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Abstract

Acute Respiratory Distress Syndrome (ARDS) is a syndrome of acute respiratory failure caused 

by non-cardiogenic pulmonary edema. Despite five decades of basic and clinical research, there is 

still no effective pharmacotherapy for this condition and the treatment remains primarily 

supportive. It is critical to study the molecular and physiologic mechanisms that cause ARDS in 

order to improve our understanding of this syndrome and reduce mortality. The goal of this review 

is to describe our current understanding of the pathogenesis and pathophysiology of ARDS. First, 

we will describe how pulmonary edema fluid accumulates in ARDS due to lung inflammation and 

increased alveolar endothelial and epithelial permeability. Next, we will review how pulmonary 

edema fluid is normally cleared in the uninjured lung, and describe how these pathways are 

disrupted in ARDS. Finally, we will explain how clinical trials and preclinical studies of novel 

therapeutic agents have further refined our understanding of this condition, highlighting in 

particular the study of mesenchymal stromal cells (MSCs) in the treatment of ARDS.
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I. Introduction

Acute Respiratory Distress Syndrome (ARDS) is a syndrome of acute respiratory failure 

caused by non-cardiogenic pulmonary edema. The most common clinical disorders 

associated with the development of ARDS are bacterial and viral pneumonia. ARDS is also 

commonly caused by sepsis due to non-pulmonary sources, severe trauma, and aspiration of 

gastric contents, and less commonly by pancreatitis and drug reactions1. Criteria for the 
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diagnosis for ARDS have changed over time; the current definition includes acute onset of 

impaired oxygenation (arterial hypoxemia with PaO2/FiO2 ratio <300 mmHg) and bilateral 

infiltrates on chest imaging in the absence of left atrial hypertension as the dominant cause 

of pulmonary edema2. Based on the Berlin definition, ARDS is divided into three categories 

of severity depending on the degree of hypoxemia: mild (PaO2/FiO2 200–300mm Hg), 

moderate (PaO2/FiO2 100–200mm Hg), and severe (PaO2/FiO2 <100mm Hg)2. The 

prevalence of ARDS in the United States is 5–35 cases/100,000 individuals annually, 

depending on the definitions utilized and study methodology3. The mortality of ARDS is 

approximately 25–40% in most studies4,5. Despite five decades of basic and clinical 

research, there is still no effective pharmacotherapy for this syndrome and the treatment 

remains primarily supportive with lung protective ventilation and a conservative fluid 

management strategy. Therefore, it is critical to study the pathogenesis and pathophysiology 

of ARDS in order to identify novel targeted therapies for this condition.

ARDS is a complex clinical syndrome with a heterogeneous clinical phenotype, which has 

made it more challenging to study. Nonetheless, since the first description of ARDS in 

19676, advances in laboratory and clinical studies have yielded valuable insights into the 

mechanisms responsible for the pathogenesis and pathophysiology of this condition. When 

the lung is injured by infection, trauma, or inflammatory conditions, inflammatory pathways 

are activated. The inflammatory response can aid in pathogen clearance, but excess 

inflammation can also contribute to alveolar damage – specifically greater endothelial and 

epithelial permeability – resulting in the accumulation of protein-rich alveolar edema fluid. 

Once pulmonary edema fluid accumulates in the interstitium and air spaces of the lungs, it 

causes increased work of breathing and impaired gas exchange resulting in hypoxemia, 

reduced carbon dioxide excretion, and ultimately acute respiratory failure. In uninjured 

lungs, active ion transport across the alveolar epithelium creates an osmotic gradient that 

drives alveolar fluid clearance (AFC)7. However, in ARDS, the osmotic gradient is disrupted 

and AFC is reduced, further compounding the decreased capacity to remove edema fluid 

from the distal airspaces of the lung.

In this review, we will first describe how increased inflammation causes endothelial and 

epithelial permeability, ultimately resulting in the accumulation of pulmonary edema fluid. 

Second, we will explain why AFC is reduced in this condition, highlighting key molecular 

pathways involved. Finally, we will summarize how clinical trials and the study of novel 

therapeutics offer further insight into ARDS pathophysiology.

II. Pathogenesis of ARDS: Excess Inflammation, Endothelial, and 

Epithelial Permeability

There are several pathophysiologic derangements that are central to the development of 

ARDS, including dysregulated inflammation and increased lung endothelial and epithelial 

permeability. Initially, acute lung injury is driven by dysregulated inflammation. Microbial 

products or cell-injury associated endogenous molecules (danger associated molecular 

patterns) bind to Toll-like receptors on the lung epithelium and alveolar macrophages and 

activate the innate immune system8. Mechanisms of innate immune defense, such as the 
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formation of neutrophil extracellular traps and histone release, can be beneficial in capturing 

pathogens, but may worsen alveolar injury9. The immune system also generates reactive 

oxygen species, leukocyte proteases, chemokines, and cytokines that help neutralize 

pathogens, but can also result in worsening lung injury10. In essence, there is a delicate 

balance between effective immune activation to combat infection and excessive or 

dysregulated activation that contributes to alveolar injury.

In addition to excessive inflammation in ARDS, another central pathophysiologic 

derangement is the disruption of the lung microvascular barrier due to increased endothelial 

and epithelial permeability (Figure 1A and 1B). In healthy lungs, endothelial stabilization is 

mediated by vascular endothelial cadherin (VE-cadherin), which is an endothelial-specific 

adherens junction protein that is required for to maintain endothelial barrier integrity in lung 

microvessels11. During lung injury, increased concentrations of thrombin, tumor necrosis 

factor-α (TNF-α), vascular endothelial growth factor (VEGF), and leukocyte signals in the 

lungs destabilize the VE-cadherin bonds, resulting in increased endothelial permeability and 

the accumulation of alveolar fluid12. The importance of VE-cadherin bonds has been 

confirmed in mouse models. Specifically, alveolar fluid accumulates in a mouse model of 

lipopolysaccharide (LPS)-induced lung injury, but when the VE-cadherin bonds are 

stabilized by genetic alterations that prevent breakdown or by blocking VE 

phosphodiesterase, there is reduced edema formation13,14. In sum, the inflammatory-induced 

damage to lung endothelium results in increased capillary permeability, and thus leads to 

pulmonary edema formation.

In addition to endothelial permeability, lung epithelial permeability is also an important 

factor in ARDS pathogenesis15,16. The alveolar epithelial barrier is similar to its endothelial 

counterpart, but has E-cadherin junctions instead of VE-cadherin junctions and it is 

substantially less permeable. Under pathologic conditions, neutrophil migration causes 

epithelial injury by disrupting intercellular junctions and causing apoptosis and denudation, 

ultimately resulting in increased epithelial permeability17. Restitution of epithelial integrity 

is critical for recovery and survival in acute lung injury. Neutrophil transmigration triggers 

repair of the lung epithelium via beta-catenin signaling18, offering a potential therapeutic 

target to accelerate epithelial repair.

Finally, it is also important to note that environmental and genetic factors contribute to the 

susceptibility and severity of ARDS. Exposure to ambient air pollutants has been linked to 

risk of ARDS; this association is strongest in patients at risk for ARDS due to severe 

traumatic injuries19,20. Active and passive cigarette smoke exposure has been associated 

with the development of ARDS after blunt force trauma21, lung transplantation22 and non-

pulmonary sepsis23. Chronic alcohol use increases the risk of acute lung injury24. Genetic 

variants have also been identified that confer increased risk of developing ARDS and are 

predictive of disease severity25. For example, genes involved in the inflammatory response 

and endothelial cell function, such as PPFIA1and ANGPT2, were identified as candidate 

genes for ARDS risk following major trauma26,27. Genetic variants in the FAS pathway, 

which regulates apoptosis and endothelial cell injury, were also associated with increased 

risk of ARDS28. In African Americans, a candidate gene study identified that a T-46C 

polymorphism in the promoter region of the Duff antigen/receptor for chemokines (DARC) 
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gene was associated with higher mortality29. Additional studies are needed to better 

understand these environmental and genetic associations, which may further contribute to 

our understanding of the molecular pathways involved in ARDS pathogenesis.

III. Slow Resolution: Alveolar Fluid Clearance is Impaired in ARDS

Pulmonary edema can develop from increased pulmonary vascular pressure from left heart 

failure (cardiogenic pulmonary edema)30 or due to lung parenchymal damage from 

increased endothelial and epithelial permeability (non-cardiogenic pulmonary edema, as in 

ARDS, as described above)31. In both cases, the mechanism for the resolution of alveolar 

edema is the same: active ion transport across the alveolar epithelium creates an osmotic 

gradient that drives alveolar fluid clearance32.

Before discussing alveolar fluid clearance in ARDS, it is important to review how alveolar 

fluid is normally cleared in the uninjured lung. In the uninjured lung, vectorial ion transport 

across the intact alveolar epithelial layer creates an osmotic gradient that drives fluid from 

the alveoli into the lung interstitium (Figure 2A). After fluid is cleared into the interstitium, 

it can be drained by lymphatics or reabsorbed into the vasculature based on the balance of 

forces described in Starling equation. It was initially thought that only alveolar epithelial 

type II cells were involved in vectorial ion transport, but subsequent studies demonstrated an 

important role for alveolar epithelial type I cells as well33. The transport of sodium ions is 

the most important driver for the generation of the osmotic gradient: sodium is transported 

through the sodium channel (ENaC) on the apical surface, driven by the Na/K ATPase on the 

basolateral surface34,35. In animal models, this pathway is essential for survival; knockout of 

the alpha-subunit of ENaC in mice results in the inability to remove alveolar fluid at birth, 

causing respiratory failure and premature death36. In addition to ENaC, nonselective cation 

channels, cyclic nucleotide-gated channels, and the cystic fibrosis transmembrane 

conductance regulator (CFTR) chloride channels also help maintain the osmotic gradient37. 

Once the vectorial ion gradient is established, aquaporins facilitate the movement of water 

across the epithelial surface, but are not required for fluid transport38. This system of active 

ion-driven alveolar fluid reabsorption is the primary mechanism that removes alveolar 

edema fluid under both physiologic and pathological conditions39,40. However, in the setting 

of ARDS, the capacity to remove alveolar edema fluid is reduced, which is termed impaired 

alveolar fluid clearance (AFC). Patients with ARDS who have impaired AFC have decreased 

survival41,42.

There are multiple physiologic and molecular mechanisms that cause a reduction in AFC in 

ARDS (Figure 2B). First, the primary physiologic respiratory impairments that characterize 

ARDS, hypoxia and hypercapnia, can directly impair AFC. ENaC transcription and 

trafficking are downregulated and the Na/K-ATPase functions less efficiently under states of 

low oxygen or high carbon dioxide, in part because reactive oxygen species trigger 

endocytosis and cell necrosis43,44,45. Therefore, supplemental oxygen and correction of 

hypercapnia can enhance the resolution of alveolar edema by helping to maintain active 

sodium transport across the lung epithelium.
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Second, biomechanical stress in the lung can reduce AFC. High tidal volumes and elevated 

airway pressures injure the alveolar epithelium, inducing cell death and inflammation, which 

further reduces AFC46. If pulmonary hydrostatic pressures are elevated, the rate of net AFC 

is also reduced. These findings help explain the success of lung protective ventilation and 

conservative fluid strategies in reducing the morbidity and mortality of ARDS47,48.

Third, we now better understand the molecular mechanisms that contribute to the reduction 

in AFC in ARDS. Specifically, ARDS pulmonary edema fluid contains high levels of pro-

inflammatory cytokines including interleukin (IL)-1β, IL-8, TNFα, and transforming growth 

factor-β1 (TGFβ1)49,50,51. When excessive levels of cytokines are present, they cause 

alveolar injury and reduced AFC52,53,54,55. This was elegantly demonstrated in an in vitro 
model of polarized human type II alveolar cells in 2006. Specifically, the authors showed 

that there are increased levels of cytokines and decreased levels of ion transport proteins in 

the presence of ARDS edema fluid compared to a plasma control56,57. Specifically, it is 

thought that the inflammatory edema fluid causes alveolar cell injury and necrosis, negating 

the tight epithelial barrier needed to establish an osmotic gradient and offsetting the effects 

of vectorial ion transport58,59. Cell necrosis and fluid accumulation in turn can trigger an 

even more pronounced inflammatory and immune response60. There are no current therapies 

that directly modify AFC, although lung protective ventilation itself reduces pro-

inflammatory cytokines such as IL-6 and IL-861.

Ultimately, resolution of ARDS requires repair of the endothelial and epithelial barriers to 

allow for effective reabsorption of the alveolar edema fluid, as well as removal of 

inflammatory cells and cytokines from the airspaces and the lung interstitium. In order to 

repair the alveolar epithelial barrier, type II cells must proliferate and differentiate62. 

Progenitor cells are present in the bronchoalveolar junctions that aid in the regeneration of 

the endothelial and epithelial barrier63 and macrophages also contribute to tissue repair64. 

With repair of the endothelial and epithelial barrier, reabsorption of alveolar edema fluid can 

occur more efficiently via vectorial transport.

In addition to repairing the microvascular barrier, the resolution of ARDS requires clearance 

of neutrophils, monocytes, and anti-inflammatory molecules by macrophages65,66 and 

lymphocytes67. In a mouse model of influenza pneumonia, depletion of alveolar 

macrophages lead to an increased number of neutrophils and neutrophil extracellular traps, 

as well as slower recovery from lung injury68. Similarly, in a mouse model of endotoxin-

induced lung injury, CD4+CD25+ regulatory T cells suppressed cytokine secretion and 

enhanced neutrophil apoptosis, aiding in faster resolution of lung injury67.

IV. Clinical Trials and Novel Therapeutics offer Further Insight About 

ARDS Pathogenesis

Since the first description of ARDS fifty years ago, there have been numerous clinical trials 

evaluating the efficacy of physiologic and pharmacologic interventions. Not only have these 

trials defined clinical practices, but they have enhanced our understanding of the 

pathophysiology of this condition.

Huppert et al. Page 5

Semin Respir Crit Care Med. Author manuscript; available in PMC 2020 May 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Multiple clinical trials have supported the use of lung protective ventilation, with lower tidal 

volumes and airway pressures, to reduce morality in ARDS47,69,70,71. Follow-up studies 

investigated why this strategy is effective. In a rat model of ARDS, resolution of alveolar 

edema was three-fold faster with a tidal volume of 6 mg/kg as opposed to 12 mg/kg, in part 

due to decreased lung epithelial injury45. Similarly in human studies, patients who were 

subjected to lung protective ventilation had reduced markers of lung epithelial injury72 and 

reduced pro-inflammatory molecules (neutrophils, IL6, IL8, soluble TNF receptor 1)61,73.

Another central concept in ARDS treatment is the utilization of a conservative fluid 

management strategy, which was first suggested to be effective in the late 1970s74 and was 

later confirmed by a large ARDS Network Trial75. The beneficial effect of a conservative 

fluid strategy is thought to be due to the fact that lowering vascular pressures reduces 

transvascular fluid filtration across the injured alveolar capillary barrier. There is also 

evidence that a conservative fluid strategy results in decreased plasma levels of 

angiopoietin-2, suggesting that this strategy also has a protective effect on the vascular 

endothelium76. Further studies are needed to better understand the molecular mechanisms 

underlying this process.

Given that ARDS is a pro-inflammatory state, there have also been numerous clinical trials 

evaluating anti-inflammatory agents as a potential treatment for ARDS. However, clinical 

trials of glucocorticoids77,78,79, granulocyte macrophage-colony stimulating factor (GM-

CSF)80, and antioxidants81 have not shown clinical utility to date. Similarly, it was 

hypothesized that anticoagulant therapy may be effective in ARDS treatment given the 

known interplay between procoagulant and proinflammatory pathways. However, a trial 

testing activated protein C (APC) did not reduce mortality in patients with non-septic 

ARDS82. While none of these trials suggest clinical benefit in ARDS treatment, it is possible 

that these therapies only improve outcomes in certain subphenotypes of ARDS. There is 

significant clinical and biological heterogeneity in ARDS, and recent studies suggest that 

there are two distinct and consistent subphenotypes of this condition83,84. Approximately 

30% of patients have a hyperinflammatory subphenotype, which is characterized by 

increased inflammatory markers, more severe acidosis and shock, and worse clinical 

outcomes. Future clinical trials should consider these subphenotypes, as they may help us 

better understand ARDS pathophysiology and also may respond differentially to therapeutic 

interventions. For example, a large randomized controlled clinical trial of simvastatin 

therapy in ARDS showed no mortality difference in the treatment vs. placebo groups85, but 

secondary analysis showed decreased mortality in the patients with the hyperinflammatory 

subphenotype of ARDS86, suggesting some role for anti-inflammatory treatments in this 

subphenotype.

Another therapeutic strategy that has been proposed is to target molecules that stabilize 

endothelial and epithelial cell-cell junctions, given the central role of alveolar endothelial 

and epithelial permeability in ARDS pathogenesis. Sphingosine 1-phosphate (S1P) is a lipid 

that is recognized by G protein-coupled receptors on endothelial cells (eg S1Pr1) and 

mediates endothelial barrier integrity87. In both in vitro and in vivo models, S1P enhances 

pulmonary and systemic endothelial integrity88, and small-molecule agonists of endothelial 

S1Pr1 decrease cytokine and leukocyte recruitment in mouse models of influenza 
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infection89. Specifically, S1P binds to S1Pr1 which induces actin cytoskeleton 

reorganization and localization of catenin and VE-cadherin molecules to the endothelial 

surface90. The Robo4/Slit signaling system also stabilizes the endothelial barrier. Slit2N 

inhibits tyrosine phosphorylation of VE-cadherin, preventing the internalization of VE-

cadherin and the resultant increased endothelial permeability triggered by TNF-alpha, IL1, 

or LPS91. Studying proteins that help stabilize the endothelial and epithelial barrier has 

therapeutic potential, and also may offer further insight into the mechanisms that underlie 

endothelial and epithelial permeability.

Aside from targeting specific proteins that have therapeutic potential, most recently, 

mesenchymal stromal cells (MSCs) have been recognized as a promising new cell-based 

therapy for ARDS, further informing our understanding of ARDS pathogenesis. MSCs are 

bone-marrow-derived cells that can differentiate in vitro into chondrocytes, osteoblasts, and 

adipocytes, although they do not have true stem cell properties in vivo92. The therapeutic 

potential of MSCs has been studied in a number of medical and surgical conditions 

including sepsis93,94, diabetes95, myocardial infarction96, hepatic failure97, acute renal 

failure98,99, chronic obstructive pulmonary disease100, neurologic injuries101, graft-versus-

host disease102, and trauma103. Therefore, it was hypothesized that MSCs may also be 

beneficial in the treatment of ARDS. To test this hypothesis, several groups studied whether 

MSCs reduce the severity of lung injury in pre-clinical models. Treatment with MSCs 

improved survival and reduced pulmonary edema in Escherichia coli endotoxin-induced 

lung injury in mice104. Subsequent studies showed that MSCs attenuated lung injury caused 

by live bacteria in mouse, rat, and in ex vivo human lung models of lung injury105,106,107. In 

addition, MSCs enhanced bacterial clearance and improved survival in murine models of 

sepsis94,108,109.

Given the potential therapeutic benefit of MSCs in the treatment of ARDS, many groups 

have sought to understand their mechanism of action, and several possible mechanisms have 

been proposed to date (Figure 3). Initially, it was thought that MSCs engrafted at the site of 

tissue injury and provided direct structural benefit110. However, with more detailed cell 

identification methods, engraftment is now thought to be a rare event of unclear physiologic 

significance111. Instead, the beneficial effect of MSCs does not require direct cell contact 

and several paracrine mechanisms have been proposed. First, it has been suggested that 

MSCs secrete proteins that have anti-inflammatory properties, and several have been 

identified to date: interleukin-1 receptor antagonist (IL1-ra)112, tumor necrosis factor alpha 

stimulated gene six (TSG-6)113, insulin-like growth factor 1 (IGF-1)114, and lipoxin A4115. 

Of note, clinical trials studying systemic anti-inflammatory agents have not been beneficial 

as previously described, but MSC therapy may provide anti-inflammatory effects that are 

multimodal and responsive to the cellular microenvironment in the lung. Second, there is 

evidence to suggest that MSCs affect lung endothelial and alveolar epithelial permeability 

via a paracrine mechanism, and the proteins angiopoietin-1, IL1-ra, and prostaglandin 

(PG)E2 have been implicated in this process116,117. Third, MSCs may secrete paracrine 

factors that improve AFC, with evidence to suggest that fibroblast growth factor 7 (FGF7) 

may be particularly important in this process118,119. Fourth, apoptosis of both immune and 

structural cells occurs during ARDS, so it has been suggested that paracrine factors such as 

interleukin 6 (IL6)120 and keratinocyte growth factor121 may have beneficial anti-apoptotic 
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effects. Finally, MSCs have the capacity to alter the polarization of alveolar macrophages to 

an M2-like pro-resolving phenotype122.

While numerous studies suggest that paracrine factors are responsible for the beneficial 

effects of MSCs, more recent studies propose alternative mechanisms of action. For 

example, there is some evidence to suggest that MSCs mediate tissue repair through direct 

transfer of mitochondrial DNA to host cells123.124.125. Alternatively, it has been proposed 

that there are extracellular vesicles that bud off of MSCs and transfer biologically active 

material to host cells that have beneficial effects126,127. Thus, there may be several 

mechanisms by which MSCs mediate the resolution of lung injury, and further studies are 

needed to clarify key mechanisms of action.

Based on these pre-clinical data, phase 1 and 2 clinical trials are currently testing whether 

MSCs have therapeutic potential in humans128. Most recently, a prospective, double-blind, 

multicenter, Phase 2a randomized controlled trial demonstrated that it is safe to administer a 

single intravenous dose of MSCs in patients with moderate-severe ARDS129, so larger trials 

are needed to assess efficacy. Of note, the authors noted varying viability of the MSCs in this 

study, so it will be important to improve protocols to improve MSC viability in the future.

V. Conclusions

Over the past fifty years, there have been substantial advances in our understanding of 

ARDS pathogenesis. In vitro and in vivo studies have demonstrated that lung inflammation 

causes increased alveolar endothelial and epithelial permeability, resulting in the 

accumulation of pulmonary edema fluid. In ARDS, the mechanisms that typically remove 

pulmonary edema fluid are less effective. The study of novel therapeutic strategies, 

including cell-based MSC treatment, has further refined our understanding of ARDS 

pathophysiology, and may offer promising new treatment options for this condition. In 

addition, new therapies may be more effective if target to specific subphenotypes of ARDS 

defined by clinical and biological factors.
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Figure 1: Increased alveolar endothelial permeability in ARDS
(A). In ARDS, inflammatory molecules disrupt alveolar barrier function, resulting in the 

accumulation of alveolar edema fluid.

(B). Specifically, disruption of VE-Cadherin bonds causes increased endothelial 

permeability, and subsequent leakage of water, solutes, leukocytes, platelets, and other 

inflammatory molecules into the alveolar space.
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Figure 2: Alveolar fluid clearance pathways in the uninjured lung vs. the lung affected by ARDS
(A). In the uninjured lung, fluid is effectively cleared from the alveolar space by vectorial 

ion transport. Shown are the interstitial, capillary, and alveolar compartments of the lung, 

with pulmonary edema fluid in the alveolus. Both type I and type II alveolar cells are 

involved in transepithelial ion transport. Sodium (Na+) is transported across the apical side 

of the type I and type II cells through the epithelial sodium channel (ENaC), and then across 

the basolateral side via the sodium/potassium ATPase pump (Na/K-ATPase). Chloride (Cl-) 

is transported via the CFTR channel or by a paracellular route. Additional cation channels 

also transport ions across the alveolar epithelium (not shown). This vectorial ion transport 

creates an osmotic gradient that drives the clearance of fluid. Specifically, water (H20) 

moves down the osmotic gradient through aquaporin channels, such as aquaporin 5 (AQP5) 

or via an intracellular route (not shown). In the uninjured lung, this vectorial ion transport 

helps achieve effective alveolar fluid clearance.

(B). In lungs affected by ARDS, fluid is less effectively cleared from the lungs. First, 

hypoxia/hypercapnia result in downregulation of ENaC transcription and trafficking and less 

efficient function of the Na/K-ATPase. Second, high tidal volumes and elevated airway 

pressures injure the alveolar epithelium, inducing inflammation and cell death. Third, ARDS 

results in the formation of pro-inflammatory cytokines, which induce alveolar injury and 

cause reduced alveolar fluid clearance.
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Figure 3. Potential Mechanisms for the Therapeutic Effects of Mesenchymal Stromal Cells 
(MSCs) in ARDS
To date, multiple pre-clinical studies have demonstrated the therapeutic benefit of MSCs in 

the treatment of ARDS, and this diagram depicts our current mechanistic understanding of 

this therapeutic effect. First, MSCs secrete paracrine factors that modulate tissue repair 

through four mechanisms: (1) anti-inflammatory effects on host cells, (2) reduction of 

alveolar epithelial permeability in the lung, (3) increased rate of alveolar fluid clearance and 

(4) enhancement of host mononuclear cell phagocytic activity. Second, data suggests that 

MSCs directly transfer mitochondrial DNA to host cells, which also contributes to tissue 

repair and recovery. Third, MSCs secrete microvesicles that deliver micro RNA, RNA, 

proteins, and lipids to host cells.
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