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Blocking c-Met and EGFR reverses acquired resistance 
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Abstract: The limited treatment options and therapeutic failure due to acquired resistance for patients with triple-
negative breast cancer (TNBC) represent a significant challenge. Inhibitors against poly (ADP-ribose) polymerase 
(PARP), olaparib and talazoparib, were recently approved for the treatment of metastatic breast cancer (including 
TNBC) in patients with germline BRCA1/2 mutations. Despite impressive response rates of ~60%, the prolongation 
in median progression-free survival with a PARPi is modest, suggesting the emergence of resistance. Several stud-
ies have reported that receptor tyrosine kinases (RTKs), such as c-MET (also known as hepatocyte growth factor 
receptor), are involved in resistance to various anti-neoplastic agents, including PARPi. However, the mechanism 
by which c-MET contributes to acquired resistance to PARPi in TNBC is not fully understood. In this study, we show 
that hyperactivated c-Met is detected in TNBC cells with acquired resistance to PARPi, and the combination of tala-
zoparib and crizotinib (a multi-kinase inhibitor that inhibits c-MET) synergistically inhibits proliferation in these cells. 
Unexpectedly, depleting c-MET had limited effect on talazoparib sensitivity in PARPi-resistant cells. Interestingly, we 
found evidence of epidermal growth factor receptor (EGFR) hyperactivation and interaction of EGFR/c-Met in these 
cells. Notably, combining EGFR and PARP inhibitors resulted in greater inhibition of proliferation in c-MET-depleted 
TNBC cells, and combined c-MET and EGFR inhibition increased sensitivity to talazoparib in TNBC cells with ac-
quired resistance to PARPi. Our findings suggest that combined inhibition of c-MET and EGFR could potentially re-
sensitize TNBC to the cytotoxic effects of PARPi.
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Introduction

Triple-negative breast cancer (TNBC) is defined 
by the lack of expression of the three major 
actionable targets in breast cancer, namely, the 
estrogen receptor (ER), the progesterone recep-
tor (PR), and the human epidermal growth fac-
tor receptor 2 (HER2) [1]. Together, this subtype 

of breast cancer accounts for 10-20% of prima-
ry breast cancers [2-5]. In contrast with hor-
mone receptor-positive and/or HER2-positive 
breast cancers, TNBCs tend to be larger, more 
likely node-positive and of higher grade [6]. 
Although TNBCs are more likely to respond to 
cytotoxic chemotherapy in the neoadjuvant set-
ting compared to other breast cancer subtypes, 
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chemotherapy-resistant TNBC carries a dismal 
prognosis with a 40-80% risk of disease recur-
rence in the first 2-3 years following definitive 
surgical intervention [6-9].

Up to 80% and 35% of breast cancers diag-
nosed in BRCA1 and BRCA2 mutation carriers, 
respectively, are TNBCs. In contrast, only 10- 
30% of breast cancers diagnosed in non-
BRCA1/2 mutation carriers are TNBCs [10, 11]. 
On average, 35% of patients with TNBC carry a 
germline BRCA1 mutation and 8% of patients 
with TNBC carry a BRCA2 mutation. BRCA1/2 
mutations result in defective homologous re- 
combination, leading to accumulation of DNA 
damage [12], which increases the sensitivity of 
such tumors to DNA damaging agents, includ-
ing platinum compounds and poly-ADP-ribose 
polymerase (PARP) inhibitors [13]. In addition, 
some BRCA1/2-wild type TNBCs have defec-
tive homologous recombination and share the 
increased sensitivity to DNA damaging agents 
observed in BRCA1/2-mutant tumors, a pheno-
type commonly termed BRCAness [13].

Results from two recent randomized phase III 
clinical trials [14, 15] led to the approval of 
PARP inhibitors (PARPi) olaparib and talazopar-
ib for patients with metastatic or advanced, 
HER2-negative breast cancer with germline 
BRCA1/2 mutations, including those with TN- 
BC. The overall response rate to olaparib in the 
phase III OlympiAD trial in patients with mea-
surable disease was 59.9%, compared to 
28.8% in patients receiving standard therapy 
[14]. Median progression-free survival in pa- 
tients receiving olaparib was 7.0 months, ver-
sus 4.2 months in patients receiving standard 
therapy [14]. In the phase III EMBRACA study, 
the response rate to talazoparib was 62.6%, 
compared to 27.2% in patients receiving stan-
dard therapy [15]. The median progression-free 
survival was 8.6 months in patients receiving 
talazoparib and 5.6 months in patients receiv-
ing standard therapy [15]. Thus, although 
response rates to PARPi in advanced or meta-
static breast cancer are impressive, the 3- 
month improvement in progression-free surviv-
al is modest, suggesting the emergence of 
resistance to these novel agents.

Several mechanisms of resistance to PARPi 
have been described. First, restoration of 
homologous recombination through reversion 
mutations in BRCA1/2 [16] as well as concur-

rent mutations in TP53BP1 [17] or PTEN [18] 
have been shown to contribute to PARPi resis-
tance. Second, increased reliance on alternate 
means of DNA repair like non-homologous end 
joining can limit the therapeutic efficacy of 
PARPi [19]. Third, since PARPi suppress DNA 
repair at replication forks and promote forma-
tion of double-strand breaks [20, 21], stabiliza-
tion of the replication fork can antagonize the 
anti-tumor effects of PARPi [22-24]. Fourth, 
reduced PARP expression [25] or binding [26] 
has been shown to result in PARPi resistance 
as did increased expression of PARPi efflux 
pumps [27]. Fifth, cell cycle checkpoint activa-
tion has been reported to result in cell cycle 
delay, giving malignant cells time to repair dam-
aged DNA [28], resulting in resistance to PARP 
inhibition. Notably, inhibition of cyclin-depen-
dent kinase 12 (CDK12) was found to enhance 
sensitivity to PARPi [29-32]. Additionally, in- 
creased WEE1 expression, which promotes cell 
cycle arrest and DNA repair, was found to result 
in PARPi resistance as well [33]. Similarly, CHK1 
has been shown to induce cell cycle arrest in 
response to DNA damage [34] and inhibition of 
CHK1 can potentiate the anti-neoplastic effe- 
cts of PARPi [35].

In addition to the above-mentioned mecha-
nisms of resistance to PARPi, the receptor tyro-
sine kinase (RTK) c-MET has been shown to 
interact with and phosphorylate PARP1 at the 
Tyr907 residue, increasing the enzymatic activ-
ity of PARP and decreasing its binding to PARPi 
[36]. In a model of intrinsic resistance to PARPi, 
the combined inhibition of c-MET and PARP 
reduces proliferation of TNBC in vitro and in 
vivo [36, 37]. Interestingly, the epidermal 
growth factor receptor (EGFR), another RTK, 
has also been shown to interact with c-MET, 
leading to phosphorylation of PARP1 at the 
Tyr907 residue, contributing to PARPi-resis- 
tance in hepatocellular carcinoma (HCC) [38]. 
In TNBC, dual targeting of MET and EGFR inhib-
its tumor growth in a more consistent manner 
compared to inhibiting either target alone [39] 
but the effects of c-MET and EGFR crosstalk 
signaling on PARPi resistance in TNBC remain 
unknown.

c-MET activity has been shown to enhance 
intrinsic resistance to PARPi in BRCA1/2 wild 
type TNBC [36]; however, its role in acquired 
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resistance to PARPi in BRCA1/2-deficient TN- 
BC remains unclear. In addition, because co-
expression of RTKs has been shown to contrib-
ute to therapeutic resistance [39], the involve-
ment of other RTKs in the setting of acquired 
resistance to PARPi remains a distinct possibil-
ity and an open question. 

Materials and methods

Chemicals and antibodies 

Olaparib and talazoparib were purchased from 
Selleck Chemical (Houston, TX), Crizotinib was 
purchased from LC laboratories. Antibodies 
against MET (#8198), phospho-MET (#3077), 
EGFR (#4267) and IgG (#2729) were purchased 
from Cell Signaling Technology (Danvers, MA). 
Antibodies for Lamin B (sc-365962) were pur-
chased from Santa Cruz Biotechnology (Santa 
Cruz, CA). The antibody for phospho-EGFR (Ab- 
5650) was purchased from Abcam (Cambridge, 
UK). The antibody against PARP1 pY907 was 
obtained from China Medical University (Tai- 
chung, Taiwan) [36].

Cell culture

The SUM149 cell line was obtained from 
Asterand Biosciences (Detroit, MI) and main-
tained in F12K medium containing 5% FBS, 10 
mM HEPES, 1 mg/ml hydrocortisone, 5 µg/ml 
insulin, 100 units/ml penicillin, and 100 mg/ml 
streptomycin. Cells were validated by STR DNA 
fingerprinting using the AmpF_STR identifier kit 
following the manufacturer’s protocol (Applied 
Biosystems cat 4322288). The STR profiles 
were compared to ATCC fingerprints (ATCC.org) 
and the Cell Line Integrated Molecular Authen- 
tication (CLIMA) database version 0.1.200808 
(http://bioinformatics.istge.it/clima/) [40]. The 
PARPi-resistant TNBC cell lines B3 and C12 
were developed from SUM149 with 100 nM 
talazoparib treatment and were cultured as 
described above for SUM149.

Immunoblotting 

Whole cell lysates were prepared in radioimmu-
noprecipitation (RIPA) buffer (20 mM Tris-HCl, 
pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM 
EGTA, 1% NP-40, 1% sodium deoxycholate, 2.5 
mM sodium pyrophosphate, 1 mM β-glycero- 
phosphate, 1 mM Na3VO4, 1 µg/ml leupeptin) 
with protease inhibitors (bimake.com) and 

phosphatase inhibitors (biotool.com). The con-
centration of protein in whole cell lysates was 
determined using the Pierce BCA protein assay 
kit (Fisher PI-23227) according to the manufac-
turer’s protocol. 10-40 µg of protein from each 
sample was separated in an 8% Bis-Tris SDS 
PAGE gel and transferred to a polyvinylidene 
difluoride (PVDF) membrane (Life Technologies). 
After blocking with 5% bovine serum albumin 
(BSA), primary antibodies were incubated with 
the PVDF membranes overnight at 4°C. Mem- 
branes were washed in TBST (50 mM Tris-Cl, 
pH 7.5, 150 mM NaCl, 0.05% Tween-20) and 
hybridized with appropriate secondary antibod-
ies for 45 min at room temperature and imaged 
using ECL reagents (Bio-Rad Laboratories).

Immunoprecipitation 

Whole cell lysates were prepared in immuno-
precipitation buffer (25 mM Tris, pH 7.4; 150 
mM NaCl, 0.1% NP-40, 1 mM EDTA, 10% glyc-
erol) and incubated with 1 µg of primary anti-
body or IgG control antibody overnight at 4°C. 
Protein G-agarose beads were then added and 
incubated at 4°C for 1 hr prior to washing and 
detection by immunoblotting as described in 
the previous section.

MTT assay 

B3 cells (1250 cells/well) and C12 cells (750 
cells/well) were seeded in a 96 well plate  
and incubated overnight. After 24 hr, cells  
were then treated with varying concentrations 
of talazoparib and/or crizotinib for 6 days. 3- 
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoli-
um bromide (MTT) was added into each well  
to achieve a final concentration of 0.5 µg/ml 
before formazan extraction with DMSO. The 
optical density at 590 nm in each well was 
measured and then normalized to untreated 
wells. The Chou-Talalay method [41] was used 
to calculate the combination index using the 
Compusyn software (http://www.combosyn.
com).

Plasmids and transfection

For knockdown of c-MET, the PARPi-resistant 
TNBC cell lines, B3 and C12, were transfected 
with pLKO-shRNA vector (Sigma-Aldrich, St. 
Louis, MO). shRNA sequences used in generat-
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ing stable knockdown clones are as follows (5’ 
to 3’): shRNA1 (3’ UTR): CCGGGTGTGTTGTATG- 
GTCAATAACCTCGAGGTTATTGACCATACAACACA- 
C TTTTTTG; shRNA2: CCGGCCTTCAGAAGGTTG- 
CTGAGTACTCGAGTACTCAGCAACCTTCTGAAG 
GTTTTTG.

Colony formation assay 

B3 (1,500 cells/well) and C12 (1,500 cells/
well) were plated into 24-well plates and incu-
bated overnight. After 24 hr, cells were then 
treated with varying concentrations of tala-
zoparib and/or crizotinib for 10 days. Colonies 
were fixed and stained with 0.5% crystal violet, 
washed, dried and imaged. Crystal violet was 
resolved from colonies using 33% acetic acid 
and absorbance was measured at 540 nm 
[36]. The Chou-Talalay method [41] was used to 
calculate the combination index using the 
Compusyn software (http://www.combosyn.
com).

Tissue specimens 

Breast tumor specimens from 19 patients with 
stage I-III breast cancer and a germline 
BRCA1/2 mutation were obtained at baseline 
and at the time of surgery following treatment 
with talazoparib in the neoadjuvant setting 
[42]. Reverse phase protein arrays [43] and 
whole exome sequencing were performed by 
the proteomics and sequencing core facility at 
The University of Texas MD Anderson Cancer 
Center, respectively. The study protocol was 
reviewed and approved by The University of 
Texas MD Anderson Cancer Center Institutional 

To determine whether c-MET also plays an im- 
portant role in acquired resistance to PARPi in 
TNBC, we examined its expression in PARPi-
sensitive SUM149 TNBC cells and two SUM149-
derived PARPi-resistant cells (B3 and C12). 
Both B3 and C12 exhibited significantly higher 
levels of phospho-c-MET expression compared 
with the SUM149 PARPi-sensitive parental cells 
when treated with vehicle control as well as 
after 24-hr exposure to either olaparib or tala-
zoparib (Figure 1). The total c-MET expression 
was also higher in those two PARPi-resistant 
cells compared with the parental cells, albeit to 
a lesser extent. Therefore, the higher levels of 
c-MET phosphorylation observed in PARPi-re- 
sistant cells suggested that c-MET may play a 
role in mediating acquired resistance to PARPi.

Crizotinib combined with talazoparib synergis-
tically inhibits proliferation of acquired PARPi-
resistant TNBC cells

To address whether c-MET inhibition can re-
sensitize TNBC cells with acquired resistance 
to PARPi, we treated B3 and C12 PARPi-
resistant cells with varying concentrations of 
crizotinib, a multi-kinase inhibitor that inhibits 
c-MET, and talazoparib. Cell killing activities of 
the inhibitors, either alone or in combination, 
were determined by the MTT assay and the 
combination index (CI) calculated using the 
Chou-Talalay method [41]. As shown in Figure 
2A, the CI for crizotinib and talazoparib in B3 
and C12 was below 1, indicating synergistic 
inhibition of cell proliferation. To validate these 

Figure 1. The B3 and C12 PARP inhibitor-resistant TNBC cells exhibit higher 
levels of phospho-c-MET expression compared with SUM149 PARPi-sen-
sitive parental TNBC cells. The indicated cells were treated with vehicle 
control (con), olaparib (ola) at a concentration of 0.5 µM or 1.0 µM, or 
talazoparib (Tala) at a concentration of 25 nM for 24 hr prior to preparation 
of whole cell lysates. Immunoblotting was used to determine relative levels 
of phospho-c-MET, total c-MET and lamin B expression.

Review Board and all patients 
signed written informed con-
sent (NCT02282345).

Statistical analysis 

Student’s t test was used to 
compare two groups of inde-
pendent samples. A P value < 
0.05 was considered statisti-
cally significant. 

Results

Phospho-c-MET expression 
is higher in acquired PARPi-
resistant TNBC cells
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results, we performed a colony formation assay 
with results also showing synergistic inhibition 
of colony formation when cells were treated 
with the combination of crizotinib and talazopa-
rib (Figure 2B). These findings indicated that 
combined inhibition of c-MET and PARP syner-
gistically inhibited cell growth of TNBC cells 
with acquired PARPi resistance. 

Depletion of c-MET in PARPi-resistant TNBC 
cells has limited impact on restoring sensitivity 
to talazoparib

To specifically assess the role of c-MET in ac- 
quired resistance to PARPi in TNBC, we deplet-
ed c-MET by short hairpin RNA (shRNA) kno- 
ckdown in B3 and C12 PARPi-resistant cells 
which express significantly higher levels of ph- 
ospho-c-MET compared with SUM149 parental 

uting to the PARPi-resistant phenotype. c-MET 
is known to interact with multiple cell surface 
molecules [44] and form heterodimers with 
other RTKs to increase their downstream sig-
naling, which in turn drives the malignant phe-
notype of the tumor [44]. Analysis of the online 
protein-binding database (https://thebiogrid.
org/) identified EGFR as one of the RTK candi-
dates that associates with c-Met. Several drugs 
targeting EGFR have been approved by the 
FDA, including gefitinib and erlotinib. Thus, we 
focused on the EGFR for all subsequent experi-
ments. Based on the importance of EGFR in 
DNA repair and its clinical impact as a thera-
peutic target in TNBC [45, 46], we evaluated 
the activity of EGFR in PARPi-resistant and 
SUM149 PARPi-sensitive cells. As expected, 
EGFR phosphorylation was highly increased in 

Figure 2. The combination of crizotinib and talazoparib synergistically inhibits 
cell proliferation of B3 and C12 PARPi-resistant TNBC cells. A. B3 and C12 
PARPi-resistant TNBC cells were treated with varying concentrations of crizo-
tinib and talazoparib for 6 days. Following 6 days of treatment, cells were sub-
jected to 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) 
assay. The combination index (CI) was calculated, and synergistic inhibition of 
cell proliferation was defined as a CI < 1. B. Cells were seeded at low density 
and treated with varying concentrations of crizotinib and talazoparib for 10 
days. Following 10 days of treatment, colonies were stained with 0.5% crystal 
violet and imaged.

cells. Knockdown efficiency 
of > 50% was achieved in all 
cases (Figure 3A). We then 
treated the c-MET-depleted 
B3 and C12 cells and their 
c-MET-expressing counter-
parts with increasing con-
centrations of talazoparib. 
Depleting c-MET in C12 mo- 
destly increased sensitivity 
to talazoparib (Figure 3B) 
whereas depleting c-MET in 
B3 did not consistently in- 
crease sensitivity to tala-
zoparib (Figure 3C). These 
results suggested that de- 
pleting c-MET has limited 
effect on restoring sensi- 
tivity to PARPi in TNBC cells 
with acquired resistance to 
PARPi.

c-MET cooperates with 
EGFR to mediate acquired 
PARPi resistance in TNBC 

Although hyperactivated c- 
MET is observed in PARP-
resistant TNBC cells, the 
modest effect of c-Met de- 
pletion on PARPi sensitivity 
implies that while c-Met may 
be involved in RTK-driven 
PARP resistance mechani-
sm, additional molecules 
may work in tandem, contrib-
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resistant cells and remained unaffected by 
PARPi treatment (Figure 4A). Interestingly, the 
expression of total EGFR and c-Met were not 

significantly upregulated in PARPi-resistant 
clones, but their activities (defined by relative 
levels of phosphorylation) were augmented. On 
the basis of those results, we hypothesized 
that enriched heterodimerization of EGFR and 
c-Met may contribute to acquired resistance to 
PARPi in TNBC cells through a kinase-depen-
dent mechanism. To this end, we immunopre-
cipitated c-Met and then tested for interaction 
with EGFR. Our results revealed enhanced 
interaction between c-MET and EGFR in C12 
compared with SUM149 (Figure 4B). We then 
immunoprecipitated c-MET in whole cell lysates 
obtained from B3 and C12 as well as SUM149 
under basal conditions followed by treatment 
with talazoparib. The results showed that inter-
action between c-MET and EGFR is increased 
in PARPi-resistant B3 and C12 cells compared 
with PARPi-sensitive SUM149 parental cells 
(Figure 4C). Notably, c-MET depletion in the 
PARPi-resistant cells enhanced the efficacy of 
combined EGFR and PARP inhibition (Figure 4D 
and 4E). Next, we examined the effect of com-
bined inhibition of c-MET, EGFR, and PARP on 
cell proliferation by using the MTT assay. The 
results showed that combined inhibition of 
c-MET and EGFR significantly increased the 
growth inhibitory effect of PARPi in the B3 and 
C12 PARPi-resistant cells whereas inhibiting 
either c-MET or EGFR alone did not (Figure 4F 
and 4G). Collectively, these data suggested 
that EGFR may cooperate with c-MET in mediat-
ing resistance to PARPi through their intera- 
ction.

Talazoparib-resistant breast tumor specimens 
exhibit enhanced protein expression of c-MET, 
total EGFR, and phospho-EGFR 

To determine whether tumors from patients 
with breast cancer harbor enhanced expres-
sion of c-MET and EGFR, we identified 19 pa- 
tients with previously untreated stage I-III 
breast cancer who received talazoparib in the 
neoadjuvant setting as part of a clinical trial 
conducted at The University of Texas MD 
Anderson Cancer Center (NCT02282345) [42]. 
Patients enrolled in this study underwent a pre-
treatment core needle biopsy at baseline and 
received up to 6 months of treatment with tala-
zoparib in the neoadjuvant setting before 
undergoing surgery to remove any residual can-
cer. The amount of residual cancer was quanti-
fied using the residual cancer burden (RCB) 

Figure 3. Depleting c-MET results in a limited effect 
of restoring PARPi sensitivity to talazoparib in the 
PARPi-resistant TNBC cells. (A) Following lentiviral 
delivery of two independent short hairpin RNAs (shR-
NA) targeting c-MET to B3 and C12 PARPi-resistant 
TNBC cells, c-MET expression levels were reduced by 
at least 50% relative to cells receiving non-specific 
shRNA sequences. B3 and C12 cells were infected 
with control shRNA (control), a shRNA targeting the 3’ 
UTR of c-MET (sh-c-MET-1), or a shRNA targeting the 
coding region of c-MET (sh-c-MET-2). Relative expres-
sion levels of total c-MET in stable clones were deter-
mined by immunoblotting. (B) C12 (750) and (C) B3 
(1,500) cells were seeded in each well of a 96-well 
plate on Day 0. On Day 1, talazoparib was added at 
varying concentrations to each well (12.5-200 nM). 
Following 6 days of treatment, cells were subjected 
MTT, and the percentage of surviving cells in each 
well was calculated. Error bars represent SEM. *P < 
0.05, **P < 0.01, ***P < 0.001, Student’s t-test. 
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Figure 4. Enhanced interaction between c-MET and EGFR is detected in the PARPi-resistant TNBC cells relative to 
PARPi-sensitive parental TNBC cells. A. Parental (PT) and resistant (C12) cells were treated with talazoparib (Tala) 
at a concentration of 25 nM for 24 hr prior to preparation of whole cell lysates. B. Parental (PT) cells and resistant 
cells (B3 and C12) were treated with vehicle control (Con) or talazoparib (Tala) at a concentration of 25 nM for 24 
hr prior to preparation of whole cell lysates. cMET or IgG control antibodies were used to immunoprecipitate the cell 
lysate. EGFR expression was then analyzed by immunoblotting. C. Cells were treated with vehicle control, olaparib 
at a concentration of 0.5 µM or 1.0 µM, or talazoparib at a concentration of 25 nM for 24 hr prior to preparation 
of whole cell lysates. Relative expression levels of phospho- and total-EGFR were determined by immunoblotting. 
D and E. Cells were seeded in each well of a 96-well plate on Day 0. On Day 1, talazoparib (125-2,000 nM) and 
gefitinib (31.25-500 nM) were added at varying concentrations to each well. F and G. Cells were seeded in each 
well of a 24-well plate on Day 0. On Day 1, talazoparib (100 nM), crizontinib (62.5 nM) and gefitinib (62.5 nM) were 
added at to each well. Following 6 days of treatment, cells were subjected to MTT, and the percentage of surviving 
cells in each well was calculated. Error bars represent SEM. *P < 0.05, **P < 0.01, ***P < 0.001, Student’s t-test.

index [47]. Patients were classified as having 
talazoparib-sensitive disease if they had a 
pathologic complete response or minimal resid-
ual disease (pCR/RCB-I) and classified as hav-

ing talazoparib-resistant disease if they had 
significant residual disease (RCB-II/RCB-III). Of 
the 19 patients, four had sufficient tissue for 
paired analysis. Among the four patients with 
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Figure 5. MET, EGFR and phospho-EGFR protein 
expression increased in patients with talazoparib-
resistant breast cancer following treatment with 
single-agent talazoparib in the neoadjuvant setting. 
Patients with stage I-III breast cancer with a germ-
line BRCA1/2 mutation were treated with talazopa-
rib in the neoadjuvant setting prior to undergoing 
definitive surgery. Patients underwent a baseline 
core needle biopsy prior to initiating therapy. (A) MET 
(B) EGFR and (C) phospho-EGFR protein levels in pre-
treatment biopsy specimens and surgical specimens 
obtained at the end of treatment were measured by 
reverse phase protein arrays. Patients were classi-
fied as having talazoparib-sensitive disease if they 
had a pathologic complete response or minimal re-
sidual disease (pCR/RCB-I) and classified as having 
talazoparib-resistant disease if they had significant 
residual disease (RCB-II/RCB-III).

paired tissue samples, two had talazoparib-
sensitive disease and the remaining two had 
talazoparib-resistant disease. Following treat-
ment with talazoparib, tumors from patients 
with talazoparib-sensitive disease exhibited 
decreased c-MET (Figure 5A, left), EGFR (Figure 
5B, left), and phospho-EGFR (Figure 5C, left) 
protein expression whereas tumors from pa- 
tients with talazoparib-resistant disease had 
increased c-MET (Figure 5A, right), EGFR 
(Figure 5B, right), and phospho-EGFR protein 
expression (Figure 5C, right) as detected by 
RPPA. These results suggested the potential 
compensatory upregulation of these pathways 
in talazoparib-resistant breast cancer. To inves-
tigate whether any single nucleotide variants 
(SNVs) or insertions/deletions (indels) in MET 
or EGFR were present in tumors from this 
cohort of patients, we performed whole exome 
sequencing on baseline and surgical speci-
mens obtained from the 19 patients. However, 
we did not find any SNVs or indels in either MET 
or EGFR, suggesting that changes in MET or 
EGFR expression in these tumors are not medi-
ated by mutations in the respective genes.

Phosphorylation of PARP1 and other DNA re-
pair proteins interacting with c-MET and EGFR 
may be potential mechanisms underlying 
PARPi acquired resistance in TNBC cells

Previously, in a model of intrinsic resistance to 
PARPi in TNBC, oxidative stress was shown to 
increase c-MET phosphorylation, which in turn 
phosphorylates PARP1 at the Tyr907 residue 
(PARP1 pTyr907 or pY907) [36], enhancing the 
enzymatic activity of PARP1 and reducing PARPi 
binding [36], leading to PARPi resistance. 
Although another study also reported oxidative 
damage-mediated increase in PARP1 pY907 
expression [38], inhibiting c-MET activity with 
crizotinib did not consistently reduce PARP1 
pY907 expression levels in HCC cell lines due to 
EGFR-mediated PARP1 phosphorylation [38]. 
Thus, because we observed increased interac-
tion between c-MET and EGFR in B3 and C12 
c-MET-overexpressing PARPi-resistant cells rel-
ative to SUM149 PARPi-sensitive parental cells, 
we hypothesized that c-MET and EGFR cooper-
ate to augment resistance to PARPi through 
increased phosphorylation of PARP1 at the 
Tyr907 residue. However, while PARP1 pY907 
levels were significantly higher in C12 com-
pared to SUM149, they were not significantly 
higher in B3 (Figure 6). These data suggested 
that in addition to increased PARP1 pY907 
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Figure 6. PARPi treatment increases p-Y907 PARP1 expression in C12 but 
not B3 resistant cells. PARPi-sensitive (SUM149) and PARPi-resistant TNBC 
cells (B3 and C12) were treated with vehicle control (Con), olaparib (Ola) at 
a concentration of 0.5 µM or 1.0 µM, or talazoparib (Tala) at a concentration 
of 25 nM for 24 hr prior to preparation of whole cell lysates. Cell lysates were 
then subjected to Western blotting with the indicated antibodies.

expression, there are other potential mecha-
nisms contributing to acquired resistance to 
PARPi in B3 cells. 

To explore other potential mechanisms of resis-
tance that could be mediated by c-MET and 
EGFR, we utilized BioGRID (https://thebiogrid.
org) and identified 91 and 1254 proteins known 
to interact with c-MET and EGFR, respectively. 
Of these, 33 were found to interact with both 
c-MET and EGFR (Table 1). Functional annota-
tion of these 33 proteins using The Database 
for Annotation, Visualization and Integrated 
Discovery (DAVID) (https://david.ncifcrf.gov/) 
led to the identification of 6 proteins involved in 
DNA damage repair (Table 2). Among them, 
FBXO6 is an F box protein that is known to pro-
mote replication stress-induced Chk1 degrada-
tion. Low levels of FBXO6 has been associated 
with impairment of Chk1 degradation, leading 
to replication fork stabilization and activation 
of DNA repair responses, resulting in resis-
tance to PARPi through an increased Chk1-
mediated DNA damage repair [48]. STUB1 
encodes an E3 ubiquitin-protein ligase, CHIP, 
which has been shown to ubiquitylate and 
degrade base excision repair proteins that are 
not part of the DNA repair complex, resulting in 
greater efficiency of base excision repair [49], 
which may in turn lead to resistance to PARPi. 
SFN encodes the protein 14-3-3 sigma which 
increases non-homologous end joining and 
upregulates PARP1 expression, enhancing DNA 
repair [50] and potentially contributing to PARPi 
resistance. CDH1 binds to and activates the 
anaphase promoting complex or cyclosome 
(APC/C) which degrades Plk1 in response to 
DNA damage and prevents cell cycle progres-
sion past G2 in cells with DNA damage [51]. 

age, inducing enhancing PARPi resistance. 
PTEN was recently demonstrated to promote 
repair of double strand DNA breaks via homolo-
gous recombination and loss of PTEN improved 
sensitivity to PARPi [53]. Thus, whether EGFR 
and/or c-MET promotes PARPi resistance by 
enhancing PTEN activity remains an open ques-
tion. Together, the DNA repair proteins identi-
fied to interact both c-MET and EGFR may also 
contribute acquired TNBC resistant cells in tan-
dem with increased PARP1 phosphorylation.

Discussion 

PARPi are the first targeted agents to receive 
FDA approval for the treatment of TNBC in the 
setting of germline BRCA1/2 mutations. How- 
ever, despite having over double the response 
rates compared with standard therapy [14, 15], 
the modest prolongation of median progres-
sion-free survival [14, 15] suggests the emer-
gence of resistance shortly after an initial 
response. We previously described the role of 
the RTK, c-MET, in a model of intrinsic resis-
tance to PARPi using in vitro and in vivo models 
recapitulating BRCA1/2 wild-type TNBC [36]. 
However, whether c-MET plays a role in acquir- 
ed resistance to PARPi in TNBCs is not clear. 

In this study, we demonstrated that phospho-c-
MET levels were higher in PARPi-resistant TNBC 
cells than in their PARPi-sensitive counterparts. 
Notably, this difference in phospho-c-MET 
expression between PARPi-resistant and PARPi-
sensitive TNBC cells was present under basal 
conditions as well as following treatment with 
olaparib or talazoparib. In contrast, oxidative 
stress is required to induce phospho-c-MET 
expression in TNBC cells which were intrinsi-

Additionally, depleting CDH1 
impairs Chk1 phosphorylation 
which may also reduce a cell’s 
ability to repair damaged DNA 
[51]. Thus, since CDH1 con-
tributes maintaining genomic 
integrity in cells, its activation 
may limit sensitivity to PARPi. 
TP53 plays a crucial role in 
maintaining genomic stability 
[52], and it is plausible that 
EGFR and/or c-MET may, 
through its interaction with 
p53, promote its ability to pre-
vent catastrophic DNA dam-
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cally resistant to PARPi [36]. However, although 
the combination of crizotinib and talazoparib 
resulted in synergistic inhibition of proliferation 
of PARPi-resistant TNBC cells, depleting c-MET 
did not consistently restore sensitivity to tala-
zoparib. Following our previous work showing 
that EGFR interacts with c-MET to enhance 
resistance to PARPi in HCC [38], as well as the 
existence of a crosstalk between c-MET and 
EGFR in TNBC [39], we systematically evaluat-
ed the existence of c-MET-interacting RTKs in 
the PARPi-resistant TNBC cells and identified 
EGFR as a c-MET-interacting protein. Notably, 
the observed interaction between EGFR and 
c-MET remained relatively consistent under 
both basal conditions and following treatment 
with talazoparib in the C12 PARPi-resistant 
cells but appeared to be diminished following 
treatment with talazoparib in the B3 PARPi-
resistant cells. The levels of phospho-c-MET 
and phospho-EGFR expression in B3 were also 
diminished following treatment with talazopar-
ib, potentially explaining the reduced interac-
tion between c-MET and EGFR, a finding consis-
tent with earlier data from our laboratory dem-
onstrating that phosphorylation of c-MET and 
EGFR promotes their interaction [38]. Of note, 
resistance to PARPi in HCC appears to be 
enhanced by phosphorylation of PARP1 by 
EGFR/MET heterodimers following oxidative 
DNA damage [38]. In addition, inhibitors of 
EGFR have been reported to inhibit its nuclear 
translocation [54] which may be necessary for 
EGFR/MET-mediated phosphorylation of PAR- 

P1, a nuclear protein. Given the role of PARPi in 
the DNA damage response, we identified six 
c-Met/EGFR-interacting proteins which can reg-
ulate DNA repair pathway and may contribute 
to PARPi resistance resulting from the interac-
tion of c-MET and EGFR. In addition to these 
proteins, we also found enhanced PARP1 Y907 
phosphorylation in C12 PARPi-resistant cells, 
consistent with our earlier findings in HCC [36]. 
Together, these data suggested that the inter-
action between EGFR and c-MET contributes to 
acquired resistance to PARPi in TNBC and that 
combined inhibition of EGFR, c-MET, and PARP 
may overcome therapeutic resistance and 
inhibit malignant proliferation of TNBC. 

The identification of EGFR as an interacting pro-
tein of c-MET in PARPi-resistant TNBC cells sug-
gest that dual inhibition of c-MET and EGFR 
may be required to restore sensitivity to PARPi 
in the setting of RTK-mediated resistance. In 
addition, since phospho-c-MET and phospho-
EGFR levels were significantly elevated in 
PARPi-resistant TNBC cell lines compared to 
PARPi-sensitive TNBC cells, phospho-c-MET 
and phospho-EGFR could serve as potential 
biomarkers to identify patients likely to benefit 
from this combinatorial treatment strategy fol-
lowing development of resistance to PARPi. 
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