
Graph theoretical analysis of functional network for 
comprehension of sign language

Lanfang Liua,e, Xin Yanb, Jin Liua,e, Mingrui Xiaa,e, Chunming Lua,e, Karen Emmoreyc, 
Mingyuan Chud,*, Guosheng Dinga,e,*

aState Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 
100875, PR China

bDepartment of Communicative Sciences and Disorders, Michigan State University, East Lansing 
Michigan 48823, United States

cLaboratory for Language and Cognitive Neuroscience, San Diego State University, 6495 
Alvarado Road, Suite 200, San Diego, CA 92120, United States

dSchool of Psychology, University of Aberdeen, AB24 2UB, United Kingdom

eIDG/McGovern Institute for Brain Research, Beijing Normal University, PR China

Abstract

Signed languages are natural human languages using the visual-motor modality. Previous 

neuroimaging studies based on univariate activation analysis show that a widely overlapped 

cortical network is recruited regardless whether the sign language is comprehended (for signers) or 

not (for non-signers). Here we move beyond previous studies by examining whether the functional 

connectivity profiles and the underlying organizational structure of the overlapped neural network 

may differ between signers and non-signers when watching sign language. Using graph theoretical 

analysis (GTA) and fMRI, we compared the large-scale functional network organization in hearing 

signers with non-signers during the observation of sentences in Chinese Sign Language. We found 

that signed sentences elicited highly similar cortical activations in the two groups of participants, 

with slightly larger responses within the left frontal and left temporal gyrus in signers than in non-

signers. Crucially, further GTA revealed substantial group differences in the topologies of this 

activation network. Globally, the network engaged by signers showed higher local efficiency (t(24) 

= 2.379, p = 0.026), small-worldness (t(24) = 2.604, p = 0.016) and modularity (t(24) = 3.513, p = 

0.002), and exhibited different modular structures, compared to the network engaged by non-

signers. Locally, the left ventral pars opercularis served as a network hub in the signer group but 

not in the non-signer group. These findings suggest that, despite overlap in cortical activation, the 

neural substrates underlying sign language comprehension are distinguishable at the network level 

from those for the processing of gestural action.
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1. Introduction

Signed languages are natural human languages expressed through movements of hands, face 

and body. On the surface, signed languages look similar to non-linguistic communicative 

actions such as gestures and pantomimes. In contrast to gestural actions, signed languages 

have an intricate compositional structure identified at the levels of phonology, morphology, 

syntax and discourse (Emmorey, 2002; Tang, 2006; Valli and Lucas, 2000). Studying how 

sign language is processed in the brain could provide important insights into understanding 

to what extent language processing builds upon the general human action perception system, 

which encompasses a wide range of human actions including imitation, social intent, and 

human language (Corina and Knapp, 2006; MacSweeney et al., 2008; Rizzolatti and Arbib, 

1998).

Based on univariate activation analyses of neuroimaging data, previous studies using MEG 

(Levanen et al., 2001), PET (Corina et al., 2007) or fMRI (Emmorey et al., 2010; 

MacSweeney et al., 2004, 2006; Newman et al., 2015) have revealed both extensive overlap 

and linguistic-specific cortical activations between sign language comprehension and 

gestural action observation. Overlaps in cortical activation are mainly observed in the 

superior and middle temporal cortex, the inferior frontal cortex, the superior/inferior parietal 

lobe, and the fusiform gyrus. For example, MacSweeney et al. (2004) compared neural 

correlates of viewing British sign language and a manual-brachial code in deaf signers, 

hearing signers and hearing non-signers. A very high similarity in brain activation relative to 

a low baseline (viewing the model at rest) between the two conditions was found regardless 

the hearing status or sign language knowledge of subjects. Studies comparing signers and 

non-signers viewing sign language have also revealed extensive overlap in cortical activation 

(Levanen et al., 2001; MacSweeney et al., 2004, 2006). In this paradigm, as non-signers 

have no access to the linguistic meaning of signs, signs are likely to be processed in a similar 

way as non-linguistic gestural actions (Levanen et al., 2001; MacSweeney et al., 2004). 

Therefore, the differences between signers and non-signers can be considered to reflect the 

differences between sign language comprehension and gestural action observation (Levanen 

et al., 2001), meanwhile perceptual level discrepancies between language and non-linguistic 

stimuli are ideally controlled. These overlapped cortical activations are suggested to reflect 

the processing for visual motor sequences and communication intent that are involved in 

both sign language comprehension and gestural action observation. Beyond these shared 

neural correlates, sign-specific cortical activation was also revealed in previous studies 

(Corina et al., 2007; Emmorey et al., 2015; Newman et al., 2015), mostly at the left posterior 

perisylvian cortex. For example, Newman et al. (2015) found that the left inferior frontal 

gyrus (IFG) and the middle superior temporal gyrus (STS) in deaf native signers were more 

strongly activated by American sign language (ASL) than gestures expressing approximately 

the same content. In the same study, deaf signers also showed stronger activation for ASL 

than hearing non-signers in the anterior/middle STS bilaterally and in the left IFG.
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While studies based on univariate activation analysis have delivered rich insights into the 

cortical localization for sign language comprehension versus gestural action perception, 

whether and how the two types of processing would differ at neural network level remain 

poorly understood. As accumulating evidence confirms that complex cognitive functions are 

supported by dynamic interactions and integrative processes across multiple distributed 

regions (Park and Friston, 2013; van den Heuvel and Sporns, 2013a,b,c), it is possible that 

the configuration of the neural network involved in the comprehension of sign language by 

signers is different from the one involved in the observation of sign language by non-signers, 

despite the overlap in cortical activation.

Here we move beyond previous studies by examining the network configuration of neural 

circuitry involved in the comprehension of sign language by signers versus the observation 

of sign language by non-signers using fMRI and GTA, which provides insights into neural 

substrates underlying sign language comprehension versus gestural action perception. In 

GTA, brain networks are mathematically characterized as graphs, essentially comprising sets 

of nodes (brain regions, voxels or other neuronal elements) and edges (their interactions). 

The arrangement of nodes and edges defines the network’s topology (He and Evans, 2010; 

van den Heuvel and Sporns, 2013a,b,c). It is widely accepted that functional segregation and 

functional integration are the key organizational principles of brain network (Sporns, 2013). 

In GTA, functional segregation can be characterized by network local efficiency and 

modularity, and functional integration can be characterized by network global efficiency. 

The balance between functional segregation and functional integration is essential for the 

operation of networks underlying cognitive functions, and it can be characterized by the 

graph property of small-worldness (Rubinov and Sporns, 2010). Furthermore, it is proposed 

that important integrative functions are enabled by a specific set of regions that are often 

referred to as network hubs, which are generally characterized by a high degree of 

connections with other nodes and a central placement in the network (van den Heuvel and 

Sporns, 2013a,b,c).

In the present study, we compared brain activities and functional organization of the 

activated network between a group of hearing signers (bimodal bilinguals proficient in 

Chinese Sign Language and spoken Chinese) and a matched group of hearing non-signers 

(monolinguals proficient in spoken Chinese) during the perception of Chinese Sign 

Language (CSL). In the first step analysis, cortical activations that were elicited by sign 

language relative to a static model baseline condition were examined for the signer and non-

signer groups. Based on prior literature (Corina et al., 2007; Levanen et al., 2001; 

MacSweeney et al., 2004, 2006), we expected that sign language would yield similar 

activations for the two groups in a widely distributed set of brain areas, including the 

occipital-parietal regions and regions within the perisylvian cortex, with differential 

activations in focal regions of the temporal and frontal cortices. In the second step analysis, 

we applied GTA to test whether the commonly activated network would be differentially 

organized in signers compared to non-signers. At global level, we examined network 

efficiency, modularity and small-worldness. At local level, we examined nodal degree, nodal 

efficiency and nodal betweenness. Through these measures, we comprehensively explored 

the functional segregation and functional integration aspects of the network, and identified 

regions that playing a central role in the network. Considering that the CSL is linguistically 
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meaningful for the signers, but linguistically meaningless for the non-signers, we expected 

that the network engaged by signers would present different topologies from that engaged by 

non-signers. We also performed two control analyses including the examination of the 

topological properties of the network in signers versus non-signers either during the baseline 

phase (in which no linguistic processing was involved) or during passive spoken Mandarin 

comprehension (in which common linguistic processing was engaged). The preprocessing 

strategy, nodes components and thresholds adopted were identical to the main analyses.

2. Results

2.1. Local activations

Using conventional activation analysis, we observed highly similar cortical activations in 

signers and non-signers in response to the signed sentences (see Fig. 2). Those activated 

regions included the inferior frontal gyrus, the inferior parietal, posterior temporal and 

occipital regions and the cerebellum in both hemisphere, as well as several sub-cortical 

regions including the putamen and thalamus. For the between group contrast, no region 

survived multiple comparison corrections (p < 0.05, FDR corrected). However, at a more 

lenient threshold of p < 0.005 without correction, we observed enhanced activation in focal 

areas within the left superior/middle temporal gyrus, left precentral gyrus and the bilateral 

supplementary motor area for signer group than for the non-signer group (see Table 1 in 

supplementary material)

2.2. Network topologies

2.2.1. Global network properties—Networks consisting of regions that were activated 

to the same extent in the signer and the non-signer groups were subjected to graph 

theoretical analysis. In both groups, the networks displayed significant small-world 

(expressed by σ > 1) and modular (expressed by z-score of modularity >2.58) organization. 

There was no significant group difference in global network efficiency at any point of the 

threshold range (0.3 ≤ T ≤ 0.6). However, the network engaged by signers exhibited 

significantly higher local efficiency (for 0.3 ≤ T ≤ 0.34 and 0.4 ≤ T ≤ 0.48), modularity (for 

0.3 ≤ T ≤ 0.6) and small-worldness (for 0.3 ≤ T ≤ 0.6) than that engaged by non-signers. T-

tests on the sparsity-integrated measures revealed similar results, with the network engaged 

by signers showing significantly higher local efficiency [∫0.3
0.6E(local), t(24) = 2.379, p = 0.026, 

Cohen’s d = 0.933], modularity [∫0.3
0.6Q, t(24) = 3.513, p = 0.002, Cohen’s d = 1.378] and 

small-worldness [∫0.3
0.6σ, t(24) = 2.6042, p = 0.016, Cohen’s d = 1.022], while the network 

global efficiencies(∫0.3
0.6E(glob)) did not differ between the two groups (t(24) = −0.255, p = 

0.801, Cohen’s d = 0.100). See Fig. 3 for a summary of these findings. The results of 

permutation test were highly consistent with these derived from the t-tests (see 

supplementary information).

2.2.2. Network modules—The modularity analysis was further performed in group-

level networks to determine the modular structures in signers and non-signers. Fig. 4(left) 

shows the module assignments over a range of thresholds. We identified a modular partition 
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that showed the highest similarity with other modular partitions obtained across the 

thresholds as the representative modular structure of the network. In the signer group, 

module partitions obtained at thresholds ranging from 0.36 to 0.46 had identical nodal 

assignments, and showed the highest similarity (NMI = 0.84) with other modular partitions 

across the threshold range. This representative modular structure consisted of three modules. 

The first module was located in frontal and parietal cortices, including bilateral middle 

frontal gyrus, bilateral precentral gyrus, left supplementary motor area, bilateral inferior and 

superior parietal lobule, and supramarginal gyrus. The second module was composed of 

anatomically distributed regions, including bilateral inferior frontal gyrus, inferior and 

middle temporal regions, occipital regions, putamen, right thalamus and right cerebellum. 

The third module consisted of the bilateral pars triangularis in the inferior frontal gyrus and 

the left superior occipital gyrus. For the non-signer group, the representative modular 

structure was the partitions obtained at thresholds ranging from 0.48 to 0.60, with a NMI 

value of 0.84. This representative modular structure consisted of two modules that have very 

similar nodal assignment to the first two modules in the signer group. Fig. 4(right) shows the 

representative modular structures mapped onto the brain surface for the signer and non-

signer groups.

2.2.3. Network hubs—Based on the group-mean nodal degree, efficiency, and 

betweenness, we identified hubs in networks engaged by signers and non-signers separately. 

In the signer group, network hubs were located in the left middle temporal gyrus (MNI 

coordinates for the center: −24, −91, 13), the left superior occipital gyrus (MNI coordinates 

for the center: −24, −76, 37) and the left ventral pars opercularis (MNI coordinates for the 

center: −51, 11, 4). In the non-signer group, the left middle temporal gyrus and the left 

superior occipital gyrus also served as hubs, and an additional hub was located in the right 

precentral gyrus (MNI coordinates for the center: 45, 5, 34). The hub regions are illustrated 

in Fig. 4, highlighted in larger size. Fig.5 plots the node-specific values in efficiency, 

betweenness, and degree. For the convenience of visualization, raw scores for each nodal 

property were transformed into z scores. The z score was calculated as (nodei – nodem)/

nodestd, where nodei was the degree (efficiency or betweenness) of node i, and nodem and 

nodestd were the mean and standard deviation of degree (efficiency or betweenness) across 

all nodes within the network.

2.2.4. Node-specific analysis—When FDR correction for multiple comparisons was 

applied (p < 0.05), there was no node showing significant group differences in node-specific 

properties. We then performed a targeted analysis for the left ventral pars opercularis, which 

was identified as a hub in the signer group but not in the non-signer group in the above 

analysis. One-tailed t-test showed that the left ventral pars opercularis in the signer group 

presented significantly higher nodal betweenness (t(24) = 1.790, p = 0.043, Cohen’s d = 

0.702) and a tendency of higher nodal degree (t(24) = 1.405, p = 0.086, Cohen’s d = 0.551) 

and higher nodal efficiency (t(24) = 1.489, p = 0.075, Cohen’s d = 0.584) than that in the 

non-signer group. These results may suggest that, compared with the non-signer group, the 

left ventral pars opercularis in the signer group tends to have more connections with other 

regions in the network, and makes a greater contribution to facilitating communication 

among other regions, but these post hoc findings will need future replication.
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2.3. Results of control analyses

During the baseline condition where no linguistic processing was involved, there was no 

significant group differences (p < 0.05, two-tailed t-test) in either network local efficiency, 

global efficiency, modularity, or small-worldness at any point of the pre-selected sparsity 

thresholds. In addition, in the spoken Mandarin comprehension condition, where common 

linguistic processing was engaged, no significant group difference was found for the above 

network properties at any point of the pre-selected sparsity thresholds. The absence of 

between-group differences for the two control conditions indicates that the differences in 

network configuration between signers and non-signers when viewing signed sentences were 

generated by the different processing they engaged (linguistic processing versus gestural 

action perception).

2.4. Results of validation analyses

Given that weighted matrix carries different information about network organization 

(Rubinov and Sporns, 2010), we re-performed GTA on weighted networks to assess the 

reliability of the main results based on binary networks. With one-tailed t-tests, we found 

that the network engaged by signers displayed significantly higher modularity (∫0.3
0.6Q, t(24) = 

2.185, p = 0.019, Cohen’s d = 0.857), small-worldness (∫0.3
0.6σ, t(24) = 2.386, p = 0.013, 

Cohen’s d = 0.936) and local efficiency (∫0.3
0.6E(local), t(24) = 1.906, p = 0.034, Cohen’s d = 

0.748) than non-signers. However, we also found significantly higher global efficiencies 

(∫0.3
0.6E(glob), t(24) = 1.946, p = 0.032, Cohen’s d = 0.763) in the network engaged by signers 

than non-signers, and this effect was not found in the main analyses. This finding may 

suggest that taking into account the strength of functional connectivity in GTA can improve 

the sensitivity of measurement.

For the network constructed based on shorter time courses, similar results as the main 

analyses were obtained. The network engaged by signer group exhibited significantly higher 

local efficiency [ ∫0.3
0.6E(local), t(24) = 2.838, p = 0.009, Cohen’s d = 1.113], modularity [∫0.3

0.6Q, 

t(24) = 4.316, p< 0.001, Cohen’s d = 1.693] and small-worldness [∫0.3
0.6σ, t(24) = 4.176, p < 

0.001, Cohen’s d = 1.217] than that engaged by non-signers, while the network global 

efficiencies ((∫0.3
0.6E(glob)) did not differ between the two groups (t(24) = 1.227, p = 0.232, 

Cohen’s d = 0.481). The hub analysis also yielded the same pattern as the main analyses, 

with the left ventral pars opercularis being a hub in the signer group but not in the non-

signer group. Together, these results demonstrated the reliability of our main findings.

3. Discussion

In this study, we investigated how the large-scale functional brain network is organized in 

hearing signers in contrast to hearing non-signers when viewing sign language. Using 

conventional activation analysis, we observed that the sign language elicited highly similar 

activation patterns in signers and non-signers, with focal differential activations within the 

left frontal and temporal regions. Next, GTA revealed that the overlapped activation network 
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was differentially organized in the two groups. Specifically, at the global level, the network 

engaged by signers presented higher local efficiency, small-worldness and modularity, and 

exhibited different modular structure as compared to the network engaged by non-signers. 

At the regional level, the left ventral pars opercularis served as a hub in the network engaged 

by the signer group, but not in the non-signer group. Implications of these findings are 

discussed below.

3.1. Similar cortical activations in signers and non-signers

The activation analysis revealed highly similar activation patterns in signers and non-signers 

in response to sign language relative to the baseline. Regions commonly activated in the two 

groups included the inferior parietal, posterior temporal, occipital regions and the 

cerebellum, which are implicated in visual-spatial encoding of moving stimuli. More 

interestingly, a part of the classical language areas including the left inferior opercularis and 

middle temporal gyrus were also activated in both groups. These findings are in line with 

previous studies (Andric et al., 2013; Courtin et al., 2011; Levanen et al., 2001; Xu et al., 

2009), suggesting anatomically shared neural substrates for sign language comprehension 

and gestural action perception and supporting a tight link between the language and action 

systems (Arbib, 2005). With a lenient threshold, we observed that focal regions within the 

perisylvian cortex as well as the bilateral supplementary motor area were more strongly 

activated in signers than in non-signers. These results are largely consistent with previous 

findings (Levanen et al., 2001; Newman et al., 2015), though the between-group effect is 

weaker in our study. This weaker between-group effect might be attributed to the fact that in 

the present study hearing non-native signers (bimodal bilinguals) are recruited. Native deaf 

signers recruited in previous studies have sign language as their dominant language and are 

more fluent in sign language than bimodal bilinguals. Thus, native deaf signers may have a 

much stronger activation network and differ more greatly from non-signers than that of 

bimodal bilinguals. Another possible reason for stronger between-group activation 

difference revealed in previous studies than in this study is that, high baselines (e.g. 

backward-played video stimuli in Newman et al., 2015) were adopted in previous studies, 

which might be more sensitive to detect focal differential brain activations associated 

linguistic processing. In contrast, in the current study, only a low-level baseline was adopted 

and the activation pattern due to biological motion perception or other non-linguistic aspects 

of the stimuli was not controlled. Therefore, the effects of linguistic processing might be 

small compared to the overall strength of activation, and could be masked in particular in a 

between-subjects design.

3.2. Different network topology between signers and non-signers

While sign language elicited highly similar cortical activations in signers and non-signers, 

these activated regions were organized differently. The functional network consisting of the 

commonly activated regions presented higher small-worldness and modularity in signers 

than in non-signers. Crucially, both small-world and modularity topologies are thought to 

reflect optimal network configuration (Pan and Sinha, 2007; Rubinov and Sporns, 2010). 

The small-world topology features higher local clustering coefficient than random networks, 

yet comparable characteristic path length as random networks, reflecting an optimal balance 

between functional segregation and integration (Rubinov and Sporns, 2010). The modularity 
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topology is characterized by the presence of intensive intramodular connections and sparse 

intermodular connections. Such a configuration allows for efficient local processing while 

reducing interdependence of modules, which leads to enhanced robustness and specificity 

(Bassett and Gazzaniga, 2011). No previous study has established the significance of small-

worldness or modularity property of functional brain network for linguistic processing 

compared with other cognitive processes. Nonetheless, evidence from other domains shows 

that a brain network with higher small-worldness and modularity is associated with 

cognitive advantages. For example, greater network small-worldness and modularity are 

associated with better short-term memory capacity (Stevens et al., 2012). There has also 

been evidence for aging-related and disease-related decreases in network small-worldness 

and modularity (He et al., 2009; Onoda and Yamaguchi, 2013). In the context of this study, 

we assume that the signed sentences evoke automatic linguistic operations in the signer 

group, such as to unify the movements of hands, faces and other parts of body into larger 

units and to map them onto lexical and syntactic representations according to grammatical 

rules. These computations may demand a high level of both local specificity and global 

integration in the brain network of signers.

Yet, more investigation is required to identify how different components of linguistic 

processing produce specific network configuration. The different network topology in the 

signer group compared to the non-signer group, together with their shared cortical 

activation, supports the idea that high-level cognitive systems could emerge from a fixed 

anatomy via a reconfiguration of its connections (Park and Friston, 2013). Whether changes 

in functional connectivity in the brain of signers are preceded by changes in structural 

connectivity remains an open question.

3.3. A unique module in signers and the modules shared between signers and non-
signers

Based on the group-level modular analysis, we observed two modules (sub-networks) that 

were similar in the networks engaged by signers and non-signers. The first module was 

consisting of the bilateral middle frontal gyrus, bilateral precentral gyrus, left supplementary 

motor area, bilateral inferior and superior parietal lobule, and supramarginal gyrus. This sub-

network corresponds well to the frontal-parietal mirror neuron system (Molnar-Szakacs et 

al., 2006; Rizzolatti and Craighero, 2004) and is probably involved in the representation of 

complex action sequences. Another module was composed of anatomically distributed 

regions, including the bilateral inferior frontal gyrus, inferior and middle temporal regions, 

occipital regions, putamen, right thalamus and right cerebellum. The role of this module is 

less clear. The inferior frontal gyrus, putamen, and cerebellum have been implicated in 

spoken language production (Price, 2012), while inferior and middle temporal regions are 

related to meaning processing (Price, 2012). The presence of this module may reflect the 

process of trying to derive the meaning in the sign language stimuli (rather than actually 

finding the correct meaning) and to translate signs into spoken words.

We further observed a unique module in the network engaged by signers, which had constant 

nodal assignment across the sparsity thresholds but not presented in the non-signer group. 

This module consisted of the bilateral pars triangularis, the left dorsal opercular of the 
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inferior frontal gyrus, and the left superior occipital gyrus. The bilateral pars triangularis and 

dorsal opercular regions have long been revealed to play a crucial role in lexicosemantic 

integration (Price, 2012) and syntactic processing (Caplan, 2001; Caplan et al., 2000). The 

left superior occipital gyrus is usually engaged in tasks involving the process of visual 

motion (Emmorey et al., 2010; Sadato et al., 2005). The presence of this unique module in 

the signer group may highlights the interaction between high-level linguistic areas and 

visual-motion perception area for sign language comprehension.

To summarize, the presence of similar functional modules may be related to visual-motor 

representation of signs and the processing for communicative intention, which are shared by 

sign language comprehension and gestural action observation. The presence of the unique 

module may be involved in lexicosemantic integration and syntactic processing, which are 

specific to sign language comprehension.

3.4. Differential role of the left ventral pars opercularis for signers and non-signers

The left ventral pars opercularis was identified as a hub in the network engaged by signers 

but a periphery node in the network of non-signers. In graph theory, hubs are proposed to 

play a crucial role in integrating information and coordinating the communication across 

different subsystems (van den Heuvel and Sporns, 2013a, b, c). Lesions to hub nodes could 

significantly disrupt modularity structure (van den Heuvel and Sporns, 2013a, b, c), reduce 

network efficiency (Hwang et al., 2013), and have pronounced effects on behavioral 

performance (Liu et al., 2014; Merkley et al., 2013; Pandit et al., 2013). The dissociable role 

of the left ventral pars opercularis for language and gestural action processing revealed by 

GTA is in concordance with neuropsychological studies showing that patients with lesion to 

the Broca’s area suffer language loss but preserve action function (Corina et al., 1992; 

Goschke et al., 2001; Kean, 1977), though the exact locations between our study and the 

previous ones may differ. Two recent studies applying GTA explored semantic networks of 

spoken language and identified the left triangular of the inferior frontal gyrus as one of their 

network hubs (Vandenberghe et al., 2013; Xu et al., 2016). However, since the left ventral 

pars opercularis was not included in their analyses, it remains unknown about whether this 

region plays a similar role for sign and spoken languages. The homogeneity and 

heterogeneity between the functional networks underlying sign language and spoken 

language should be further investigated. It is worth noting that, unlike the left ventral pars 

opercularis, the left dorsal pars opercularis of the inferior frontal gyrus did not show 

significant group differences in nodal degree or nodal efficiency. This region displayed 

relatively high nodal degree, efficiency and betweenness in the networks of both groups (see 

fig.5), suggesting that it might be equally important for sign language and gestural action 

processing. The dissociable roles of left ventral pars opercularis and dorsal pars opercularis 

in sign language and gestural action processing provide novel evidence supporting the 

functional segregation within the left pars opercularis of the inferior frontal gyrus 

(Fedorenko et al., 2012; Molnar-Szakacs et al., 2005).

3.5. Limitations

Several limitations of this study should be noted. First, participants recruited in this study are 

hearing bimodal bilinguals. While the recruitment of bimodal bilinguals allows us to match 
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the hearing status as well as other factors such as the level of education and native language 

background between signers and non-signers, bilingualism per se could introduce potential 

confounding effect on our results. Indeed, previous studies have shown that second language 

experience could produce changes in brain functional connectivity (Li et al., 2015; Zou et 

al., 2012), though neural plasticity expressed at the complex network level is still 

undetermined. Thus, it is possible that the changes in network configuration we observed in 

the signer group relative to the non-signer group are joint effects of linguistic processing and 

neural plasticity associated with bilingualism. However, considering that signers and non-

signers did not differ in network topologies either when engaging no linguistic processing 

(the baseline condition), or engaging common linguistic processing (the condition of spoken 

Mandarin comprehension), we infer that the between-group differences revealed in the main 

analysis are dominated by the linguistic effect of sign comprehension versus gestural action 

perception. Nevertheless, the addition of a bilingual control group that is naive to signing, 

and the addition of non-hearing monolingual signers, are required to tease apart the effect of 

bilingualism from linguistic effect. Secondly, the surrogate group studied reported that they 

were aware that the videos of signing contained information and that they attempted to 

extract information while viewing signs. This would suggest that both signer and non-signer 

groups were engaging in linguistic processes. Therefore, the differences in network topology 

between groups may reflect the degree of linguistic processing, rather than pure linguistic 

versus non-linguistic processing. Besides, since both groups were trying to comprehend 

signing, but at different skill levels, the between-group differences in network topology 

might also reflect effort-related effects. Third, by applying the conjunction analysis to define 

the network nodes, brain regions with differential activation were excluded priorly. While 

guaranteeing that the nodes were unbiasedly chosen for signers and non-signers, this 

approach risks missing regions which might carry important information differentiating 

networks subserving the processing of sign-language versus gestural action observation. 

Richer information will be obtained by including a more complete set of relevant regions 

into the network analysis. Finally, we removed weak, spurious connections at individual 

level, and set the number of network nodes and connection density identical across all 

subjects. While this approach can eliminate the effect of network size and density, it may 

lead to a modification of the network by ignoring significant connections (Van Wijk et al., 

2010). Further study adopting a different thresholding strategy is needed to validate our 

findings.

4. Conclusions

The present study revealed that hearing signers and non-signers presented similar cortical 

activations when viewing sign language. However, the commonly activated network was 

differently organized in the two groups. Specifically, the network engaged by signers 

displayed a higher degree of small-worldness and modularity than that of non-signers, with 

the left ventral pars opercularis playing a central role in the network. Our study suggests that 

while a shared anatomical network is engaged by comprehension of sign language and 

observation of gestural action, this network is differently configured for the two types of 

processing. Our study also shows that GTA can provide an important complementary 

perspective to the activation analysis on the neural basis underlying cognition.
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5. Experimental procedure

5.1. Participants

Fourteen hearing signers (3 males, aged 33–65 years old, mean age = 49 years) and fifteen 

hearing non-signers (3 males, aged 31–67 years old, mean age = 48 years) took part in the 

experiment. The signers were spoken-sign bimodal bilinguals who taught CSL at schools for 

the deaf. They acquired CSL, on average, at the age of 19, and they were highly proficient in 

sign language. They used CSL for at least 3.3 h each day and had a mean CSL experience of 

30 years. In addition, a self-rating scale of 1–5 was administered to assess sign language 

proficiency, with 5 signifying highly proficient. The mean scores of the hearing signer group 

were 4.5 (standard deviation = 0.52). The non-signer group was monolingual speakers who 

had no knowledge of a sign language. They were administrative staff of Beijing Normal 

University. Both groups acquired Mandarin as their native language. The two groups were 

matched in age (t(27) = 0.204, p = 0.84), and education level (t(27) = 0.144, p = 0.89). No 

participants reported history of neurological or psychiatric disorders.

5.2. Stimuli and experimental design

Twenty short declarative sentences produced by a deaf native CSL signer were used in this 

study (see Fig. 1 and supplementary material). Hand movements and facial articulations 

required by CSL were involved in these signed sentences. There were four task blocks 

alternating with four baseline blocks, each block lasting about 30 s. During each task block, 

a silent video of five signed sentences was presented. Participants were told to watch and 

comprehend these signed sentences, and no explicit response was required. During the 

baseline blocks, videos showing the same CSL model standing still were presented. Note 

that using such a low-level baseline can avoid “washing out” domain-general regions and 

regions supporting sensory-perception. Those regions might constitute a periphery of 

language network (Fedorenko and Thompson-Schill, 2014). The presentation of 

experimental stimuli was fixed across participants. The complete scanning session included 

another two experiments which involved passive spoken language listening and passive 

written sentence viewing. These two experiments were not reported in this study. After the 

scanning session, participants were given an unexpected recognition test, where they were 

asked to indicate how familiar a signed sentence was on a 4-point scale, with 1 as definitely 

new and 4 as definitely old. Our analysis showed the signer group scored significantly 

higher than the non-signer group (M(signer) = 2.85, SD = 1.18; M (non-signer) = 1.68, SD = 

1.12; p < 0.05).

To gain insights into the mental processes in hearing non-signers when viewing sign 

language, we conducted one additional post hoc experiment. A new group of hearing non-

signers (including 10 college students and 4 people aged above 50 years) were recruited to 

view the same videos as used in the above experiment, and then we carried out a short 

interview about their experience viewing the sign language videos. These participants 

reported that their attention was primarily focused on the movement of hands and secondly 

the movement of lip of the signer. They thought that the gestures in the video were 

communicative rather than meaningless. They attempted to extract the meaning conveyed by 

the signer but failed. Given that the reports were highly consistent across the 14 participants, 
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we assumed that similar mental processes could be involved for those participants in the 

fMRI experiment.

5.3. Image acquisition

Scans were acquired with a 3T Siemens Trio Scanner at the MRI Center of the Beijing 

Normal University. For functional scans, a gradient echo planar imaging (EPI) sequence was 

applied with the following parameters: time repetition = 2000 ms, time echo = 30 ms, flip 

angle = 90°, FOV = 200 mm, matrix size = 64 × 64, 32 interleaved slices per volume with 

slice thickness = 4.8 mm, and voxel size = 3.12 × 3.12 × 4.8 mm. Parameters for anatomical 

images were:MPRAGE sequence, time repetition = 2530 ms, time echo = 3.39 ms, flip = 7°, 

FOV = 256 mm, scan order = interleaved, matrix size = 256 × 256, slice thickness = 1.33 

mm, and voxel size = 1.0 × 1.0 × 1.33 mm.

5.4. Image preprocessing

Image preprocessing was conducted using SPM8 (statistical parametric mapping) 

(www.fil.ion.ucl.ac.uk/spm/). First, slice-timing correction was performed to correct for 

varied sampling time of slices, with the middle slice in time being used as a reference slice. 

Second, all functional images were spatially realigned and co-registered to their 

corresponding anatomical images. The resultant images were then spatially normalized to 

Montreal Neurological Institute (MNI) space. After normalization, all images were 

resampled into 3 × 3 × 3 mm voxel size, and were further spatially smoothed using a 

Gaussian kernel with 8 mm full-width at half maximum (FWHM). The dataset of one non-

signer and one signer were deleted for excessive head motion (>3 mm or 3 degree).

5.5. Activation analysis

An activation analysis was performed to locate cortical regions that were engaged when 

signers and non-signers viewed the signed sentences. The effect of task versus baseline was 

first assessed for individual participants, using a general linear model (GLM) by convolving 

the design matrix with the canonical hemodynamic response function, with six motion 

parameters regressed out. Next, a second level analysis was carried out to assess the group 

mean of brain activation. A one-sample t-test was conducted for the signer group and non-

signer group separately to identify regions significantly activated in the CSL task relative to 

baseline. Then a two-sample t-test was used to examine to what extent the two groups 

differed in cortical activations.

5.6. Graph theoretical analysis

5.6.1. Node definition—To avoid potential bias caused by group differences in regional 

activation, we confined the network node definition to brain regions that showed comparable 

activations between the signers and non-signers. For this purpose, we performed a 

conjunction analysis for the effect of task relative to baseline in signers and non-signers 

using the SPM8, with the “conjunction null hypothesis”. This approach identified cortical 

regions that were activated in both groups and excluded regions for which activation differed 

significantly between the two groups (Price and Friston, 1997). For the conjunction analysis, 

we applied a relatively lenient threshold, with p < 0.005 at voxel level combined with a 
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cluster size of >20 voxels. Then, local maxima that were located at least 15 mm apart from 

each other were extracted from the conjunction map, and spheres with a radius of 5 mm 

centered on each local maxima were drawn (Vandenberghe et al., 2013). We thus identified 

33 regions (nodes) of interest (see Table 1).

5.6.2. Network construction—To calculate functional connectivity, three additional 

processes were performed on the pre-processed datasets: (1) high-pass filtering with a cutoff 

of 1/128 Hz; (2) removal of linear trends; and (3) regression to remove potential sources of 

head motion. Mean nodal BOLD time series from the task blocks were extracted (shifting 6 

s to account for the hemodynamic lag) (Aguirre et al., 1998). The time series in 

discontinuous task blocks were normalized within blocks, with a mean of zero and a 

deviation of 1, and were then concatenated (Ekman et al., 2012), yielding a total of 57 time 

points. While concatenating data from different blocks could cause discontinuities in the 

time series, a previous study on the “resting state” functional connectivity suggests that the 

connectivity pattern obtained from concatenated data are similar with that of continuous data 

(Fair et al., 2007). For each participant, Pearson’s correlation coefficients were calculated for 

every possible pair of time series. The resultant correlation matrices were thresholded to 

generate binary brain graphs, using a set of sparsity thresholds ranging from 0.3 to 0.6 with a 

step of 0.02 (0.3 ≤ T ≤ 0.6), where sparsity is defined as the proportion of actual number of 

edges to the maximum possible number of edges in a network. The lowest threshold (T = 

0.3) was determined to ensure that the resultant networks were not severely fragmented: on 

average across all participants, 98.48% of the nodes in the network were connected with 

other nodes by direct or indirect paths. The highest threshold (T = 0.6) was set to remove 

weak connections: for each participant, all possible connections in the correlation matrix 

were subjected to a t-test, and only connections that were significantly stronger than zero (p 

< 0.05) were retained (Liang et al., 2015). We then computed the network sparsity of each 

participant and set the mean of network sparsity across all participants as the highest 

threshold. As most graph theoretic measures are contingent on the number of nodes and 

connections of a graph, we set an equal number of nodes and sparsity between signers and 

non-signers to make their network topologies comparable (Fornito et al., 2013)

5.6.3. Network measures—The graph theoretical analysis was performed using the 

GRETNA toolbox (Graph theoretical network analysis: htpp://www.nitrc.org/projects/

gretna) (Wang et al., 2015). For each participant, we calculated graph properties 

characterizing the global-level network organization, including global and local efficiency, 

small-worldness, and modularity. We also examined the graph properties of each region 

(node), including nodal degree, nodal betweenness and nodal efficiency.

Global network properties: Global network efficiency (Eglob): the global network 

efficiency measures how efficiently information transmits across the global network, which 

is computed as

Eglob(G) = 1
N(N − 1) ∑

i ≠ j ∈ G

1
dij (1)
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where N is the total number of nodes in network G, and dij the shortest path length between 

node i and node j (Latora and Marchiori, 2001).

Local network efficiency (Eloc): local network efficiency shows how efficient the 

communication is among the neighbors of each node. In a network with high local 

efficiency, nodes tend to cluster together to form connected local structures. Local efficiency 

is computed as

Eloc(G) = 1
N ∑

i ∈ G
Eglob(Gi) (2)

where Gi is the subgraphs (neighbors) of node i, Eglob (Gi) is the global efficiency of G i 
(Latora and Marchiori, 2001).

Small-worldness (σ): Small-world networks are characterized by higher local clustering 

coefficient than random networks, yet comparable characteristic path length as random 

networks (Watts and Strogatz, 1998). The small-worldness of a network can be measured as:

σ = C ∕ Crand
L ∕ Lrand

(3)

where C and C rand are the clustering coefficients, and L and Lrand are the characteristic path 

lengths of the tested and the random networks respectively. In this study, 1000 equivalent 

random graphs with the same number of nodes and edges and the same degree distribution 

as the real network were sampled. A network with σ > 1 is generally accepted as ‘small-

world’ (Sporns and Honey, 2006).

Modularity (Q): Modularity quantifies the degree to which a network can be partitioned into 

densely connected subgroups, with only sparse connections between subgroups. Unlike most 

other network measures, modularity is typically assessed with optimization algorithms, 

rather than with exact computations (Danon et al., 2005; Rubinov and Sporns, 2010). Here, 

we used the modified greedy optimization algorithm to identify modules in the functional 

network that optimize the modularity value (Clauset et al., 2004; Danon et al., 2006; 

Guimera and Sales-Pardo, 2006; Newman and Girvan, 2004). For a given partition p, the 

modularity is calculated as:

Q(p) = ∑
s = 1

N ls
L − ds

2L
2

(4)

where N is the number of modules, L is the sum of connections in the network, ls is the 

number of connections in module s, and ds is the sum of the node degrees in module s (Chen 

et al., 2008). To test whether the observed modular structure arises from random 

interactions, we calculated the z score of the maximum modularity as (Qreal – Qrand)/Qstd, 

where Qreal is the maximum modularity of the brain network, and Qrand and Qstd are the 

mean and the standard deviations of the maximum modularity of 1000 randomized networks 

(Chen et al., 2008). The randomized networks had the same number of nodes and edges and 

the same degree distribution as the real network.
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The modularity analysis was first conducted for each individual network. Considering the 

between-participants variance in module assignment and module numbers, we also 

conducted the modularity analysis at the group level to determine modular structures in the 

signer and the non-signer groups (Liang et al., 2015). To obtain the group-level brain 

networks, we first averaged all connectivity matrices across participants in each group and 

then binarized the group-mean matrices using the pre-selected sparsity thresholds (0.3 ≤ T ≤ 

0.6). After the group-level modularity analysis, we calculated the similarity between 

modular partitions across thresholds using normalized mutual information (NMI) (Danon et 

al., 2005). The value of NMI ranges from 0 to 1, where 0 signifies that the two modular 

partitions are totally independent, and 1 signifies that they are identical. For the modular 

partition obtained at each threshold, we computed the averaged NMI of this modular 

partition with any other modular partitions obtained across the threshold range. Then, the 

modular partition with the highest NMI was defined as the representative modular structure 

of the network.

Regional nodal properties: Nodal degree (di): for a network G with N nodes, the degree for 

node i is defined as the sum of the edges connected to it.

di = ∑
j ∈ N

N
dij (5)

Nodal efficiency (ei): Nodal efficiency is defined as the shortest path length between a given 

node i and other nodes in the network.

ei = 1
N − 1 ∑

i ≠ j

1
dij (6)

Nodal betweenness (bi): Nodal betweenness is defined as the fraction of the shortest paths 

between any pair of nodes that travel through the node.

bi = 1
(n − 1)(n − 2) ∑

k, j, i ∈ N, k ≠ j ≠ i

gjk(i)
gjk

(7)

where gjk is the number of shortest paths between node j and k, and gjk(i) is the number of 

shortest paths between j and k that pass through i. A higher nodal betweenness indicates 

greater contribution to facilitating the communication between other regions.

Identification of hubs: Efficient communication and integration across distributed regions 

are enabled by a set of specific regions that serve as network hubs (van den Heuvel and 

Sporns, 2013a,b,c). Typically, network hubs are characterized by high degree, efficiency and 

betweenness (Rubinov and Sporns, 2010). In this study, hubs were identified by the 

following procedures outlined in (van den Heuvel et al., 2010). First, node-specific degree, 

efficiency and betweenness were calculated for each participant, and then these values were 

averaged across all participants in each group. Next, all nodes were sorted according to their 

values in the group-mean nodal degree, nodal efficiency and nodal betweenness, 
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respectively. Finally, nodes that fulfilled two of the following criteria were identified as 

hubs: (1) those belonging to the top 10% of nodes showing the highest degree; (2) those 

belonging to the top 10% of nodes showing the highest betweenness; or (3) those belonging 

to the top 10% of nodes showing the highest global efficiency.

5.6.4. Statistical analysis—We tested the null hypothesis of no difference between 

signers and non-signers in any measures of global or regional network properties. The 

global-level network properties including local efficiency, global efficiency, small-worldness 

and modularity were first tested over a range of sparsity values (0.3 ≤ T ≤ 0.6) (Fornito et al., 

2013). Two-sample t-tests (two-tailed, p < 0.05) were applied to examine group differences 

in these sparsity-integrated measures, and Cohen’s d (Cohen, 1988) was calculated to 

measure effect size. Since tests conducted at neighboring sparsity are strongly dependent, we 

did not perform corrections for multiple tests at individual sparsity points (Fornito et al., 

2013). Instead, integrated network measures over the sparsity range were estimated by 

calculating the area under the curve (AUC) and statistical inferences were further performed 

on the AUC. The AUC provides a summary measure that is independent of a single 

threshold, and avoids the need for multiple comparisons correction (Fornito et al., 2013). 

Given the exploratory nature of GTA, we also applied a nonparametric permutation test (N = 

1000) to assess the statistical significance of between-group differences in global network 

properties (see supplementary material for details).

For node-specific analysis, statistical inferences were performed only on the sparsity-

integrated measures, as ∫0.3
0.6 di for nodal degree, ∫0.3

0.6 bi for nodal betweenness, and ∫0.3
0.6 ei 

for nodal efficiency. A significant level of p < 0.05 (FDR corrected for multiple tests 

performed on 33 nodes) were used.

5.7. Control analyses

Two control analyses were performed to test the causal link between sign language 

processing and brain network organization. First, we examined the topological properties of 

the network in signers versus non-signers during the baseline phase, in which no linguistic 

processing was involved. Second, we examined the topological properties of the network in 

the same participant groups during passive spoken Mandarin comprehension, in which 

common linguistic processing was engaged. The preprocessing strategy, nodes components 

and thresholds adopted were identical to the main analyses. Then we tested group 

differences in overall graph properties including local network efficiency, global network 

efficiency, modularity, and small-worldness.

5.8. Validation analysis

We performed the validation analysis on weighted networks to assess the reliability of our 

main analysis. In this approach, the individual connectivity matrices were thresholded by the 

same set of sparsity thresholds as in the main analyses (0.3 ≤ T ≤ 0.6), and values below the 

threshold were set to zero, whereas values above the threshold kept their original values.

A previous study suggests that scan length can have an effect on the estimate of resting-state 

functional connectivity (Birn et al., 2013). However, no study has examined the vulnerability 
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of task-state functional connectivity to scan length. In order to estimate the effect of scan 

length on our main results, we computed the functional connectivity matrices using the scans 

from the first three task blocks (45 volumes, with the last task block removed) and re-

performed the network analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (NSFC: 31571158, 
31170969) and National Key Basic Research Program of China (2014CB846102), and a grant from the National 
Institutes of Health (R01 DC010997). We thank Yong He and Roel Willems for providing insightful comments to 
this study and Amie Fairs for proofreading the manuscript. No conflict of interest is declared.

References

Aguirre G, Zarahn E, D’esposito M, 1998 The variability of human. BOLD hemodynamic responses. 
Neuroimage 8 (4), 360–369. [PubMed: 9811554] 

Andric M, Solodkin A, Buccino G, Goldin-Meadow S, Rizzolatti G, Small SL, 2013 Brain function 
overlaps when people observe emblems, speech, and grasping. Neuropsychologia 51 (8), 1619–
1629. 10.1016/j.neuropsychologia.2013.03.022. [PubMed: 23583968] 

Arbib MA, 2005 From monkey-like action recognition to human language: An evolutionary 
framework for neurolinguistics. Behav Brain Sci 28 (2), 105–124. 10.1017/S0140525x05000038. 
[PubMed: 16201457] 

Bassett DS, Gazzaniga MS, 2011 Understanding complexity in the human brain. Trends Cogn Sci 15 
(5), 200–209. 10.1016/j.tics.2011.03.006 [PubMed: 21497128] 

Birn RM, Molloy EK, Patriat R, Parker T, Meier TB, Kirk GR, Prabhakaran V, 2013 The effect of scan 
length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558. 
[PubMed: 23747458] 

Caplan D, 2001 Functional neuroimaging studies of syntactic processing. J. Psycholinguist. Res 30 (3), 
297–320. [PubMed: 11523276] 

Caplan D, Alpert N, Waters G, Olivieri A, 2000 Activation of Broca’s area by syntactic processing 
under conditions of concurrent articulation. Hum. Brain Mapp 9 (2), 65–71. [PubMed: 10680763] 

Chen ZJ, He Y, Rosa-Neto P, Germann J, Evans AC, 2008 Revealing modular architecture of human 
brain structural networks by using cortical thickness from MRI. Cereb. Cortex 18 (10), 2374–2381. 
10.1093/cercor/bhn003. [PubMed: 18267952] 

Clauset A, Newman MEJ, Moore C, 2004 Finding community structure in very large networks. Phys. 
Rev. E: Stat., Nonlin, Soft Matter Phys 70 (6), 066111 10.1103/PhysRevE.70.066111. [PubMed: 
15697438] 

Cohen J, 1988 Statistical Power Analysis for the Behavioral Sciences. Erlbaum, Hillsdale, New Jersey

Corina DP, Knapp H, 2006 Sign language processing and the mirror neuron system. Cortex 42 (4), 
529–539. 10.1016/S0010-9452(08)70393-9 [PubMed: 16881265] 

Corina DP, Poizner H, Bellugi U, Feinberg T, Dowd D, O’Grady-Batch L, 1992 Dissociation between 
linguistic and nonlinguistic gestural systems: A case for compositionality. Brain Lang. 43 (3), 
414–447. doi: 10.1016/0093-934X(92)90110-Z. [PubMed: 1446211] 

Corina D, Chiu YS, Knapp H, Greenwald R, San Jose-Robertson L, Braun A, 2007 Neural correlates 
of human action observation in hearing and deaf subjects. Brain Res. 1152, 111–129. DOI 
10.1016/j.brainres.2007.03.054. [PubMed: 17459349] 

Courtin C, Jobard G, Vigneau M, Beaucousin V, Razafimandimby A, Herve PY, Tzourio-Mazoyer N, 
2011 A common neural system is activated in hearing non-signers to process French sign language 

Liu et al. Page 17

Brain Res. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and spoken French. Brain Res. Bull. 84 (1), 75–87. 10.1016/j.brainresbull.2010.09.013. [PubMed: 
20933062] 

Danon L, Díaz-Guilera A, Arenas A, 2006 The effect of size heterogeneity on community 
identification in complex networks. J Stat Mech 2006 (11), P11010 10.1088/1742-5468/2006/11/
p11010.

Danon L, Diaz-Guilera A, Duch J, Arenas A, 2005 Comparing community structure identification. J 
Stat Mech 2005, P09008 10.1088/1742-5468/2005/09/p09008.

Ekman M, Derrfuss J, Tittgemeyer M, Fiebach CJ, 2012 Predicting errors from reconfiguration 
patterns in human brain networks. Proc. Natl. Acad. Sci. U.S.A 109 (41), 16714–16719. [PubMed: 
23012417] 

Emmorey K, 2002 Language, cognition, and the brain: Insights from sign language research. 
Psychology Press.

Emmorey K, McCullough S, Weisberg J, 2015 Neural correlates of fingerspelling, text, and sign 
processing in deaf American Sign Language-English bilinguals. Language, Cognition and 
Neuroscience 30 (6), 749–767. 10.1080/23273798.2015.1014924.

Emmorey K, Xu J, Gannon P, Goldin-Meadow S, Braun A, 2010 CNS activation and regional 
connectivity during pantomime observation: no engagement of the mirror neuron system for deaf 
signers. Neuroimage 49 (1), 994–1005. [PubMed: 19679192] 

Fair DA, Schlaggar BL, Cohen AL, Miezin FM, Dosenbach NU, Wenger KK, Petersen SE, 2007 A 
method for using blocked and event-related fMRI data to study “resting state” functional 
connectivity. Neuroimage 35 (1), 396–405. [PubMed: 17239622] 

Fedorenko E, Duncan J, Kanwisher N, 2012 Language-selective and domain-general regions lie side 
by side within Broca’s area. Curr. Biol 22 (21), 2059–2062. 10.1016/j.cub.2012.09.011. [PubMed: 
23063434] 

Fedorenko E, Thompson-Schill SL, 2014 Reworking the language network. Trends Cogn Sci 18 (3), 
120–126. 10.1016/j.tics.2013.12.006. [PubMed: 24440115] 

Fornito A, Zalesky A, Breakspear M, 2013 Graph analysis of the human connectome: promise, 
progress, and pitfalls. Neuroimage 80, 426–444. 10.1016/j.neuroimage.2013.04.087. [PubMed: 
23643999] 

Goschke T, Friederici AD, Kotz SA, Van Kampen A, 2001 Procedural learning in Broca’s aphasia: 
dissociation between the implicit acquisition of spatio-motor and phoneme sequences. J Cogn 
Neurosci 13 (3), 370–388. [PubMed: 11371314] 

Guimera R, Sales-Pardo M, 2006 Form follows function: the architecture of complex networks. Mol 
Syst Biol 2, 42 10.1038/msb4100082 [PubMed: 16883355] 

He Y, Dagher A, Chen Z, Charil A, Zijdenbos A, Worsley K, Evans A, 2009 Impaired small-world 
efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion 
load. Brain 132 (Pt 12), 3366–3379. 10.1093/brain/awp089. [PubMed: 19439423] 

He Y, Evans A, 2010 Graph theoretical modeling of brain connectivity. Curr. Opin. Neurol 23 (4), 
341–350. [PubMed: 20581686] 

Hwang K, Hallquist MN, Luna B, 2013 The development of hub architecture in the human functional 
brain network. Cereb. Cortex 23 (10), 2380–2393 10.1093/cercor/bhs227. [PubMed: 22875861] 

Kean M-L, 1977 The linguistic interpretation of aphasic syndromes: Agrammatism in Broca’s aphasia, 
an example. Cognition 5 (1), 9–46.

Latora V, Marchiori M, 2001 Efficient Behavior of Small-World Networks. Phys. Rev. Lett 87 (19). 
10.1103/PhysRevLett.87.198701.

Levanen S, Uutela K, Salenius S, Hari R, 2001 Cortical representation of sign language: Comparison 
of deaf signers and hearing non-signers. Cereb. Cortex 11 (6), 506–512. 10.1093/cercor/11.6.506. 
[PubMed: 11375912] 

Li L, Abutalebi J, Zou L, Yan X, Liu L, Feng X, Ding G, 2015 Bilingualism alters brain functional 
connectivity between “control” regions and “language” regions: Evidence from bimodal 
bilinguals. Neuropsychologia 71, 236–247. doi: 10.1016/j.neuropsychologia.2015.04.007. 
[PubMed: 25858600] 

Liu et al. Page 18

Brain Res. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Liang X, Zou Q, He Y, Yang Y, 2015 Topologically Reorganized Connectivity Architecture of Default-
Mode, Executive-Control, and Salience Networks Across Working Memory Task Loads. In press, 
Cereb Cortex.

Liu Y, Yu C, Zhang X, Liu J, Duan Y, Alexander-Bloch AF, Bullmore E, 2014 Impaired long distance 
functional connectivity and weighted network architecture in Alzheimer’s disease. Cereb. Cortex 
24 (6), 1422–1435. [PubMed: 23314940] 

MacSweeney M, Campbell R, Woll B, Brammer MJ, Giampietro V, David AS, McGuire PK, 2006 
Lexical and sentential processing in British Sign Language. Hum. Brain Mapp 27 (1), 63–76. 
[PubMed: 15966001] 

MacSweeney M, Campbell R, Woll B, Giampietro V, David AS, McGuire PK, Brammer MJ, 2004 
Dissociating linguistic and nonlinguistic gestural communication in the brain. Neuroimage 22 (4), 
1605–1618. 10.1016/j.neuroimage.2004.03.015. [PubMed: 15275917] 

MacSweeney M, Capek CM, Campbell R, Woll B, 2008 The signing brain: the neurobiology of sign 
language. Trends Cogn Sci 12 (11), 432–440. 10.1016/j.tics.2008.07.010. [PubMed: 18805728] 

Merkley TL, Larson MJ, Bigler ED, Good DA, Perlstein WM, 2013 Structural and functional changes 
of the cingulate gyrus following traumatic brain injury: relation to attention and executive skills. J 
Int Neuropsychol Soc 19 (08), 899–910. [PubMed: 23845701] 

Molnar-Szakacs I, Iacoboni M, Koski L, Mazziotta JC, 2005 Functional segregation within pars 
opercularis of the inferior frontal gyrus: evidence from fMRI studies of imitation and action 
observation. Cereb. Cortex 15 (7), 986–994. [PubMed: 15513929] 

Molnar-Szakacs I, Kaplan J, Greenfield PM, Iacoboni M, 2006 Observing complex action sequences: 
the role of the fronto-parietal mirror neuron system. Neuroimage 33 (3), 923–935. [PubMed: 
16997576] 

Newman AJ, Supalla T, Fernandez N, Newport EL, Bavelier D, 2015 Neural systems supporting 
linguistic structure, linguistic experience, and symbolic communication in sign language and 
gesture. Proc. Natl. Acad. Sci. U.S.A 10, 527.

Newman MEJ, Girvan M, 2004 Finding and evaluating community structure in networks. Phys. Rev. 
E: Stat., Nonlin, Soft Matter Phys 69 (2), 026113 10.1103/PhysRevE.69.026113. [PubMed: 
14995526] 

Onoda K, Yamaguchi S, 2013 Small-worldness and modularity of the resting-state functional brain 
network decrease with aging. Neurosci. Lett 556, 104–108. 10.1016/j.neulet.2013.10.023. 
[PubMed: 24157850] 

Pan RK, Sinha S, 2007 Modular networks emerge from multiconstraint optimization. Phys. Rev. E 76 
(4), 045103.

Pandit AS, Expert P, Lambiotte R, Bonnelle V, Leech R, Turkheimer FE, Sharp DJ, 2013 Traumatic 
brain injury impairs small-world topology. Neurology 80 (20), 1826–1833. [PubMed: 23596068] 

Park HJ, Friston K, 2013 Structural and functional brain networks: from connections to cognition. 
Science 342 (6158), 1238411 10.1126/science.1238411. [PubMed: 24179229] 

Price CJ, 2012 A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, 
spoken language and reading. Neuroimage 62 (2), 816–847. 10.1016/j.neuroimage.2012.04.062. 
[PubMed: 22584224] 

Price CJ, Friston KJ, 1997 Cognitive conjunction: a new approach to brain activation experiments. 
Neuroimage 5 (4), 261–270. [PubMed: 9345555] 

Rizzolatti G, Arbib MA, 1998 Language within our grasp. Trends Neurosci. 21 (5), 188–194. 
[PubMed: 9610880] 

Rizzolatti G, Craighero L, 2004 The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192. 
10.1146/annurev.neuro.27.070203.144230. [PubMed: 15217330] 

Rubinov M, Sporns O, 2010 Complex network measures of brain connectivity: uses and 
interpretations. Neuroimage 52 (3), 1059–1069. 10.1016/j.neuroimage.2009.10.003. [PubMed: 
19819337] 

Sadato N, Okada T, Honda M, Matsuki K-I, Yoshida M, Kashikura K-I, Yonekura Y, 2005 Cross-
modal integration and plastic changes revealed by lip movement, random-dot motion and sign 
languages in the hearing and deaf. Cereb. Cortex 15 (8), 1113–1122. [PubMed: 15563723] 

Liu et al. Page 19

Brain Res. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sporns O, 2013. Network attributes for segregation and integration in the human brain. Curr. Opin. 
Neurobiol 23 (2), 162–171. doi: 10.1016/j.conb.2012.11.015. [PubMed: 23294553] 

Sporns O, Honey CJ, 2006 Small worlds inside big brains. Proc. Natl. Acad. Sci. U.S. A. 103 (51), 
19219–19220. 10.1073/pnas.0609523103. [PubMed: 17159140] 

Stevens AA, Tappon SC, Garg A, Fair DA, 2012 Functional brain network modularity captures inter- 
and intra-individual variation in working memory capacity. PLoS ONE 7 (1), e30468 10.1371/
journal.pone.0030468. [PubMed: 22276205] 

Tang G, 2006 Questions and negation in Hong Kong sign language. Interrogative and negative 
constructions in sign languages, 198–224.

Valli C, Lucas C, 2000 Linguistics of American sign language: An introduction. Gallaudet University 
Press.

van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Pol HEH, 2010 Aberrant Frontal and Temporal 
Complex Network Structure in Schizophrenia: A Graph Theoretical Analysis. J. Neurosci 30 (47), 
15915–15926. Doi 10.1523/Jneurosci.2874-10.2010. [PubMed: 21106830] 

van den Heuvel MP, Sporns O, 2013a An anatomical substrate for integration among functional 
networks in human cortex. J. Neurosci 33 (36), 14489–14500. [PubMed: 24005300] 

van den Heuvel MP, Sporns O, 2013b Network hubs in the human brain. Trends Cogn Sci 17 (12), 
683–696. doi: 10.1016/j.tics.2013.09.012. [PubMed: 24231140] 

van den Heuvel MP, Sporns O, 2013c Network hubs in the human brain. Trends Cogn Sci 17 (12), 
683–696. 10.1016/j.tics.2013.09.012. [PubMed: 24231140] 

Van Wijk BC, Stam CJ, Daffertshofer A, 2010 Comparing brain networks of different size and 
connectivity density using graph theory. PLoS ONE 5 (10), e13701. [PubMed: 21060892] 

Vandenberghe R, Wang Y, Nelissen N, Vandenbulcke M, Dhollander T, Sunaert S, Dupont P, 2013 The 
associative-semantic network for words and pictures: effective connectivity and graph analysis. 
Brain Lang. 127 (2), 264–272. 10.1016/j.bandl.2012.09.005. [PubMed: 23084460] 

Wang J, Wang X, Xia M, Liao X, Evans A, He Y, 2015 GRETNA: a graph theoretical network analysis 
toolbox for imaging connectomics. Front Hum Neurosci 9, 386. [PubMed: 26175682] 

Watts DJ, Strogatz SH, 1998 Collective dynamics of ‘small-world’ networks. Nature 393 (6684), 440–
442. 10.1038/30918. [PubMed: 9623998] 

Xu J, Gannon PJ, Emmorey K, Smith JF, Braun AR, 2009 Symbolic gestures and spoken language are 
processed by a common neural system. Proc. Natl. Acad. Sci. U.S.A 106 (49), 20664–20669. 
10.1073/pnas.0909197106. [PubMed: 19923436] 

Xu Y, Lin Q, Han Z, He Y, Bi Y, 2016 Intrinsic functional network architecture of human semantic 
processing: Modules and hubs. Neuroimage 132, 542–555. doi: 10.1016/
j.neuroimage.2016.03.004. [PubMed: 26973170] 

Zou L, Abutalebi J, Zinszer B, Yan X, Shu H, Peng D, Ding G, 2012 Second language experience 
modulates functional brain network for the native language production in bimodal bilinguals. 
Neuroimage 62 (3), 1367–1375. 10.1016/j.neuroimage.2012.05.062. [PubMed: 22658973] 

Liu et al. Page 20

Brain Res. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Stimuli and experimental design. Both hearing signers and non-signers viewed silent videos 

showing a native deaf signer producing signed sentences during the task phase and standing 

still during the baseline phase. No explicit response was required.
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Fig. 2. 
Cortical activations in the hearing signer group and the non-signer group during sign 

language observation relative to the baseline. Threshold: p < 0.05, FDR corrected.
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Fig. 3. 
Between-group comparisons in graph properties including local efficiency (A), global 

efficiency (B), modularity (C) and small-worldness (D). The left column: results for the 

graph properties that were obtained over a range of thresholds (0.3–0.6). Right column: 

results for the sparsity-integrated graph properties.
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Fig. 4. 
Group–wise modular structure. Left: module assignments in signer and non-signer groups 

over a set of sparsity thresholds (0.3–0.6). Right: representative modules mapped onto the 

brain surface. The representative modules for signer and non-signer groups corresponded to 

the partitions obtained at the sparsity thresholds ranging from 0.36 to 0.46 and ranging from 

0.48 to 0.6 for each group, respectively. Note: nodes with larger size signify network hubs. 

The numeric coding for modules is in agreement with that in Table 1. The 3D surface 

visualizations of the results were implemented using the BrainNet Viewer (www.nitrc.org/

projects/bnv) (Xia, Wang, & He, 2013).
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Fig. 5. 
Node-specific values in efficiency, degree and betweenness. The nodes were sorted by 

efficiency in descending order for each group. The top three nodes in each plot were regions 

identified as hubs. For the convenience of visualization, the raw values for each nodal 

property were transformed into z scores.
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Table 1

Regions of interest used to define nodes in the network analysis, and their corresponding module assignment.

MNI coordinate Module Assignment

Signer Non-signer

Occipital_Mid_L −24, −91, 13 Module 1 Module 1

Fusiform_L −42, −55, −17 Module 1 Module 1

Cerebelum_6_R 21, −67, −20 Module 1 Module 1

Occipital_Mid_L −33, −88, −2 Module 1 Module 1

Temporal_Mid_R 48, −73, 4 Module 1 Module 1

Temporal_Sup_L −54, −1, −8 Module 1 Module 1

Temporal_Mid_L −45, −67, 10 Module 1 Module 1

Putamen_L −21, 2, 10 Module 1 Module 1

Putamen_R 21, 5, 10 Module 1 Module 1

Thalamus_R 18, −16, 7 Module 1 Module 1

Temporal_Inf_R 48, −58, −8 Module 1 Module 1

Temporal_Mid_R 57, −58, 7 Module 1 Module 1

Occipital_Inf_L −39, −73, −11 Module 1 Module 1

Temporal_Sup_L −57, −46, 16 Module 1 Module 1

Frontal_Inf_Tri_R 33, 29, 1 Module 1 Module 1

Frontal_Inf_Tri_R 51, 20, 1 Module 1 Module 1

vFrontal_Inf_Oper_L −51, 11, 4 Module 1 Module 1

Parietal_Inf_R 33, −43, 52 Module 2 Module 2

Precentral_R 45, 5, 34 Module 2 Module 2

Frontal_Mid_R 42, −4, 52 Module 2 Module 2

Frontal_Mid_L −24, −4, 49 Module 2 Module 2

Precentral_L −39, −4, 55 Module 2 Module 2

Supp_Motor_Area_L −9, 11, 52 Module 2 Module 2

Supp_Motor_Area_L −12, 2, 64 Module 2 Module 2

Precentral_L −18, −16, 70 Module 2 Module 2

Parietal_Inf_L −36, −43, 49 Module 2 Module 2

Parietal_Sup_L −24, −61, 55 Module 2 Module 2

SupraMarginal_L −57, −22, 34 Module 2 Module 2

dFrontal_Inf_Oper_L −48, 8, 25 Module 3 Module 2

Frontal_Inf_Tri_R 51, 14, 22 Module 3 Module 2

Frontal_Inf_Tri_L −51, 26, 10 Module 3 Module 1

Frontal_Inf_Tri_L −39, 29, 19 Module 3 Module 2

Occipital_Sup_L −24, −76, 37 Module 3 Module 2
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