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Glutaredoxin 1 (GLRX1) has been recognized as an important 
regulator of redox signaling. Although GLRX1 plays an 
essential role in cell survival as an antioxidant protein, the 
function of GLRX1 protein in inflammatory response is still 
under investigation. Therefore, we wanted to know whether 
transduced PEP-1-GLRX1 protein inhibits lipopolysaccharide 
(LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced 
inflammation. In LPS-exposed Raw 264.7 cells, PEP-1-GLRX1 
inhibited cyclooxygenase-2 (COX-2), inducible nitric oxide 
synthase (iNOS), activation of mitogen activated protein kinases 
(MAPKs) and nuclear factor-kappaB (NF-B) expression levels. 
In a TPA-induced mouse-ear edema model, topically applied 
PEP-1-GLRX1 transduced into ear tissues and significantly 
ameliorated ear edema. Our data reveal that PEP-1-GLRX1 
attenuates inflammation in vitro and in vivo, suggesting that 
PEP-1-GLRX1 may be a potential therapeutic protein for 
inflammatory diseases. [BMB Reports 2020; 53(2): 106-111]

INTRODUCTION

Inflammatory response is known to be a defense against 
external harmful factors, such as microbial pathogens and 
chemicals. However, an excessive inflammatory response 

contributes to various disorders, including cardiovascular 
diseases, cancer, arthritis, and neuronal diseases (1, 2). It is 
well known that macrophages, which are important immune 
cells, regulate the inflammatory response and produce 
pro-inflammatory mediators and cytokines. These mediators 
and cytokines contribute to the pathogenesis of inflammation 
(3-6). Therefore, Gue et al. (2016) suggest that inhibition of 
pro-inflammatory mediators and cytokines is important for 
preventing the progression of inflammatory diseases (7). 

Nuclear factor-kappaB (NF-B) is well known to modulate 
the inflammatory response. NF-B is located in the cytoplasm 
as a complex with IB under normal conditions. However, 
NF-B is translocated to the nucleus under IB degradation 
when exposed to inflammatory stimuli, such as LPS (8). Also, 
other studies have shown that NF-B is an essential pathway 
associated with pro-inflammatory mediator production in the 
inflammatory response (9, 10). In addition, mitogen-activated 
protein kinase (MAPK) has been considered to be a typical 
molecular target for the development of anti-inflammatory 
agents. Several studies have reported that the activation of 
MAPKs leads to increased production of the pro-inflammatory 
mediators. Therefore, NF-B and MAPKs signaling pathways 
have been considered to be potential targets for anti- 
inflammatory drugs (9, 11-13). 

Human glutaredoxin (GLRX) is a small molecular-weight 
protein and a member of the thioredoxin family. In humans, 
GLRX1 is located in the cytosol, whereas GLRX2 is located in 
the mitochondria (14). Several studies have described GLRX1 
as being distributed in various tissues and as regulating 
redox-dependent signaling pathways. GLRX1 has a protective 
role against oxidative stress (15-17). Also, Cater et al. (2014) 
have shown that GLRX1 plays an important role as an 
antioxidant protein and protects against copper-induced 
toxicity and neuronal cell death (18). We also have reported 
that PEP-1-GLRX1 markedly protects against hippocampal 
neuronal cell damage by inhibiting oxidative stress (19). In this 
study, we investigated the function of PEP-1-GLRX1 against 
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Fig. 1. Purification and transduction of PEP-1-GLRX1 protein into Raw
264.7 cells. Purified PEP-1-GLRX1 and control GLRX1 proteins were 
confirmed by 15% SDS-PAGE and Western blot analysis (A). Trans-
duction of PEP-1-GLRX1 proteins into Raw 264.7 cells. PEP-1-GLRX1
protein (0.1-0.4 M) was added to the culture media for 1 h (B), 
PEP-1-GLRX1 protein (0.4 M) was added to the culture media for 
15-60 min (C). The stability of transduced PEP-1-GLRX1 protein was 
assessed after various time periods. The cells were treated with 
PEP-1-GLRX1 protein (0.4 M), incubated with 1-13 h, and analyzed
by Western blot analysis (D). The band intensities were measured by
densitometer. The data are presented as mean values ± SD (n = 3). 

Fig. 2. Effects of transduced PEP-1-GLRX1 protein on LPS-induced 
inflammatory response in Raw 264.7 cells. The cells were treated with
PEP-1-GLRX1 protein (0.4 M) for 1 h, and the cellular distribution 
of transduced PEP-1-GLRX1 protein was confirmed by fluorescence 
microscopy (A). Scale bar = 50 m. Subcellular localization of PEP- 
1-GLRX1 (B). The nuclear and cytosolic extracts were prepared from 
transduced and normal Raw 264.7 cells and analyzed by Western 
blotting. The cells were pretreated with PEP-1-GLRX1 protein (0.4 M)
for 1 h and then treated with LPS (1 g/ml). Expression levels of COX-2
and iNOS protein were measured by Western blot analysis (C). The 
band intensity was measured by densitometer. The data are presented as
mean values ± SD (n = 3). *P ＜ 0.01 compared with LPS-treated cells.

inflammatory responses in vitro and in vivo. 

RESULTS AND DISCUSSION

Transduction of PEP-1-GLRX1 into Raw 264.7 cells
PTDs including PEP-1 peptide are known to be small peptides that 
can transduce the plasma membrane either alone or combined 
with various macromolecules, such as proteins (20). PEP-1-GLRX1 
protein was produced as described previously (19). Purified 
PEP-1-GLRX1 was confirmed through SDS-PAGE and Western 
blotting with a histidine antibody (Fig. 1A). Next, we measured the 
transduction efficiency of purified protein into Raw 264.7 cells. 
Figs. 1B-1D show that PEP-1-GLRX1 concentration- and time- 
dependently transduced into the cells. Transduced PEP-1-GLRX1 
levels remained for up to a maximum of 9 h. We have also reported 
that this protein was transduced into HT-22 cells (19). However, 
the transduced levels of this protein into HT-22 cells remained 
longer than in Raw 264.7 cells. 

Effect of PEP-1-GLRX1 on expression of COX-2 and iNOS 
Since protein transduction is important for the development of 
therapeutic proteins, PTD-fused protein transduction can be used 
for the intracellular application of therapeutic proteins (20-24). In 
previous studies, we have demonstrated that PTD-fusion proteins 
were transduced into various cells (25-30). In this study, we first 
identified the distribution of transduced PEP-1-GLRX1 using 
fluorescence analysis. Green fluorescence signals were strongly 
observed in the cells treated with PEP-1-GLRX1, whereas cell 
treated with control GLRX1 did not show the fluorescence signals 

(Fig. 2A). Next, to identify the location of transduced PEP-1- 
GLRX1, we prepared nuclear and cytosolic fractions from the cells 
and did Western blotting using subcellular specific marker 
antibodies. Fig. 2B shows that transduced PEP-1-GLRX1 was 
distributed into the cytosol and nuclei of the cells. 

To find out whether PEP-1-GLRX1 has anti-inflammatory roles 
against LPS-exposed Raw 264.7 cells, we examined the expression 
of COX-2 and iNOS levels. Treatment with LPS markedly increased 
COX-2 and iNOS expressions levels more than did those in the 
control. PEP-1-GLRX1 treatment significantly reduced the COX-2 
and iNOS expression levels in the LPS-treated cells (Fig. 2C). These 
results suggest that transduced PEP-1-GLRX1 has anti-inflam-
matory effects by inhibiting pro-inflammatory mediators. Chung 
et al. (2010) showed that pro-inflammatory mediators increased 
in GLRX1 knockout mice more than in wild-type mice in a cigarette 
smoke-induced lung inflammation model, suggesting that the 
GLRX1 plays an important role in lung inflammation (31). In 
addition, other studies have shown that a pro-inflammatory 
response was increased in the lens and heart of GLRX1-deficient 
mice (32, 33). On the other hand, Aesif et al. (2011) reported that 
ablation of the GLRX1 protein attenuates LPS-induced pro- 
inflammatory responses by controlling S-glutathionylation- 
sensitive signaling pathways, suggesting that GLRX1 expression 
is critical for activating alveolar macrophages in an LPS-induced 
lung inflammation mice model (34). 
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Fig. 3. Effects of transduced PEP-1-GLRX1 protein on LPS-induced 
NF-B and MAPK phosphorylation in Raw 264.7 cells. The cells were
pretreated with PEP-1-GLRX1 protein (0.4 M) for 1 h and then treated
with LPS (1 g/ml). Phosphorylation of NF-B (A) and MAPK (B) levels
was measured by Western blot analysis. The band intensity was 
measured by densitometer. The data are presented as mean values
± SD (n = 3). *P ＜ 0.01 compared with LPS-treated cells. 

Fig. 4. Effects of PEP-1-GLRX1 protein on ear edema in a TPA-induced
mice model of inflammation. Ears of mice were exposed to TPA (1 
g/ear), and PEP-1-GLRX1 protein (10 g) was topically applied to mice
ears 1 h after TPA treatment for 3 days. Transduced PEP-1-GLRX1 protein
was confirmed by Histidine antibody (A). Scale bar = 50 m (top 
panel) and 25 m (bottom panel). The effects of PEP-1-GLRX1 protein
against TPA-induced ear edema was analyzed by hematoxylin and eosin
immunostaining, changes of ear thickness and ear weights, and monocyte
infiltration folds (B). Scale bar = 50 m (top panel) and 25 m (bottom
panel). *P ＜ 0.01 compared with TPA-treated mice. The data are 
presented as mean values ± SD (n = 5).

Effect of PEP-1-GLRX1 on the NF-B and MAPK signaling 
pathways
NF-B and MAPK signaling pathway promote the production of 
pro-inflammatory mediators. NF-B is one of the key transcription 
factors that control gene expression of pro-inflammatory 
mediators and cytokines (35, 36). Also, MAPK signaling pathways 
(ERK, p38, JNK) are crucial for NF-B activation and regulate the 
inflammatory response (37, 38). Therefore, we measured the 
effects of PEP-1-GLRX1 against LPS-induced phosphorylation of 
NF-B and MAPKs in Raw 264.7 cells. In the LPS-treated cells, 
phosphorylated NF-B and MAPKs expression levels were 
increased more than in the control. In contrast, PEP-1-GLRX1 
significantly reduced phosphorylated NF-B and MAPKs 
expression levels more than in the LPS-treated cells. Control 
GLRX1 did not alter phosphorylated NF-B and MAPKs expression 
levels (Fig. 3). These results suggest that transduced PEP-1-GLRX1 
inhibits inflammatory responses by regulating NF-B and MAPKs 
signaling pathways. In agreement with our results, Ryu et al. (2018) 
have reported that transduced PEP-1-GLRX1 inhibited 
phosphorylation of MAPK signaling in H2O2-exposed HT-22 cells 
(19). Other studies have reported that phosphorylated IB and 
p-65 protein expression levels were markedly increased in 
cigarette-smoke-induced lung inflammation GLRX1 knockout 
mice (31). In addition, several studies have reported that the 
phosphorylated NF-B and MAPKs expression levels were 
increased in LPS-treated macrophages (39-41). In contrast, 
overexpression of GLRX1 decreased S-glutathionylation IKK 
Cys179 and increased NF-B activation after oxidation induced 
by oxidative stress, suggesting that cellular content of GLRX1 
regulates the activation of NF-B under oxidative stress (42). Also, 
other studies have demonstrated that the cellular content of GLRX1 
is regulated by the proinflammatory stimuli. GLRX1 level was 
increased in bronchial epithelial cells of in mice with allergic 
airway inflammation, activation of NF-B and GLRX1 is also 
increased concomitant with activation of NF-B in the retinal glial 

cells (43-45). Therefore, these findings suggest that NF-B and 
GLRX1 may be regulated in a coordinated fashion. However, the 
role of GLRX1 in regulation of NF-B signaling is not completely 
understood yet. Further studies are needed. 

Effect of PEP-1-GLRX1 on mouse-ear edema
PTDs can effectively transduce exogenous macromolecules into 
cells and tissues (46). TPA is known as an inducer of skin 
inflammation, and several studies have used it to find out the effects 
of different treatments against skin inflammation (47-50). 
Therefore, we wanted to find out whether PEP-1-GLRX1 was 
transduced into mice ear tissue and whether it demonstrated 
protective effects against TPA-induced edema. After mice ears 
were treated with PEP-1-GLRX and TPA as described in Methods, 
we confirmed PEP-1-GLRX1 levels using immunohistochemical 
analysis. As shown in Fig. 4A, there were no changes in the His 
antibody staining in the control-, TPA-, and TPA ＋ control 
GLRX1-treated groups. However, fluorescent signals were 
markedly increased in the PEP-1-GLRX1-treated groups compared 
to that in the control and other groups. 

Further, we measured the effects of PEP-1-GLRX1 against 
TPA-induced mouse-ear edema. As shown in Fig. 4B, TPA-treated 
mice showed markedly increased ear thickness and weights 
compared to those in the control mice. PEP-1-GLRX1 drastically 
reduced ear thickness and weights more than in TPA-treated mice. 
However, there were no significant changes in the control 
GLRX1-treated mice compared to the TPA-treated mice. In 
addition, PEP-1-GLRX1 drastically reduced infiltration of 
monocytes, which is an early event in skin inflammation. Control 
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GLRX had a minimal effect. These results indicate that 
PEP-1-GLRX1 plays an anti-inflammatory role in TPA-induced skin 
inflammation. We have demonstrated that cell-permeable 
antioxidant PTD-fusion protein markedly inhibits TPA-induced 
inflammation in a mice model (27, 48). In addition, other studies 
have reported that antioxidant proteins play protective roles in 
inflammation (51, 52). However, the exact function of GLRX1 in 
inflammation requires further study. 

In summary, we have demonstrated that transduced PEP-1- 
GLRX1 markedly inhibits inflammation in vitro and in vivo by the 
reduction of inflammatory responses. Therefore, we suggest that 
PEP-1-GLRX1 may have applications in inflammatory disorders. 

MATERIALS AND METHODS

Materials and cell culture
We obtained PEP-1-GLRX1 and control GLRX1 protein were 
prepared as described previously (19). Histidine, COX-2, iNOS, 
p-p65, p65, p-IB, IB, p-p38, p38, p-JNK, JNK, p-ERK, ERK, 
and -actin antibodies from Santa Cruz Biotechnology (Santa Cruz, 
CA, USA) and Cell Signaling Technology (Beverly, MA, USA). LPS 
and TPA was purchased from Sigma-Aldrich (St. Louis, MO, USA). 
We obtained male ICR mice (4-6 weeks old) from the Experimental 
Animal Center at Hallym University. All other agents were of the 
highest grade available unless otherwise stated. 

Raw 264.7 murine macrophage cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM) containing 20 mM HEPES/ 
NaOH (pH 7.4), 5 mM NaHCO3, 10% fetal bovine serum (FBS) 
and antibiotics (100 g/ml streptomycin, 100 U/ml penicillin) at 
37oC under humidified conditions of 95% air and 5% CO2.

Purification and transduction of PEP-1-GLRX1 protein 
PEP-1-GLRX1 and control GLRX1 proteins were purified as 
described previously (19). To remove endotoxins from purified 
proteins, we treated the proteins with Detoxi-GelTM (Pierce, 
Rockford, IL, USA) according to the manufacturer’s instruction and 
confirmed the proteins (＜ 0.03 EU/ml) using a Limulus 
amoebocyte lysate assay (BioWhitaker, Walkersville, MD, USA) 
(27, 48). Then, the protein concentration was measured using the 
Bradford assay (53). 

To detect the transduction of PEP-1-GLRX1, we treated Raw 26.7 
cells with various concentrations of PEP-1-GLRX1 and control 
GLRX1 (0.1-0.4 M) for 1 h. Also, the cells were treated with 
PEP-1-GLRX1 and control GLRX1 (0.4 M) for various times (15-60 
min). Then the cells were treated with trypsin-EDTA, washed with 
phosphate-buffered saline (PBS), and harvested for Western blot 
analysis. 

Western blot analysis 
We did Western blot analysis as described previously (27, 48). 
Equal amounts of sample proteins were separated with 15% 
SDS-PAGE and transferred to a nitrocellulose membrane, which 
was blocked with 5% nonfat dry milk in TBST buffer (25 mM 
Tris-HCl, 140 mM NaCl, 0.1% Tween 20, pH 7.5) for 1 h. The 

membranes were immunoblotted with the indicated primary and 
HRP-conjugated secondary antibodies as recommended by the 
manufacturer. The protein bands were detected using enhanced 
chemiluminescent reagents (Amersham, Franklin Lakes, NJ, USA).

Fluorescence microscopy analysis 
Fluorescence microscopy analysis was done as described 
previously (27, 48). Raw 264.7 cells were grown on coverslips and 
treated with 0.4 M of PEP-1-GLRX1 for 1 h at 37oC. Then, the cells 
were washed twice with PBS and fixed with 4% paraformaldehyde 
for 5 min at room temperature. Then the cells were permeabilized 
and blocked for 40 min with 3% bovine serum albumin, 0.1% 
Triton X-100 in PBS (PBS-BT) and washed with PBS-BT. The 
primary antibody (Histidine) was diluted 1:2000 and incubated 
for 1 h at room temperature. The secondary antibody (Alexa Fluor 
488, Invitrogen) was diluted 1:15000 and incubated for 1 h at room 
temperature in the dark. Nuclei were stained for 2 min with 1 g/ml 
DAPI (Roche, Mannheim, Germany). We analyzed the 
distributions of fluorescence using a fluorescence microscope 
(Nikon Eclipse 80i; Nikon, Tokyo, Japan).

Subcellular fractionation of the transduced cells
The nuclear and cytosolic fractions were prepared as previously 
described (54). Transduced Raw 264.7 cells were washed with 
PBS, acid-washed with 0.2 M glycine-HCl, pH 2.2, and trypsinized 
for 10 min at 37oC. The cells were harvested after washing with 
cold PBS and pelleted. The cells were then resuspended in 1 ml 
of NP-40 buffer by gentle pipetting and incubated on ice for 10 
min. Cells were spun through a sucrose cushion at 1000 g for 10 
min, and the cytosolic fractions were collected from the 
supernatants. Pellets were washed with 1 ml of NP-40 buffer to 
completely remove cytosolic fractions. The nuclei were lysed in 
a lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.02% 
sodium azide, 100 g/ml PMSF, 1% Triton X-100). The resulting 
nuclear and cytosolic lysates were analyzed by Western blotting.

TPA-induced mouse ear edema model
Male ICR mice were housed at a constant temperature (23ºC) and 
relative humidity (60%) with a fixed 12 h light:12 h dark cycle and 
had free access to food and water. All experimental procedures 
involving animals and their care conformed to the Guide for the 
Care and Use of Laboratory Animals of the National Veterinary 
Research and Quarantine Service of Korea and were approved by 
the Hallym Medical Center Institutional Animal Care and Use 
Committee.

TPA-induced mouse-ear edema models were prepared as 
described previously (27, 48). To examine the effects of 
PEP-1-GLRX1 against TPA-induced ear edema, we divided the 
mice into four groups (n = 5 per group). The experimental groups 
were as follows: (1) normal control mice; (2) TPA-induced 
ear-edema mice; (3) TPA ＋ control GLRX1-treated mice; and (4) 
TPA ＋ PEP-1-GLRX1-treated mice. TPA (1.0 g) dissolved in 20 
l of acetone was applied to the inner and outer surfaces of the 
ears of the mice every day for 3 days. PEP-1-GLRX1 (10 g) protein 
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was topically applied to the ears of mice every day 1 h after TPA 
treatment. After the final treatment with TPA and PEP-1-GLRX1, 
we sacrificed the mice to obtain ear biopsies . Ear thicknesses were 
measured using a digital thickness gauge (Mitutoyo Corporation, 
Toyko, Japan). Ear weights were measured after 5-mm diameter 
ear biopsies were obtained from each group using a punch (Kai 
Industries, Gifu, Japan). For histological analysis, ear biopsies were 
fixed in 4% paraformaldehyde, embedded in paraffin, sectioned 
at a thickness of 5 m, and then stained with Histidine and 
hematoxylin and eosin. 

Statistical analysis
Data represent the mean of three experiments ± SD. Differences 
between groups were analyzed by one-way analysis of variance 
followed by a Bonferroni’s post-hoc test using GraphPad Prism 
software (version 5.01; GraphPad Software Inc., San Diego, CA, 
USA); P ＜ 0.05 was considered to indicate a statistically significant 
difference.
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