting in subtle changes in steady-state localisation.

Knockdown of GOSR1 (GS28) selectively reduced the overlap of GLUT4 with
ERGIC53; none of the other SNAREs examined gave any reproducible changes in overlap
(Fig. 5B). GOSR1 participates in ER to Golgi traffic (Xu et al., 2002), but has also been
implicated in the transport from early/recycling endosomes to the trans Golgi network
(TGN) (Xu et al., 2002; Tai et al., 2004), in a SNARE complex containing Sx5 and
YKT6 where it mediates a trafficking route which functions in parallel with Sx16/Sx6 to
mediate early/recycling endosome-TGN traffic. Strikingly, depletion of YKT6 enhanced
the overlap of GLUT4 with GM130 (Fig. 5C). An important role for these SNAREs is
also suggested by increased GLUT4 levels upon GOSR1 knockdown (Fig. 5D); it is
important to note therefore that the reduction in ERGIC53 overlap may be underestimated
as this analysis did not take into account total GLUT4 levels. These data, although
preliminary, are interesting as they reveal a potential role of YKT6 and GOSRI in GLUT4
trafficking.

Previous work from our group has implicated a Sx16/Sx6 enriched subdomain of the
TGN in GLUT4 delivery into the GLUT4-storage compartment (Shewan et al., 2003;
Proctor et al., 2006). Figure 5 reveals that this siRNA analysis did not identify statistically
significant effects of depletion of Sx6 or Sx16 on either distribution of levels of GLUT4.
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Figure 5 GLUT4 trafficking involves GOSR1 and Ykt6. HeLa cells expressing HA-GLUT4-GFP were
grown and transfected with 200 nM scrambled control sequence (-VE CON) or SMARTpool siRNA
targeting the indicated SNARE proteins. A total of 48 h later, cells were fixed and stained with orga-
nelle-specific antibodies (shown in (A) is a stain for the Golgi resident GM130 as a representative
example). The extent of overlap between the GFP (GLUT4) signal and ERGIC53 or GM130 was
quantified from five random fields each containing 8-12 cells from four independent experiments
as described in “Materials and Methods”. (B) Quantification of the ERGIC53/GLUT4 overlap;
(C) quantification of the GM130/GLUT4 overlap. In (D), an estimate of total GLUT4 levels was
determined by quantification of the GFP/DAPI ratio from the same experimental datasets. In each of (B),
(C) and (D), data of all four experiments was normalised to the negative control experiment and 2-way
ANOVA with 95% confidence intervals was used for statistical analysis. GOSR1: p = 0.0115 (B). Ykté:
p = 0.0036 (C). GOSRI: p < 0.0001 (D). Full-size &l DO 10.7717/peer;.8751/fig-5
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While both the overlap with ERGIC53 and the GLUT4/DAPI ratio were decreased upon
Sx6 knockdown, these did not reach significance (p ~ 0.06 in both cases). This may
reflect the relative capacity of the GOSR1/YKT6 pathway compared to the Sx6/5x16
pathway in different cell types (Camus et al., 2020). These caveats notwithstanding, our
data point to a role for the SNAREs GOSR1 and YKT6 in GLUT4 trafficking in human
cells. Further work will be required to elaborate the specificity of these effects (is it only
GLUT4 traffic that is perturbed?), the role of these SNAREs in more ‘physiological’ cells
or tissues such as 3T3-L1 adipocytes where larger magnitudes of insulin-responsive
trafficking can be studied. Nevertheless, this data clearly exemplifies the utility of HeLa
cells in the rapid identification of potential targets for further study.

DISCUSSION

Here we characterise HA-GLUT4-GFP expressed in HeLa cells and show that these cells
exhibit insulin-stimulated GLUT4 translocation with characteristics similar to those
observed in 3T3-L1 adipocytes. We conclude that despite some differences between the
two cells systems, such as that observed in the patterns of mobile and static vesicles in
the TIRF zone, HeLa cells are a useful model for preliminary or high-throughput studies of
GLUT4 traffic. Using this system, we confirm and extend previous studies revealing
important roles for VAMP2 and VAMP4 in endosomal GLUT4 trafficking and identify
GOSRI and YKT6 as molecules that may control GLUT4 trafficking.

Examination of GLUT4 vesicle dynamics in 3T3-L1 adipocytes have suggested the
presence of multiple different GLUT4-containing vesicles that are mobilised to the cell
surface. Studies suggest that GLUT4 traffic to the plasma membrane involves small,
~60 nm diameter, GLUT4-containing vesicles, and also at later times after insulin
challenge, larger structures, thought to be endosomal in origin (~150 nm) (Lizunov et al,
2005, 2013a; Xu et al., 2011; Chen et al., 2012). Whether both structures exist in HeLa
cells, and which contribute to (for example) the mobile and static vesicles examined
here remains to be ascertained. A distinction in the relative balance between these
compartments in 3T3-L1 adipocytes and HeLa cells may account for the subtle distinctions
observed in (for example) the behaviour of static vesicles and the effects of VAMP2
knockdown. Such distinctions though, should not detract from the utility of HeLa cells as a
valid model of GLUT4 trafficking in human cells.
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