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Abstract

Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, 

suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical 

application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic 

acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns 

(HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native 

tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY 

significantly improved the growth, proliferation, and tendon-specific gene expressions of human 

adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin 

beta-4 (Tβ4) loaded PLGA/PLA HY presented a sustained drug release manner for 28 days and 

showed an additive effect on promoting HADMSC migration, proliferation, and tenogenic 

differentiation. Collectively, the combination of Tβ4 with the nano-topography of PLGA/PLA HY 

might be an efficient strategy to promote tenogenesis of adult stem cells for tendon tissue 

engineering.
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1. Introduction

Tendon is a bundle of fibrous connective tissue that plays a crucial role in our 

musculoskeletal mobility by providing stress transfer and joint stability [1]. However, tendon 

tissue is highly susceptible to be damaged by various physical exercises, tendon diseases and 

accidents, and it has an inherently poor healing capacity [2, 3]. Traditional clinical 

treatments for the augmentation and reconstruction of damaged tendon include autografts, 

allografts, and xenografts [4, 5]. These options have led to unreliable clinical outcomes, as 

these constructs provide a suboptimal mechanical and biochemical substrate to recreate the 

native tendon tissue [6, 7].

Tissue engineering (TE) has been recognized as a promising strategy for regenerative tendon 

repair [8, 9]. Many studies have emphasized the importance of appropriate design of fibrous 

scaffolds [10, 11], which could potentially mimic the fibrillary microarchitecture and the 

functional characteristics of native tendon extracellular matrix (ECM) [12–14]. At present, 

various fiber-fabricating techniques and textile processes have been employed to engineer 

and generate fibrous constructs [15, 16]. Two steps are commonly included, in which 

micrometer-scale yarns are produced through the wet or dry spinning process, and then are 

assembled into 2D or 3D constructs with tunable properties by textile technology, i.e., 

weaving, knitting, and braiding [17–19]. Recent studies have demonstrated that such textile-

based scaffolds could uniquely combine precisely controlled size, shape, and excellent load-

bearing and suture-retention strengths for tendon repair [20–22]. However, these textiles are 

generated from microfiber yarns (usually fiber diameter > 10 μm), which differ from the 

inherent nanoscale organization of collagen fibrils in native tendon ECM, inevitably 

resulting in reduced cellular activity and inferior regeneration outcome [23–25]. In the past 

few decades, electrospinning techniques have been developed to manufacture scaffolds with 

smaller diameter fibers [26–28]. The diameter of the fibers produced using electrospinning 

is in the range of 50–1000 nm, which is two to three orders of magnitude smaller than that 

formed by traditional fiber-fabrication processes [29, 30]. Electrospun nanofibrous scaffolds 

can closely mimic the diameter scale and topographical cues of collagen fibrils of native 

tendon ECM [31, 32], and have been extensively studied for tendon repair, showing 

excellent in vitro performance in terms of cell adhesion, spreading, and tenogenic 

differentiation of stem cells [33, 34]. However, most of these electrospun scaffolds are too 

weak to be surgically implanted or to mechanically support the primary tendon healing, 

especially for large animals and human [35–37]. Therefore, better scaffold design and 

fabrication recreating both tendon ECM-like hierarchical ultra-structures and bio-mechanical 

properties is urgently needed.

Another important aspect for tendon TE is how to promote tenogenic differentiation of stem 

cells and scar-less tendon healing [38–40]. Mesenchymal stem cells (MSC) have come to the 

forefront of tendon TE, due to their availability and tenogenic differentiation capacity [41, 
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42]. Previous studies demonstrated that the outcomes with fibrous scaffolds alone are 

unsatisfactory for tendon regeneration in animal models [43, 44]. Bioactive factor 

stimulation is recognized as a potential method to promote MSC tenogenesis in previous 

literatures [45–47]. This requires drugs and/or growth factors to be incorporated into fibrous 

scaffolds to regulate the differentiation of MSC. Thymosin beta-4 (Tβ4), a highly conserved 

water-soluble peptide factor, is found to be naturally produced in higher concentration in 

locations of tendon damage, promoting multiple biological activities including the 

promotion of scar-less tissue healing [48–50]. Tβ4 has also been demonstrated as a potent 

anti-inflammatory agent [51, 52]. Moreover, recent studies have shown that Tβ4 treatment 

could result in stem cell activation, direct cell migration and mediation of cell 

differentiation. The positive healing effect of Tβ4 has been observed in tendon, ligament, 

skin, heart and brain tissue [53–55].

To optimize TE matrices, we aimed to modify the commercially textile-used and 

biodegradable polylactic acid (PLA) microfiber yarns (MY) and generate a mechanically-

strong, nano-surface-possessed and bioactive-factor-involved hybrid yarns (HY) for tendon 

TE application. We first implemented a novel electrospinning device to continuously coat 

the PLA MY with poly(lactic-co-glycolic acid) (PLGA) nanofibers, thereby obtaining 

PLGA/PLA nanofiber/microfiber hybrid yarns (HY). PLA microfibers thereby provide 

mechanical and structural resistance, while the coated PLGA nanofibers are expected to 

improve the biological properties. In this study, we compared the structural and mechanical 

properties of PLA MY and PLGA/PLA HY. Furthermore, we compared human adipose 

derived mesenchymal stem cells (HADMSC) response to these two different yarns. Finally, 

we employed our PLGA/PLA HY as a drug delivery vehicle to encapsulate Tβ4, and 

investigated how the release of Tβ4 affected cell behaviors, including cell proliferation, 

migration, and tenogenic expression of HADMSC.

2. Materials and methods

2.1 Fabrication of PLGA/PLA HY with or without incorporation of Tβ4

A novel electrospinning setup was designed and implemented by our group as shown in Fig. 

1A. We employed a yarn-supply roll and one set of tension device to continuously convey 

PLA MY (Shaoxing Zhongfangyuan Co., Ltd, China). The PLA filament diameter was 

about 15 μm and the filament number was 18 for each PLA multifilament yarn. Two 

oppositely placed metal needles were applied with positive and negative voltages to generate 

PLGA (82/18 LG/GA, Corbion Purac) nanofibers. Two solution supplies were utilized to 

supply polymer solutions for the two metal needles with controllable solution flow rates. A 

rotating neutral metal disc (NMD) and a static neutral hollow metal rod (NHMR) placed 

oppositely in the middle of two needles were employed to collect and coat PLGA nanofibers 

on PLA MY and further process them into PLGA/PLA HY. The obtained PLGA/PLA HY 

were passed through the inner part of NHMR and gathered on a rotating collecting roll. For 

the fabrication of pure PLGA/PLA HY (without Tβ4), PLGA (1.2 g) was first dissolved in 8 

mL of hexafluoro-2-propanol (HFIP, Acros Organics) under stirring to obtain a 

homogeneous solution. Then PLGA solution was electrospun to generate PLGA/PLA N/M 

HY using our electrospinning setup with the following processing parameters: distance 
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between two needles 20 cm, distance between NMD and NHMR 7 cm, applied voltages of 

two needles ±12 kV, solution flow rate of both needles 1 mL/h, rotation speed of NMD 250 

r/min, and linear velocity of take-up roll 2 m/min. For the fabrication of Tβ4-loaded 

PLGA/PLA HY, two different dosages of Tβ4 (0.04 mg, or 0.4 mg) were dissolved in 500 

μL 1 % bovine serum albumin (BSA) solution and then mixed with PLGA (1.2 g), Span 80 

(100μL) and HFIP (8 mL) solution to form Tβ4/PLGA emulsion under stirring. Tβ4/PLGA 

emulsion was further electrospun to generate Tβ4-loaded PLGA/PLA HY using the same 

processing parameters as described for PLGA/PLA HY fabrication. Based on Tβ4 content, 

two different Tβ4 loaded PLGA/PLA HY were fabricated and denoted as L-Tβ4 

PLGA/PLA HY (with low Tβ4 dosage: 0.04 mg Tβ4 in 1.2 g PLGA) and H-Tβ4 

PLGA/PLA HY (with high Tβ4 dosage: 0.4 mg Tβ4 in 1.2 g PLGA), respectively.

2.2 Morphological and mechanical characterization of the yarn materials

Samples were examined via a scanning electron microscope (SEM, FEI Quanta 200) for 

morphology assessment after gold coating. The fiber diameter, yarn diameter and fiber angle 

distribution (relative to the horizontal axis) of the specimens (n = 3) were determined from 

the SEM images using Image J software (National Institutes of Health, USA). The angle 

distribution and mean diameter were determined from more than 100 randomly selected 

nanofibers in the SEM images. Uniaxial tension tests were performed using a XQ-2 fiber 

strength tester (Shanghai Lipu Institute of Applied Science and Technology, Shanghai, 

China). The tests were performed with a gauge length of 10 mm at a constant rate of 10 

mm/min until failure occurred. Twenty specimens were tested for each sample. The Young’s 

modulus at 5%−10% strain, ultimate stress and strain were determined.

2.3 Tβ4 release behavior from the hybrid yarns

Tβ4 loaded PLGA/PLA HY were immersed in individual centrifuge tubes containing 2 mL 

of phosphate buffer saline (PBS, pH 7.4) solutions, and all the tubes were kept in a shaking 

water bath at 37 °C. The PBS solutions were replaced with fresh PBS solutions at 

predetermined time intervals throughout 28 days. The Tβ4 concentration was measured 

using human Tβ4 ELISA Kit Assay (RayBiotech). The drug-release studies were performed 

in triplicate for all the conditions.

2.4 Cell seeding, culture and differentiation

Primary HADMSC were purchased from Lonza and cultured in growth medium (GM) 

consisting of DMEM/F12 (Invitrogen), 10 % FBS (Invitrogen) and 1% P/S (Invitrogen). 

HADMSC were used at passages 4–6. Tendon medium (TM) with DMEM/F12 medium, 2% 

FBS, 20 ng/ml TGFβ3 (PeproTech), was employed to induce tenogenic differentiation of 

HADMSC [23, 34]. In order to investigate the effects of Tβ4 on HADMSC in 2D culture, 

HADMSC were seeded in a 6-well plate at the density of 5000 cells per well with addition 

of Tβ4 (0, 40, 400, or 4000 ng Tβ4 in 4 mL TM per well). For cell seeding and culture on all 

the yarn samples, yarns were trimmed into the length of 2.2 cm, and were bundled together 

(15 yarns) using 5% (w/v) sodium alginate solution and 5% (w/v) calcium chloride solution 

as glue. Before cell seeding, the samples were sterilized by UV light for 2 h. The yarn 

bundles were transferred into silicone molds (22 mm length × 3 mm width, 1 mm thickness) 

for cell seeding. The HADMSC were seeded at a density of 1×105 cells per yarn bundle. For 

Wu et al. Page 4

Mater Sci Eng C Mater Biol Appl. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



all the cell culture experiments, cells were cultured in 5 % CO2 at 37 °C, and the medium 

was replaced every 2 days.

2.5 Cell Viability, proliferation and migration characterization

The viability and morphology of HADMSC cultured in different conditions were 

characterized by Live/Dead assay (Invitrogen) as previously described [24]. Calcein AM 

was utilized to stain the live cells, producing an intense green fluorescence in live cells. 

EthD-1 entered cells with damaged membranes and binded to nucleic acids, thereby 

producing a red fluorescence in dead cells. After 30 min incubation and staining, a confocal 

laser scanning microscopy (CLSM, LSM 710, Carl Zeiss) was employed to obtain 

fluorescence images. The cell proliferation tests of HADMSC on different scaffolds were 

conducted at predetermined time intervals by using MTT assay [34]. Cell-seeded yarn 

bundles were transferred into a 24 well plate. 1 ml fresh cell culture medium and 100μl MTT 

solution (5mg/ml) were further added. After 4 h incubation, the solution was removed, and 

DMSO (500 μl/well) were added to dissolve the formed formazan crystals. After all the 

formazan crystals were dissolved, 100μl formazan-DMSO solution was transferred to a 96 

well plate. The absorbance value at the wavelength of 540 nm were measured by using a 

microplate reader (Bio-Tek Instruments). The cell migration behavior on different yarn 

samples were examined by using a 3D printed rectangular frame with the sizes of 3 cm ×1.5 

cm, as shown in Fig. 5B. The yarns were twined to the frame as a bundle (with 15 yarns). 

HADMSC were seeded on one end of yarn bundle at a density of 1×105 cells, and the cell 

migration and proliferation behaviors were continuously observed throughout 21 days by 

using MTT assay.

2.6 Immunofluorescent (IF) staining

For IF staining, HADMSC-seeded samples were fixed in 4% paraformaldehyde, 

permeabilized in 0.2% Trion X-100 and then blocked with 1% BSA overnight at 4 °C [23]. 

The cell-seeded samples were then treated with primary antibodies to tenomodulin (TNMD, 

1:50, Abcam), collagen type I (COL1, 1:100, Santa Cruz Biotechnology) overnight at 4 °C. 

Secondary fluorescent antibodies were incubated for 2 h and nuclear counterstaining (Draq 

5, 1: 1000, Thermo Scientific) were performed for 30 minutes at room temperature. The 

stained samples were imaged with Zeiss 710 CLSM.

2.7 Total collagen content test

On day 21, the constructs were washed in PBS and dried using a vacuum freeze-drier 

(LABCONCO). After dry weight measurement, total collagen content was determined using 

a hydroxyproline assay [56]. The collagen values were calculated assuming 12.5% of 

collagen is hydroxyproline.

2.8 RNA isolation and qPCR

QIA-Shredder and RNeasy mini-kits (QIAgen) were utilized to extract total from cell-

seeded constructs, according to the manufactures’ instructions [23]. Total RNA was 

synthesized into first strand cDNA in a 20 μL reaction using iScript cDNA synthesis kit 

(BioRad Laboratories, USA). Real-time PCR analysis was performed in a StepOnePlus™ 
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Real-Time PCR System (Thermo Scientific) using SsoAdvanced SYBR Green Supermix 

(Bio-Rad). cDNA samples were analyzed for the gene of interest and for the housekeeping 

gene 18S rRNA. The level of expression of each target gene was calculated using 

comparative Ct (2 –ΔΔCt) method. All primers used in this study are listed in Supplementary 

Table S1.

2.9 Statistical Analysis

All quantitative data were expressed as mean ± standard deviation (SD). Pairwise 

comparisons between groups were conducted using ANOVA with Scheffé post-hoc tests in 

statistical analysis. A value of p<0.05 was considered statistically significant.

3. Results

3.1 Morphology and mechanical properties of electrospun PLGA/PLA HY

A schematic illustration presents the hybrid yarn fabrication process by using our modified 

electrospinning device (Fig. 1A). During the coating of electrospun PLGA nanofibers, two 

charged jets of PLGA solution erupted from the oppositely charged nozzles were attracted 

and collected between NMD and NHMR hence neutralizing the oppositely charged jets. By 

fastening the NHMR and rotating the NMD, twisted PLGA nanofibers were coated on the 

surface of PLA MY. Twisting could cause more interaction and greater cohesion between 

PLGA nanofibers and PLA MY in the resultant PLGA/PLA HY structure. In the current 

study, we tended to obtain the more aligned PLGA nanofibrous structure to mimic the 

aligned fibril structure in the native tendon, so a relatively low twist (about 1.25 twists of 10 

mm) was employed. A package of PLGA/PLA HY demonstrated that HY production with 

this system was reproducible in a continuous and large-scale manner (Fig. 1B). With this 

system, we can easily produce PLGA/PLA HY with near limitless length at the productivity 

rate of roughly 10 meters/min. SEM images (Fig. 1C and D) show the original uncoated 

PLA MY. The average diameters for PLA MY and individual fiber were 163.5±14.6 μm, and 

16.2±0.6 μm, respectively. SEM images of the fabricated PLGA/PLA HY are shown in Fig. 

1E and F. Generally, PLA MY were evenly and completely covered by a thin layer of PLGA 

nanofibers, without exposure of PLA MY on the HY surface. The average diameter of the 

PLGA/PLA HY slightly increased to 172.8±6.4 μm after the electrospinning coating 

process. Moreover, the PLGA nanofibers presented a highly smooth morphology without the 

occurrence of bead defects on the surface (Fig. 1F). The PLGA nanofibers had a relatively 

uniform diameter distribution with the mean value of 663.5±200.8 nm (Fig. 1G). It was also 

found that more than 90% of PLGA nanofibers were highly aligned along the HY 

longitudinal direction (within ±30°, Fig. 1H).

Mechanical performance is one of the essential requirements for structure-supportive tendon 

scaffold, as tendons are subjected to dynamic mechanical forces in vivo. Fig. 2A–E show the 

representative load-elongation curves and calculated mechanical properties of both PLA MY 

and PLGA/PLA HY. The results showed that PLGA/PLA HY had a higher failure load than 

the PLA MY (277.7 ± 9.0 cN for HY vs. 253.6 ± 10.7 cN for MY, p<0.01, Fig. 2B). There 

was no significant difference for ultimate tensile strength (Fig. 2C), Young’s moduli (Fig. 

2D) and strain at failure (Fig. 2E) between PLA MY and PLGA/PLA HY. The mechanical 
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property results indicate that the inner PLA microfibers are the primary providers of 

structural integrity and mechanical properties for the obtained PLGA/PLA HY. The coated 

PLGA nanofibers may slightly improve the load resistance capacity of PLGA/PLA HY, 

which was possibly attributed to an increase of internal forces produced between nanofibers 

and microfibers.

3.2 PLGA/PLA HY promoted HADMSC proliferation, alignment and tenogenic 
differentiation

We first seeded HADMSC on PLA MY bundles and PLGA/PLA HY bundles, then cultured 

them in TM for 21 days to determine how the matrix structure and topography affect cell 

behaviors. HADMSC cultured on the two yarn bundles showed high viability with very few 

dead cells (Fig. 3A, B). However, cell morphology varied in response to different yarn 

topography. HADMSC on the PLA MY bundles exhibited a less-expanded and irregular-

patterned morphology (Fig. 3A). In contrast, cells on PLGA/PLA HY were well attached 

and showed a spindle-shaped morphology, with extensive alignment along the nanofibers 

(Fig. 3B and Fig. S1). These indicated that HADMSC could sense the nanofiber-based 

topographic features and regulate their morphology by contact guidance phenomenon. A 

MTT assay was utilized to evaluate the proliferation of HADMSC on the two yarn bundles. 

The results demonstrated that the cell proliferation rate on the PLGA/PLA HY bundles was 

significantly higher than that on the PLA MY bundles at days 1, 7, and 21 (Fig. 3C).

Tendon-related protein markers were detected by IF staining (Fig. 3D–G). Higher 

expressions of TNMD and COL1 were observed in HADMSC cultured on PLGA/PLA HY 

bundles than those on PLA MY bundles. Importantly, the surface modification by coating 

with PLGA nanofibers also guided robust protein secretion along the nanofiber alignment, 

which could better mimic the ECM architecture of native tendon tissues (Fig. S2). In order 

to further evaluate phenotypic change of HADMSC, tenocyte-specific gene expressions were 

quantified by qPCR (Fig. 3H). Scleraxis (SCX) is a necessary transcription factor for 

tenogenesis, and tenascin C (TNC) is an early marker in embryonic tendon. COL1 and 

COL3 are the primary matrix components of native tendons, and TNMD is recognized as 

late marker for the mature tenogenic phenotype. We found that HADMSC on PLGA/PLA 

HY group had significantly upregulated SCX (6.6±2.4-fold increase; p<0.05), TNC 

(8.0±2.8-fold increase; p<0.05), COL1 (2.9±0.3-fold increase; p<0.01), and TNMD 

(4.1±1.5-fold increase; p<0.05) gene expression compared to those on PLA MY group. 

These results confirmed that the PLGA/PLA HY promoted tenolineage differentiation of 

HADMSC better than PLA MY. Together, these results demonstrated that the nanofibrous 

surface on the PLGA/PLA HY was notably effective in enhancing cell attachment, growth, 

proliferation, and tenogenic differentiation.

3.3 Tβ4 treatment increased HADMSC proliferation and upregulated the expression of 
tendon-specific markers in 2D culture

We first evaluated the dose- and time-dependent effects of Tβ4 on the proliferation rate of 

HADMSC in 2D culture. HADMSC cultured in 2D plate were treated with different 

concentrations of Tβ4 (0, 10, 100, and 1000 ng/mL) for 14 days. Live/dead assay showed 

that HADMSC cultured in all four groups possessed high cell viability (Fig. 4A). The MTT 
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results demonstrated that the number of cells cultured in all groups continued to increase up 

to day 14 (Fig. 4B). At day 1, the MTT absorbance for the three groups with Tβ4 treatment 

was significantly higher than the control group (without Tβ4). In addition, a statistical 

difference was also found between the 10 and 1000 ng/mL Tβ4 treated groups. At day 7, 

HADMSC proliferation rate also increased with the increasing Tβ4 dose, but there was no 

statistical difference between the 100 and 1000 ng/mL Tβ4 treated groups. At day 14, the 

cell number was observed to be significantly increased in the group treated with 1000 ng/mL 

of Tβ4 in comparison with control group.

IF staining and qPCR tests were further employed to evaluate the effects of Tβ4 on 

tenogenic differentiation of HADMSC. The expression of TNMD and COL1 was detected in 

all four groups, and increased in a Tβ4 concentration-dependent manner (Fig. 4C, D). As 

shown in Fig. 4E, HADMSC showed higher gene expressions of SCX, TNC, COL1, and 

TNMD in all the three Tβ4 treated groups than those in the control group. In addition, the 

expressions of these four genes presented an increasing trend with the increase of the Tβ4 

concentration. There was no statistical difference for SCX, COL1 and TNMD gene 

expressions between the 100 and 1000 ng/mL Tβ4 treated groups, and for TNC gene 

expression between the 10 and 100 ng/mL Tβ4 treated groups. The COL3 gene expression 

was comparable in both control and 10 ng/mL Tβ4 treated groups, and largely increased in 

the groups with high dosages of Tβ4. Taken together, these results demonstrated that the 

treatment of Tβ4 promoted proliferation and tenogenic differentiation of HADMSC in 2D 

culture.

3.4 Incorporation of Tβ4 into PLGA/PLA HY presented an additive effect on promoting 
HADMSC migration, proliferation, collagen secretion and tenogenic differentiation

The cumulative release profiles of Tβ4 from the L-Tβ4 PLGA/PLA HY and H-Tβ4 

PLGA/PLA HY were shown in Fig. 5A. Tβ4 release kinetics from both of PLGA/PLA HY 

were similar and characterized with a typical biphasic stage: an initial burst release followed 

by a steadier and slower release. The drug release amount from the L-Tβ4 PLGA/PLA HY 

and H-Tβ4 PLGA/PLA HY were 10.3±2.2 and 129.4±4.6 ng/mg nanofibers for the first 3 

days, and reached to 18.5±1.8 and 190.7±16.4 ng/mg nanofibers for the whole 28 days. The 

initial burst release was limited in our systems, indicative of relatively homogenous 

dispersion of encapsulated Tβ4 molecules within the PLGA/PLA HY.

The migration and proliferation of HADMSC on the surface of PLA MY and PLGA/PLA 

HY (with or without Tβ4) bundles was compared on our 3D printed frames after 1, 7, and 

21-day cultures (Fig. 5B). At day 1, the cells attached and concentrated on one end of the 

yarn bundles in the four groups, and no significant difference on cell migration was observed 

between these four groups. At day 7 and 21, HADMSC on the PLGA/PLA HY (without 

Tβ4) bundles exhibited an obviously higher cell migration rate than those on PLA MY 

bundles, confirming that the nanofibers on the PLGA/PLA HY could provide a favorable 

surface for cell attachment and migration. The encapsulation and release of Tβ4 in 

PLGA/PLA HY further enhanced the migration of HADMSC. The MTT results 

demonstrated that the combination of PLGA nanofibrous surface and Tβ4 had an additive 

effect on increasing the proliferation rate of HADMSC (Fig. 5C). The differentiated 
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HADMSC also showed high cell viability and extensively expressed TNMD on the 

PLGA/PLA HY with both low and high dose of Tβ4 (Fig. S3).

Collagen is the primary component ECM in native tendon, which plays an important role in 

maintaining the inherent structure and regulating the biological function of tendon tissue. 

Therefore, the total collagen content was detected on the four different HADMSC-seeded 

yarn bundles after 21day culture (Fig. 5D). The results showed that the lowest collagen 

content was observed in PLA MY group, and the collagen content presented a notably 

increasing trend on PLGA/PLA HY bundles with increasing Tβ4 dosage. We finally 

compared the tenogenic lineage-related gene expression level of HADMSC cultured on the 

PLGA/PLA HY bundles (with or without Tβ4) on day 21 (Fig. 5E). The results showed that 

the expressions of SCX, TNC, COL1, COL3, TNMD of HADMSC on the two groups with 

Tβ4 were significantly upregulated compared with PLGA/PLA HY alone group. Together, 

these results demonstrated that the effective combination of bioactive factor (Tβ4) with 

aligned nanofibrous surface topography (PLGA nanofibers) provided an instructive 

microenvironment for HADSMC activities, from the migration and proliferation, to collagen 

secretion and tenogenic differentiation.

Discussion

Native tendon tissue possesses the hierarchical architecture at various scale-levels, consisting 

of intensively packed aligned collagen fibrils (50–500 nm in diameter), which in turn 

organize to collagen fibers, and further form a higher level of collagen fascicles (150–1000 

μm in diameter) [57, 58], as shown in Fig. S2. In the design of a biomimetic scaffold for 

tendon regeneration, it is important to consider the high complexity of the natural tendon 

fibrous structure. Recently, the advances in engineering and knowledge of chemistry and 

biology have brought several fiber-fabrication technologies, which enable to mimic the 

tendon fibrous structure ranging from the nanometer to millimeter scale [37, 59]. For 

instance, the traditional textile techniques, like wet spinning or dry spinning, are commonly 

selected to mimic the collagen fibers with a diameter of less than 100 μm [60, 61]. 

Electrospinning has been recognized as a simple and straightforward method for nanofiber 

fabrication, which replicates the collagen fibrils [62, 63]. In our current study, we modified 

the typical electrospinning setup and developed a novel setup for continuously coating 

nanofibers onto biodegradable PLA microfiber yarns. By using this method, we successfully 

generated PLGA/PLA HY, which could combine the advantages of both nanofibers and 

microfibers to better resemble the tendon fibrous structure. Moreover, multiple PLGA/PLA 

HY were employed to form bundles for the replication of the hierarchical architecture of 

tendon fibers.

Engineering the topography of biomaterial scaffolds is an effective way to control the cell 

fate by mimicking the natural contact-mediated signaling events. Cells can sense and 

reshape in response to surface pattern features [64]. In this study, a uniform PLGA 

nanofibrous surface with a well-aligned fiber orientation was created on the PLA MY. The 

present results demonstrated that coating of electrospun PLGA nanofibers on PLA MY 

provided more cell adhesion sites, and significantly improved the proliferation, tendon-like 

ECM deposition, and tenogenic differentiation of HADMSC, compared to PLA MY. As 
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supported by prior studies, our findings confirmed that the combination of reduced fiber 

scale and aligned topography, guided cell alignment and organization, promoted the cell 

proliferation and differentiation, and introduced the collagen fibril formation along the 

arrangement direction of fibers, which resembled the collagen fibril order and structure of 

native tendon ECM [12, 65].

Apart from its hierarchical architecture, tendon is a connective tissue experiencing dynamic 

mechanical forces in vivo, which makes mechanical strength one of its the key properties 

[66, 67]. Strength is required to maintain the integrity and mechanical properties of tendon 

scaffolds during implantation and support loads until sufficient host tissue regeneration has 

occurred [68, 69]. Some synthetic materials including PLA, polyglycolic acid (PGA), and 

their copolymer PLGA are the most popular polymers in tendon TE, due to their 

biodegradability and biocompatibility [70–73]. Previous studies have indicated that PGA is 

mechanically stronger than PLA. However, PGA degrades at a faster rate, with mechanical 

strength decreasing rapidly after 2 to 4 weeks after implantation [74]. PLA MY may provide 

a more beneficial scaffolding material than PGA MY, as they maintain their mechanical 

properties for more than 12 months in tendon TE [41, 75, 76]. We therefore selected PLA 

MY as the base yarns to fabricate PLGA/PLA HY in our current study. Other studies 

indicated that the hydrophobicity of PLA could leaded to relatively low cell response in 

comparison with PLGA [77], and we thus coated electrospun PLGA nanofibers on the 

surface of PLA MY. The results showed that the hybrid structure of PLGA/PLA HY 

maintained mechanical integrity from the microfibers and provided a favorable surface for 

cell interaction from the nanofibers. Importantly, by changing the number of PLA MY in the 

hybrid structure and selecting the appropriate textile technique, including bundling, braiding, 

weaving and knitting, the mechanical properties of the final structure can be adapted to 

different natural tendon tissues properties.

Previous studies have indicated that fibrous scaffolds alone do not yield satisfactory 

outcomes of tendon repair [78, 79]. Therefore, incorporating bioactive molecules with ultra-

structures is critical in controlling stem cell fate in terms of cellular spatial arrangement and 

directional migration as well as cell proliferation and differentiation towards tenocytes in 

tendon TE. However, how to effectively introduce and accelerate MSC differentiation and 

maturation towards tenocytes still remains a challenging [80–82]. In the present study, we 

incorporated bioactive protein Tβ4 into electrospun PLGA nanofibers to provide effective 

biochemical clues for the hybrid yarns. The Tβ4 loaded PLGA nanofibers exhibited 

acceptable burst release of Tβ4 during the early stage and long-term sustained release of 

Tβ4 for about 28 days. Our preliminary experiment has demonstrated the function of Tβ4 in 

enhancing the proliferation and tenogenic differentiation of HADMSC in 2D culture. 

Furthermore, compared to PLGA/PLA HY alone, Tβ4 incorporated PLGA/PLA HY could 

not only orientate the alignment of HADMSC but also promote cell proliferation at a higher 

rate. As expected, Tβ4 incorporated HY also more effectively promoted teno-differentiation 

of HADMSC than HY alone as evidenced by tendon-specific proteins and genes expression. 

Interestingly, it was found that the encapsulation of Tβ4 into HY could significantly promote 

HADMSC migration compared with the HY alone. This plays a key role in to achieve early 

bridging of damaged tendon tissues in vivo. Other studies have demonstrated Tβ4 to 

promote cell migration, and enhance tendon repair and scarless wound healing [48, 50, 83]. 
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Our data confirmed that the integration of topographical and chemical cues promoted better 

tenogenic commitment of HADMSC compared with an individual physical stimulation.

In summary, our Tβ4 loaded PLGA/PLA HY has four major advantages for tendon TE: (1) 

imitation of the hierarchically and anisotropically aligned structure of tendon ECM in 

various scales ranging from nanometer to micrometer level, (2) robust tendon mechanical 

properties, (3) recreation of essential topographical and biochemical features for migration, 

proliferation, alignment and tenogenic differentiation of HADMSC, and (4) potential for 

development of further complex architectures by textile-forming technology. Clinically, it is 

envisioned that our Tβ4 loaded PLGA/PLA HY could be effectively utilized to create 

regenerating tendon tissue constructs for connective tissue engineering. Future studies 

should further elucidate the signaling pathway of the interplay of nanofibrous topography 

and biochemical cues during tenogenic differentiation using Tβ4 loaded PLGA/PLA HY. 

Furthermore, the in vivo validation of these tissue-engineered tendon constructs will be 

required.

Conclusions

In this study, we developed a novel approach and electropinning setup for nano-surface 

coating of biodegradable PLA microfiber yarns with conformal layers of electrospun PLGA 

nanofibers. A bioactive protein factor, Tβ4, was further encapsulated into PLGA nanofibers 

during electrospinning process, resulting in nano-surface-possessed and bioactive-factor-

involved PLGA/PLA HY for tendon TE application. The additive effects of PLGA 

nanofibers coating and Tβ4 incorporating endowed the modified PLGA/PLA HY with both 

contact-guidance and bioactive chemical cues, which provided an instructive 

microenvironment for HADMSC behaviors in terms of cell proliferation, directional 

alignment and migration, collagen secretion, and tenogenic differentiation. Meanwhile, the 

inherent PLA microfibers in the PLGA/PLA HY supplied robust mechanical performances 

for the structural integrity and load resistance. The Tβ4 loaded PLGA/PLA HY 

demonstrated great similarity with native tendons in architectural features, mechanical 

properties, and facilitate biological functionality. This study therefore provides key insights 

into the regulation of the tenogenic differentiation of stem cells and the fabrication of native 

ECM-like biological substitutes for tendon regeneration.
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Fig. 1. 
Fabrication of PLGA/PLA nanofiber/microfiber HY. (A) Schematic illustration of the 

modified electrospinning system for coating electrospun PLGA nanofibers on the surface of 

PLA MY to generate PLGA/PLA HY. (B) Photograph of a PLGA/PLA HY package with 

fabrication and electrospinning for 4 hours. (C, D) SEM images of the original PLA MY; (E, 

F) SEM images of the obtained PLGA/PLA HY. Scale bars: 200 μm for (C) and (E); 20 μm 

for (D) and (F). (G) Fiber diameter distribution of PLGA nanofibers on the surface of 

PLGA/PLA HY. (H) Orientation angular distribution measurement of the PLGA nanofibers 

on the surface of PLGA/PLA HY.
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Fig. 2. 
Characterization of tensile properties of PLA MY and PLGA/PLA HY. (A) Representative 

stress-strain curves. (B) Failure load (C) Ultimate tensile strength. (D) Young’s modulus. (E) 

Strain at failure. (n=20; ** p<0.01.)
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Fig. 3. 
The coating of PLGA nanofibers on the surface of PLGA/PLA HY promoted HADMSC 

alignment, proliferation, and tenogenic differentiation. (A, B) Representative fluorescent 

images of living cells (green) and dead cells (red) of HADMSC seeded on PLA MY bundles 

and PLGA/PLA HY bundles conditioned in TM for 21 days. Scale bar: 100 μm. (C) Cell 

proliferation quantification by MTT assay at day1, 7, and 21 for HADMSC cultured on the 

two different yarn bundles in TM (n=5; **p<0.01). (D, E) IF staining for TNMD (green), 

and nuclei (blue) of HADMSC after 21-day tenogenic differentiation. Scale bar: 100 μm. (F, 

G) IF staining for COL1 (green), and nuclei (blue) of HADMSC after 21-day tenogenic 

differantiation. Scale bar: 100 μm. (H) qPCR analysis of SCX, TNC, COL1A1, COL3A1, 

and TNMD gene expression on HADMSC-seeded PLA MY and PLGA/PLA HY bundles. 

Relative gene expression is presented as normalized to 18S and expressed relative to 

HADMSC-seeded PLA MY bundles (n=3; *p<0.05, **p<0.01)

Wu et al. Page 18

Mater Sci Eng C Mater Biol Appl. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The dose and time-dependent effects of Tβ4 on the proliferation rate, and tenogenic 

differentiation of HADMSC in 2D culture. (A) Live/Dead images for HADMSC treated with 

different doses of Tβ4 for 14 days. Scale bars: 100 μm. (B) MTT results of HADMSC 

cultured by different concentrations of Tβ4 at day1, 7 and 14 (n=5; bars that do not share 

letters are significantly different from each other (p<0.05), there is a statistical difference 

between the groups with “&” and “$”, also between “%” and “#” (p<0.05)). (C, D) IF 

staining for tendon-associated proteins (TNMD, and COL1) for HADMSC treated with 

different doses of Tβ4 for 14 days. Scale bars: 100 μm. (E) qPCR analysis of SCX, TNC, 

COL1A1, COL3A1, and TNMD gene expression of HADMSC treated with different doses 

of Tβ4 for 14-day culture. Relative gene expression is presented as normalized to 18S 

expressed relative to HADMSC none-treated with Tβ4. (n=3; bars that do not share letters 

are significantly different from each other (p<0.05)).
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Fig. 5. 
The incorporation of Tβ4 enhanced cell proliferation, directional alignment and migration, 

collagen secretion, and tenogenic differentiation. (A) Cumulative release of Tβ4 from 

PLGA/PLA HY with different dosages of Tβ4 after incubation in PBS at 37 °C. (B) The 

dose and time-dependent effects of Tβ4 on the migration of HADMSC seeded on PLA MY 

and PLGA/PLA HY bundles. (C) The effects of Tβ4 on the proliferation rate of HADMSC 

seeded on PLA MY and PLGA/PLA HY bundles with and without Tβ4. (n=5; bars that do 

not share letters are significantly different from each other (p<0.05), and comparative 

analysis between the four different groups was only conducted for the same time point). (D) 

Total collagen content of HADMSC seeded on four different yarn bundles for 21-day 

culture. (n=5; bars that do not share letters are significantly different from each other 

(p<0.05)). (E) qPCR analysis of tendon-related genes (SCX, TNC, COL1A1, COL3A1, and 

TNMD) of HADMSC seeded on three PLGA/PLA HY bundles with and without Tβ4 for 21 

days. Relative gene expression is presented as normalized to 18S and expressed relative to 

HADMSC seeded on PLGA/PLA HY without Tβ4 (n=3; bars that do not share letters are 

significantly different from each other (p<0.05)).
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