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Under physiological and pathological conditions, mechanical 
forces generated from cells themselves or transmitted from 
extracellular matrix (ECM) through focal adhesions (FAs) and 
adherens junctions (AJs) are known to play a significant role in 
regulating various cell behaviors. Substantial progresses have 
been made in the field of mechanobiology towards novel 
methods to understand how cells are able to sense and adapt 
to these mechanical forces over the years. To address these 
issues, this review will discuss recent advancements of traction 
force microscopy (TFM), intracellular force microscopy (IFM), 
and monolayer stress microscopy (MSM) to measure multiple 
aspects of cellular forces exerted by cells at cell-ECM and 
cell-cell junctional intracellular interfaces. We will also high-
light how these methods can elucidate the roles of mechanical 
forces at interfaces of cell-cell/cell-ECM in regulating various 
cellular functions. [BMB Reports 2020; 53(2): 74-81]

INTRODUCTION

It is well established that mechanical forces around cells and 
cellular functions are closely related to each other under both 
physiological and pathological conditions (1, 2). These cellular 
forces are either generated from cells and then transmitted 
through actin stress fibers referred to as endogenous forces or 
transmitted from outside cells referred to as external forces (3). 
Advancements in the field of mechanobiology have provided 
much evidence that cells are able to sense and adapt to these 
mechanical forces around their microenvironment (4). It has 

been shown that mechanotransduction through cell-extra-
cellular matrix (ECM) adhesions (5), cell-cell junctions (6), plasma 
membrane (7), glycocalyx (8), and nucleus (9) can modulate 
various cell behaviors such as cell spreading (10), proliferation 
(11), differentiation (12-14), migration (15, 16), morphogenesis 
(7), cancer progression (17), and ECM remodeling (18, 19). 
Therefore, developing novel tools to discover how cells could 
dynamically sense and respond to these mechanical forces 
would be of great importance to understand the physiology 
and pathology in life science and bioengineering fields. 

Over the years, studies on mechanical forces have exten-
sively exploited functions of integrin-mediated FAs that can act 
as mechanotransducers between actomyosin stress fibers and 
ECMs-/polymer-based cell culture substrates with varying 
stiffness (13, 20). Moreover, it has been well established that 
the interplay among focal adhesions, cell surface integrins, and 
the stiffness of ECMs could play a significant role in regulating 
cell adhesion and spreading (21-23). For examples, it has been 
reported that the density of ECM ligands could control the 
spreading behavior of cells through focal adhesion (FA) 
assembly and that subsequent degree of cell spreading could 
regulate cellular functions through changes in cell shape, 
cytoskeletal tension, and Ras homolog family member A 
(RhoA) mediation (10, 24). In addition, seminal studies pio-
neered by Discher and Engler have reported that the stiffness 
of PAA-based hydrogels as cell culture substrates with tunable 
mechanical properties could determine the fate of human 
mesenchymal stem cells (hMSCs) by remodeling focal adhe-
sion and cytoskeleton (12, 25). These hMSCs adhered onto 
either “soft” or “stiff” matrix could sense biophysical and 
mechanical cues of the matrix having a native tissue-like 
stiffness, resulting in undergoing lineage-specific differentiation 
of hMSCs into various cell types depending on tissue-like 
elasticity. They also further reported that mechanotransduction 
for regulating stem cell fates could be primarily determined by 
matrix stiffness, not by ECM tethering or porosity of substrates 
(12, 26). Indeed, a comprehensive understanding of mechan-
obiology requires novel tools to measure the forces between 
cells and ECMs, which are termed as traction forces and the 
methods to quantify these forces using microscopy-based 
techniques are known as traction force microscopy (TFM) (27). 
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Table 1. Summary of each TFM-based cellular force measurement analysis

TFM
Methods

Target 
Forces

Dimension & 
Image acquisition

Substrate 
Materials Advantages Disadvantages Refs

Deformable 
material- 
based 
2D TFM

∙ Cell-ECM ∙ Cells on 
2D substrates∙ Force 
measurement 
in 2D∙ Epifluorescence 
microscopy

PAA, 
PDMS, 
PEG

∙ Simple experimental setups to 
prepare cell culture substrate∙ Tunable substrate stiffness with 
wide ranges by concentration of 
monomers and cross-linking agents∙ Scalable and economic∙ Showing flat physiological surface∙ Most popular and well verified 
method

∙ Essential to have reference image 
without force for force analysis∙ Required intensive image process-
ing and stress computation steps ∙ Unable to measure normal 
(out-of-plane) forces

(27, 31, 
32, 34)

Micropost- 
based 
2D TFM

∙ Cell-ECM ∙ Cells on 
2D arrays of 
microposts∙ Force 
measurement 
in 2D∙ Epifluorescence 
microscopy

PDMS 
(micro-
posts)

∙ Tunable stiffness by geometrical 
parameters of microposts, such as 
diameters and heights ∙ Simple process for force analysis 
due to no need for reference 
image without force∙ Higher degree of force sensitivity 
detected by bending of microposts

∙ Required sophisticated 
photolithography techniques for 
substrate preparation∙ Narrow range of stiffness ∙ Having discrete substrate morphol-
ogy and less physiological surface 
due to the distribution of adhesion 
molecules ∙ Unable to measure normal 
(out-of-plane) forces

(36, 37)

Deformable 
material- 
based 
3D (2.5D) 
TFM

∙ Cell-ECM ∙ Cells on 
2D substrates ∙ Force 
measurement 
in 3D∙ Confocal 
microscopy

PAA, PEG ∙ Enable to measure normal 
(out-of-plane) forces, allowing to 
understand cell behaviors in 3D∙ Simple experimental setups to pre-
pare cell culture substrate ∙ Tunable substrate stiffness with 
wide ranges by concentration of 
monomers and cross-linking agents∙ Flat physiological surface

∙ Required highly intensive image 
processing and stress computation 
steps compared to 2D TFM 
methods∙ Essential to have reference image 
without force for force analysis

(33, 41)

Deformable 
material- 
based 
3D TFM

∙ Cell-ECM ∙ Cells 
embedded 
in 3D matrix∙ Force 
measurement 
in 3D∙ Confocal 
microscopy

PEG, 
type I 
collagen

∙ Suitable to mimic in-vivo environ-
ment due to the 3D cell encapsula-
tion∙ Enable to measure normal 
(out-of-plane) forces, allowing to 
understand cell behaviors of 3D 
organoids in 3D ∙ Tunable substrate stiffness with 
wide ranges by concentration of 
monomers and cross-linking agents

∙ Required the most intensive image 
processing and stress computation 
steps∙ Essential to have reference image 
without force for force analysis, 
but it is difficult to acquire due to 
technical inability to remove cells 
within 3D substrate∙ Complex force analyses due to the 
non-linear material properties (type 
I collagen)

(42, 43)

Therefore, in this review, we will highlight recent advance-
ments in TFM-based methods for understanding multiple 
aspects of cellular forces exerted by cells at cell-ECM 
interfaces as well as at junctional intracellular domains within 
cellular microenvironment. Specifically, we will also discuss 
how the TFM-based methods can further elucidate the roles of 
mechanical forces at interfaces of cell-cell/cell-ECM in cont-
rolling various cellular functions. The different approaches and 
methods introduced in this review are summarized in Table 1 
and 2. 

ENGINEERING TOOLS TO MEASURE CELL-ECM 
FORCES

Deformable material-based TFM
The first approach to determine cellular traction force using 
TFM was reported by Harris et al. (28). Since then, TFM has 
become one of the most successful techniques to quantify 
cell-ECM forces. Recent fundamental and technological 
advancements in TFM have significantly enlightened our 
understanding of mechanobiological parameters in controlling 
biochemical response and cellular mechanotransduction at 
cell-matrix interfaces (29). To investigate these parameters, 
various engineering tools have been developed to measure 
traction forces exerted by adhered cells onto deformable 
substrates such as polyacrylamide (PAA), polyethylene glycol 
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Table 2. Summary of each IFM- or MNM-based cellular force measurement analysis

IFM & MSN
Methods

Target 
Forces

Dimension &
Image acquisition

Basic 
method for 
IFM & MSN

Advantages# Disadvantages# Refs

Deformable 
material- 
based 
2D IFM

∙ Cell-cell∙ Intra-
cellular

∙ Cells on 
2D substrate∙ Force 
measurement 
in 2D∙ Epifluorescence 
microscopy

Deformable 
material- 
based 
2D TFM

∙ Enable to quantify forces on 
cell-cell junction and 
intracellular organelles, such as 
adherens junctions and nucleus

∙ Intracellular tension is measured 
as an average value in 1D, and 
therefore, 2D mapping is not 
possible

(46, 52)

Micropost- 
based 
2D IFM

∙ Cell-cell∙ Intra-
cellular

∙ Cells on 
2D substrate∙ Force 
measurement 
in 2D∙ Epifluorescence 
microscopy

Micropost- 
based 
2D TFM

∙ Enable to quantify forces on 
cell-cell junction and 
intracellular organelles, such as 
adherens junctions and nucleus

∙ Intracellular tension is measured 
as an average value in 1D, and 
therefore, 2D mapping is not 
possible

(51)

Deformable 
material- 
based 
3D IFM

∙ Cell-cell∙ Intra-
cellular

∙ Cells on 
2D substrate ∙ Force 
measurement 
in 3D∙ Confocal 
microscopy

Deformable 
material- 
based 
3D (2.5D) 
TFM

∙ Enable to measure normal 
(out-of-plane) forces, allowing to 
understand cell behaviors in 3D∙ Enable to quantify forces on 
cell-cell junction and 
intracellular organelles, such as 
adherens junctions and nucleus

∙ Intracellular tension is measured 
as an average value in 1D, and 
therefore, 2D mapping is not 
possible

(47)

Deformable 
material- 
based 
2D MSM

∙ Cell-cell∙ Intra-
cellular

∙ Cells on 
2D substrate∙ Force 
measurement 
in 2D∙ Epifluorescence 
microscopy

TFM 2D
Micropost- 

based

∙ Enable to quantify forces on 
cell-cell junction and 
intracellular organelles, such as 
adherens junctions and nucleus∙ Enable to measure intracellular 
stress map in 2D, resulting in 
higher degree of spatial 
resolution

∙ Need to have heavy assumption 
that mechanical properties of in-
tracellular components, includ-
ing nucleus, plasma membrane, 
etc., are the same∙ Ignoring normal (out-of-plane) 
forces (no bending component)

(53, 54)

Deformable 
material- 
based 
3D MSM

∙ Cell-cell∙ Intra-
cellular

∙ Cells on 
2D substrate ∙ Force 
measurement 
in 3D∙ Confocal 
microscopy

Deformable 
material- 
based 
3D (2.5D) 
TFM

∙ Enable to measure bending 
stresses, allowing to understand 
inter-/intracellular behaviors in 
3D∙ Enable to quantify forces on 
cell-cell junction and 
intracellular organelles, such as 
adherens junctions and nucleus∙ Enable to measure intracellular 
stress map in 3D 

∙ Need to have heavy assumption 
that mechanical properties of 
intracellular components, 
including nucleus, plasma 
membrane, etc., are the same

(55)

#IFM and MSN analyses are proceeded using the basic information acquired from TFM, therefore IFM and MSN inherit advantages and disadvan-
tages of TFM-based force measurement analysis. 

(PEG), and polydimethylsiloxane (PDMS) known to have 
linearly elastic and isotropic properties in response to external 
force (27, 30, 31). Among these materials, the most extens-
ively used substrates in TFM thus far is a PAA-based elastic 
substrate firstly introduced by Dembo and his colleagues (27). 
Generally, in this approach, adhered cell-driven subtle 
deformation of a substrate less than submicron scale is 
measured by tracking the displacement of embedded 
fluorescent beads within PAA hydrogels while adhered cells 
undergo cell spreading or migration (Fig. 1A) (32). Subs-
equently, traction forces are calculated using constitutive 
equations by computational engineering analyses such as 

standard finite element method (FEM) (33) and Fast Fourier 
Transform (FFT) (34). 

Very recently, Razafiarison et al. (32, 35) utilized the 
aforementioned PAA hydrogel-based TFM method to unveil 
the relationship of mechanosensitivity of hMSCs to matrix 
stiffness with supramolecular self-assembly and topology of 
ECM ligands on biomaterial surfaces with respect to surface 
energy. The contribution of such relationship to stem cell 
lineage commitment was evaluated by TFM (32, 35). To 
validate the hypothesis that surface energy-driven ligand 
topology could regulate stem cell fates, they introduced 
hydrophobic-polydimethylsiloxane (PDMS) and its counterpart- 
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Fig. 1. Traction force microscopy (TFM)-based cell-ECM force 
quantification. (A) Schematic diagram for typical TFM platform 
using deformable substrates, where fluorescence beads (orange 
dots) are embedded. Cells can adhere to the substrate through 
surface-conjugated ECMs or protein ligands (purple line). Traction 
forces (indicated by red arrows) exerted by cells can cause subtle 
deformation of a substrate, where traction forces can be measured 
by tracking the displacement of fluorescent beads within the 
substrate. (B) Traction force stress map showing human bone 
marrow-derived mesenchymal stem cells adhered onto hydropho-
bic-polydimethylsiloxane (PDMS) and hydrophilic-PDMS with poly-
ethyleneoxide (PEO) (PEO-PDMS), with varying stiffness ranging
from 0.2-0.3 kPa (soft, 70:1) to 5-6 kPa (intermediate, 60:1). (C, 
D) Schematic and scanning electron microscopy (SEM) image of 
2D TFM by micropillars. Vertical arrays of PDMS microposts are 
fabricated by a photolithography technique. Cell spreads across 
multiple post beds on which ECMs are pre-coated. Adhered cells 
can exert traction forces. Traction forces are calculated from the 
deflection and material property (spring constant) of microposts. 
(E, F) Schematic representations of traditional 2D TFM method (E) 
and novel 3D TFM method (F). 3D TFM determines both hori-
zontal (h) and vertical (v) components of the displacement
vector (), allowing the calculation of a 3D traction force vector. 
(G) A breast tumor cell (yellow, MDA-MB-231 cell line) is 
embedded in 3D type I collagen matrix, visualized by reflective 
confocal images (cyan). (H) 3D rendering images of bead dis-
placements (blue) and cells (magenta) in 3D collagen matrix. 
*Figures adapted with permission from; Fig. 1A, B: ref. (32), Fig. 
1C, D: ref. (36), Fig. 1E, F: ref. (40), Fig. 1G, H: ref. (44).

hydrophilic-PDMS with polyethyleneoxide (PEO) (PEO-PDMS). 
Their stiffness varied from 0.2-0.3 kPa (soft, 70:1) to 5-6 kPa 
(intermediate, 60:1). Surfaces of these substrates were coated 

with type I collagen (Fig. 1B). Their results indicated that both 
incorporation of collagen and the increase of matrix stiffness 
could escalade traction forces on both hydrophobic PDMS and 
hydrophilic PDMS. In addition, adhered cells on both matrices 
having intermediated stiffness (5-6 kPa) showed a spreading 
morphology, resulting in osteogenic lineage commitment. On 
the other hand, addition of hydrophilic moiety (PEO) to PDMS 
in a soft rigidity (0.2-0.3 kPa) decreased traction forces. More 
importantly, cell spreading was inhibited through surface 
energy-driven collagen assembly, thus promoting adipogenesis 
of hMSCs rather than osteogensis. Taken together, these 
studies suggest that matrix stiffness alone could enable stem 
cells to differentiate into a certain lineage based on their native 
microenvironment having a tissue-elasticity. These studies also 
suggest that TFM can offer better understanding of how these 
stem cells sense matrix stiffness and their subsequent cell 
spreading and differentiation.

Micropost-based TFM
As an alternative to TFM using PAA hydrogel-based flat and 
continuous substrates, Chen and his colleagues have 
developed microfabricated post-array-detectors (mPADs) to 
manipulate spatial characteristics of substrates with tunable 
mechanical compliance (Fig. 1C and 1D). Subcellular traction 
force was calculated based on one-dimensional (1D) Hooke's 
law by measured deflection and spring constant of deformable 
posts (36). Very importantly, this study firstly suggested the 
possibility of tunable mechanical properties of micropost- 
based substrates by varying heights of deformable posts 
without changing their surface chemistry. In their follow-up 
studies using mPADs, Fu et al. (37) have investigated effects of 
micropost stiffness on cell morphology, cell traction force, and 
stem cell lineage commitment. As we discussed earlier 
regarding roles of matrix stiffness in stem cell differentiation, 
results also showed that cell surface areas, focal adhesions, 
and traction forces were all increased when the micropost 
became stiffer. Furthermore, they found a strong correlation 
between the traction force and stem cell lineage commitment 
into either osteogenic or adipogenic fate. 

In another study, Kiran et al. (36) have elucidated roles of 
cytoskeletal tension in regulation of RhoA activity known to 
regulate actin stress fiber formation and actomyosin cont-
ractility using pulmonary artery endothelial cells. They utilized 
micropost-based TFM to confirm that cytoskeletal tension- 
mediated traction forces were critical to activate GTP-bound 
RhoA and its downstream effector, Rho-associated protein 
kinase (ROCK), which was validated by suppressing actin cyto-
skeletal tension of cells using blebbistatin and cytochalasin D. 

Similar approaches have been applied to understand how 
traction forces could mediate cell shape changes such as cell 
spreading and flatting of human mesenchymal stem cells 
(hMSCs) and their differentiation into osteogenic lineage 
through RhoA/ROCK activation and cytoskeletal tension (38). 
In that study, Wang et al. (38) utilized mPADs with micro-
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contact printing of fibronectin (FN) into substrates to restrict 
the cell shape according to FN-patterned island size ranging 
from 625 to 10000 m2. They demonstrated that the degree of 
cell spreading was significantly higher in case of cells adhered 
to FN-coated substrate with larger sizes and that these cells 
could become highly stretched, resulting in increased actin 
stress fiber formation and traction forces. These results suggest 
that cell spreading could induce RhoA/ROCK signaling 
pathway-dependent cytoskeletal traction force and eventually 
promote osteogenic differentiation of hMSCs. 

In combination, these diverse reports indicate that there is a 
strong correlation between matrix stiffness and adhered cell- 
induced traction forces. The degree of traction forces could 
become one of the determinants for switching stem cell fates 
through cell spreading. 

Recent advancements on measuring three-dimensional (3D) 
TFM (3D TFM)
Cellular forces are known to predominantly occur in tangential 
(in-plane) directions (X, Y) with an assumption that there are 
no normal (out-of-plane) forces to the substrates beneath cells 
(Fig. 1E) (4). Therefore, TFM has been extensively used to 
calculate two-dimensional (2D) traction forces generated by 
adhered cells onto 2D substrates. More recently, however, 
several studies have reported 3D TFM methods to quantify 
both tangential and normal forces against 3D ECM by utilizing 
z-stacked 3D images obtained from confocal microscopy (33, 
39, 40). For example, Hur et al. (28) reported 3D TFM 
techniques to quantify 3D forces exerted by cells on 2D 
substrates, thus often called as 2.5D, in both tangential and 
normal directions. They were able to visualize 3D traction 
forces particularly at the cell-cell junctional and intracellular 
tensions in monolayers of vascular endothelial cells (Fig. 1F) 
(4, 33). This method enabled embedded cells to penetrate, 
stretch, and become physiologically similar cell shapes within 
3D hydrogels. Furthermore, they clearly explained that FAs 
were experiencing various out-of-plane rotational moments at 
different regions of either migrating or spreading cells (41).

Although mapping multi-dimensional traction forces with 
spatiotemporal manners is highly demanded, much less is 
known about how to quantify 3D traction forces exerted by 
cells within 3D microenvironments. To solve these issues, 
novel approaches have been reported to quantify the 
spatiotemporal nature of 3D traction forces exerted by cells 
within 3D hydrogels, exhibiting linear elastic properties (41, 
42). Legant et al. (43) firstly reported the most sophisticated 
3D TFM methods by encapsulating GFP-expressing fibroblasts 
into enzymatically degradable but linear elastic polyethylene 
glycol (PEG) hydrogels, rather than highly non-linear 3D 
biopolymers such as collagen, fibrin, and mixture of ECMs. 

As an alternative approach to measure 3D traction forces in 
native nonlinear and viscoelastic connective tissue-like micro-
environments, Steinwachs et al. (43) have utilized collagen- 
based 3D matrices as physiologically equivalent platforms. 

Their results showed that MDA-MB-231 breast carcinoma cells 
embedded in 3D collagen gels produced almost constant 
forces irrespective of the concentration or stiffness of collagen 
(43). Similarly, Hall et al. (44) have investigated mechanical 
interactions between encapsulated MDA-MB-231 breast car-
cinoma cells and fibrous 3D collagen networks using 3D 
single cell TFM methods. In that study, they established breast 
tumor-like microenvironments with varying microstructures 
and densities of 3D fibrous collagen networks exhibiting 
nonlinear elasticity. Their results revealed a positive mechanic-
al feedback loop. They indicated that cells could locally 
induce collagen fiber alignment, reinforce the collagen 
network, and then mechanically reinforce 3D collagen 
networks, which in return could create greater cellular traction 
forces evident by significantly long range of displacement 
propagation (Fig. 1G and 1H). Altogether, these studies 
highlight the great potential of 3D TFM methods to probe 
cell-induced multi-dimensional traction forces associated with 
FAs, actin cytoskeleton, and ECM remodeling. 

NOVEL METHODS TO UNDERSTAND JUNCTIONAL 
OR INTRACELLUAR FORCES

Intracellular force microscopy (IFM)
Soon after substantial progresses have been made in analyzing 
cellular traction forces via TFM, it has been suggested that the 
same principle as TFM could be extended to interpret average 
cell-cell junctional or intracellular forces by applying the same 
force balance principle. These methods are known as 
intracellular force microscopy (IFM) and monolayer stress 
microscopy (MSM) (45-47). Emerging evidences have suggest-
ed that adherent cells could exert normal forces to beneath 
substrates and that these forces are no longer ignorable. Thus, 
there have been numerous attempts to decipher spatiotem-
poral regulations of 3D forces around cells (33, 48). 
Furthermore, recent advances in IFM have unraveled import-
ant attributes of force transmission through cell-ECM and 
cell-cell adhesions or intercellular junctions-mediated force 
transmission to the ECM (49, 50). In addition, these IFM 
methods offer new opportunities to assess intracellular and 
intercellular forces in a group of cells such as cell-cell doublets 
(46, 51) and monolayers of cells. 

For example, to better understand endogenous intracellular 
forces, cell-cell tugging junctional forces between pairs of ECs, 
Liu et al. (51) enabled 2D IFM by utilizing microfabricated 
arrays of microneedles to evaluate intercellular tugging forces 
at cell-cell adherens junctions. Their study uncovered that 
intercellular forces could alter the size of AJs of ECs. They also 
found close correlations between adherens junction sizes and 
subsequent forces (Fig. 2A and 2B). Similarly, Chien and his 
colleagues (47) have expanded this idea into developing novel 
3D IFM methods to quantify 3D cell-cell junctional and 
intracellular forces of monolayers of ECs under static and 
dynamic shear flow conditions (Fig. 2C and 2D) (47). They 
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Fig. 2. Intercellular junctional force quantification by IFM. (A) Schematic diagram 2D IFM by micropillars for a pair of endothelial cells at 
cell-cell junctional interfaces. For a doublet of contacting cells, the net force encompasses both traction force Ti (red arrows) and the 
intercellular force Fc, (blue arrows). Cell-cell junction or intracellular force Fc plotted over cell A is defined as the net tugging force that 
cell A is exerting on cell B at the cell-cell junctional interface. Cell B is expected to pull on cell A with an equal amount of opposite 
force. (B) Cells adhered onto microposts are constricted to have a shape of a bowtie pattern by micropatterned of fibronectin (Cyan) (top). 
Arrows present the force vectors with direction and magnitude (bottom). Red arrows show individual traction forces and white arrows 
exhibit tugging force between two cells. (C) 3D IFM by a deformable substrate. Schematic of two cells on a substrate with traction stress 
TS (blue arrows) and cell-cell tension JT (red arrows). Cell-cell and intracellular forces are determined in 3D by the force balance on the 
ground of Newton's first law. (D) A phase contrast image of a pair of endothelial cells in contact (left) and corresponding contour and 
vector map of displacement of two endothelial cells (right). *Figures adapted with permission from ref. (51) for Fig. 2A, B and from ref. 
(47) for Fig. 2C, 2D.

investigated how fluid shear stresses could interplay with 3D 
cell-ECM, cell-cell, and intracellular forces of partially 
confluent or confluent monolayers of ECs, exhibiting both 
normal and tangential stresses exerted by monolayers of ECs. 
These results suggested that intracellular tension could be 
highly associated with chemo-mechanical feedbacks of ECs 
under the flow shear, allowing localization and growth of 
adherens junctions at cell-cell adherens junctions. 

In a similar approach using IFM-based methods, Ng et al. 
(52) have demonstrated the dynamics of E-cadherin-associated 
basal force fluctuations at intercellular adherens junctions of 
epithelial cells and quantified the force transmission at the 
cell-cell adherens junctions during spontaneous epithelial 
cluster formation. In that study, they revealed that at the 
multi-cellular level intercellular forces, the following transfer 
through cells required orchestrated changes in cell-matrix 
adhesions and actomyocin contraction within cells and their 
neighbors. Furthermore, they revealed that intercellular forces 
and force exchanges among neighboring cells were increased 
by recruitment of E-cadherin at cell-cell adherens junctions 
evident by IFM. Altogether, these results indicate that 
formation of cell-cell adhesion junctions plays an important 
role in the exchange of forces among cells within clusters or 
monolayers of cells.

Monolayer stress microscopy (MSM)
It has been shown that IFM-based methods have great 
advantages with little assumptions required for mechanical 
properties of cellular materials such as nuclei, plasma 
membranes, actin cytoskeletons, and cell-cell junctions to 
calculate intercellular or intracellular forces at adherens 

junctions. However, intercellular or intracellular tensions 
measured by IFM-based methods are averaged in-plane (in 2D) 
and mapped linearly (in 1D). Therefore, stresses could not be 
mapped on a 2D plane (53, 54). To resolve these challenges, 
Tambe et al. (53, 54) have developed a novel method, 
monolayer stress microscopy (MSM), to quantify forces within 
and between cell sheets. It can analyze forces based on an 
assumption that cells are made of one large sheet with one 
stiffness or Young's modulus. By employing MSM-based 
method, collective migration behaviors of endothelial and 
epithelial monolayers could be visible. Their results confirmed 
that collective migration of neighboring cells had to join forces 
together to transfer detectable stresses through cell-cell adher-
ens junctions.

Very recently, Serrano et al. (55) have developed a new 3D 
MSM method to quantify the collective generation and 
transmission of intracellular stresses within monolayers of ECs 
in micropatterned islands with varying sizes and shapes, 
where cell monolayers undergo bending stresses and lateral 
deformations. Their results revealed that these lateral 
deformations to cell monolayers could develop over long 
distances, whereas bending-associated stresses at cell-cell 
adhesions were predominantly localized within a few cell 
lengths. Taken together, these studies suggest that novel 
approaches using MSM-based methods offer the possibility to 
understand collective migration behaviors of cell sheets and 
cell-cell adherens junctional forces. 

CONCLUDING REMARKS

The past two decades have seen the development of a variety 
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of methods to measure cell-generated forces on FAs, AJs, and 
intracellular organelles via actin stress fibers. These methods 
have elucidated many aspects of mechanisms through which 
cells migrate, proliferate, differentiate, remodel, and 
mechanosense their microenvironment. In this review, we 
provided an overview of recent advancements of TFM 
quantifying cell-ECM forces (or traction forces) exerted on 
integrin-based focal adhesions and IFM and MSN quantifying 
cell-cell and intracellular forces applied through E-cadherin- 
based adherens junctions. As mechanobiology becomes more 
important in life science and engineering, TFM and IFM will 
play a fundamental role in elucidating cell functions related to 
mechanical force responses in biological research field. There 
is no doubt that these TFM-/IFM-based novel methods for 
understanding roles of biomechanical forces at interfaces of 
cell-cell/cell-ECM will open doors to breakthrough technol-
ogies for revolutionizing regenerative medicine, disease 
modelling, and drug discovery.
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