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CONSPECTUS:

Oxidative post-translational modifications (OxiPTMs) of cysteine residues are the molecular 

foundation of thiol-based redox regulation that modulates physiological events such as cell 

proliferation, differentiation, and migration and, when dysregulated, can lead to biomolecule 

damage and cell death. Common OxiPTMs of cysteine thiols (─SH) include reversible 

modifications such as S-sulfenylation (─SOH), S-glutathionylation (─SSG), disulfide formation 

(─SSR), S-nitrosylation (─SNO), and S-sulfhydration (─SSH) as well as more biologically 

stable modifications like S-sulfinylation (─SO2H) and S-sulfonylation (─SO3H). In the past 

decade, our laboratory has developed first-in-class chemistry-based tools and proteomic methods 

to advance the field of thiol-based redox biology and oxidative stress. In this Account, we take the 

reader through the historical aspects of probe development and application in our laboratory, 

highlighting key advances in our understanding of sulfur chemistry, in the test tube and in living 

systems.

Offering superior resolution, throughput, accuracy, and reproducibility, mass spectrometry (MS)-

based proteomics coupled to chemoselective “activity-based” small-molecule probes is the most 

rigorous technique for global mapping of cysteine OxiPTMs. Herein, we describe the evolution of 

this field from indirect detection to state-of-the-art site-centric quantitative chemoproteomic 

approaches that enable mapping of physiological and pathological changes in cysteine oxidation. 

These methods enable protein and site-level identification, mechanistic studies, mapping fold-

changes, and modification stoichiometry. In particular, this Account focuses on activity-based 

methods for profiling S-sulfenylation, S-sulfinylation, and S-sulfhydration with an eye toward new 

reactions and methodologies developed in our group as well as their applications that have shed 

new light on fundamental processes of redox biology. Among several classes of sulfenic acid 

probes, dimedone-based C-nucleophiles possess superior chemical selectivity and compatibility 

with tandem MS. Cell-permeable dimedone derivatives with a bioconjugation handle are capable 

of detecting of S-sulfenylation in living cells. In-depth screening of a C-nucleophile library has 

yielded several entities with significantly enhanced reactivity over dimedone while maintaining 

selectivity, and reversible linear C-nucleophiles that enable controlled target release. C-

Nucleophiles have also been implemented in tag-switch methods to detect S-sulfhydration. Most 

recently, activity-based detection of protein S-sulfinylation with electrophilic nitrogen species 
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(ENS), such as C-nitroso compounds and electron deficient diazines, offers significant advantages 

in simplicity-of-use and target specificity compared to label-free methods.

When feasible, the rich information provided by site-centric quantitative proteomics should not be 

tainted by oxidation artifacts from cell lysis. Therefore, chemoselective probes that function in a 

native environment with low cytotoxicity, good cell-permeability, and competitive kinetics are 

desired in modern redox chemoproteomics approaches. As our understanding of sulfur chemistry 

and redox signaling evolves, newly discovered cysteine OxiPTMs in microorganisms, plants, cells, 

tissues, and disease models should innovatively promote mechanistic and therapeutic research.

Graphical Abstract

OXIDATIVE POST-TRANSLATIONAL MODIFICATION OF CYSTEINE

Post-translational modification (PTM) exponentially expands the chemical repertoire 

available to proteins beyond the 20 standard amino acids. The human proteome contains 

more than 200 types of PTMs that modulate protein function.1 Among these, oxidative post-

translational modifications (OxiPTMs) of cysteine residues have emerged as a fundamental 

mechanism in thiol-based redox regulation and signaling in physiological processes such as 

cell proliferation, differentiation, and migration.2 The sulfur atom of cysteine can exist in 

various oxidation states from −2 to +6. Two electron oxidation of cysteine thiol (─SH) by 

the reactive oxygen species (ROS) hydrogen peroxide (H2O2) produces cysteine sulfenic 

acid (─SOH), which may be stabilized by the protein microenvironment or form a disulfide 

with an adjacent cysteine residue (─SSR) or mixed disulfide with glutathione (─SSG). 

Likewise, S-nitrosothiols (─SNO) and persulfides (─SSH) are generated from reactive 

nitrogen/sulfur species. The aforementioned cysteine OxiPTMs can be biologically reduced 

back to their thiol form with cellular enzymes like glutaredoxin (Grx) or thioredoxin (Trx), 

as a key mechanism in maintaining redox homeostasis.3 On the other hand, higher oxidation 

states of cysteine, like cysteine sulfinic acid (─SO2H) and sulfonic acid (─SO3H), are 

more stable and can accumulate over time during oxidative stress.4 The distinct reactivity of 

each cysteine OxiPTM provides the chemical basis for differential redox regulation of 

protein function. Cysteine oxidation also has a profound impact on PTMs that require a 

reduced thiol for modifications such as palmitoylation and drug pharmacology with covalent 

thiol-reactive inhibitors.5,6 Protein cysteines can exhibit a range of reactivity, dictated by 

Shi and Carroll Page 2

Acc Chem Res. Author manuscript; available in PMC 2020 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



factors such as pKa, electrostatic interactions, and solvent exposure.7 The reaction rate 

between cysteine thiolates and H2O2 can vary substantially: antioxidant enzyme 

peroxiredoxins (Prxs) are hyperactive (105−108 M−1·s−1), followed by redox-sensor proteins 

like GAPDH and OxyR (103−105 M−1·s−1), while the bulk of the cysteinome reacts slowly 

(~10 M−1·s−1).8,9

A wealth of cysteine OxiPTMs in microorganisms, plants, animal tissues, and disease 

models await discovery. To this end, proteome-wide profiling of cysteine oxidation is an 

essential molecular technique to elucidate redox-regulated signaling pathways and offer new 

insights into pathological states involving oxidative stress, such as cancer, diabetes, and 

neurodegenerative and cardiovascular diseases.10 The rapidly growing area of chemical 

proteomics or chemoproteomics has been fueled by advances in instrumentation and 

bioinformatics as well as small-molecule probes that enable tagging, isolation, identification, 

and quantification.11-13 In the past decade, researchers have developed MS-based techniques 

to identify low pKa or “reactive cysteines” as well as cysteine OxiPTMs with detailed 

information including the site, type, dynamic fold-change, and extent of modification. 

Herein, we spotlight recent developments in profiling cysteine reactivity and oxidation with 

emphasis on site-centric quantitative approaches.

ORTHOGONAL REACTIVITY

Pioneered by Bertozzi and co-workers, bioorthogonal chemistry enables researchers to 

investigate native biomolecules under complex biological settings.14 Understanding the 

reactivity profile of each cysteine “chemotype” is key to designing an effective activity-

based proteomic workflow. To achieve orthogonality, two types of approaches are commonly 

employed: (1) blocking undesired forms of cysteine (e.g., thiols), reducing cysteine 

OxiPTMs, followed by trapping nascent thiols with detectable tags (“tag-switch” method); 

and (2) probing distinct classes of cysteine OxiPTMs with reagents that are chemically 

selective. In the experimental design, all biologically relevant forms of cysteine must be 

taken into consideration. Summarized in Table 1, cysteine OxiPTMs can be categorized on 

the basis of sulfur charge density. Electronrich species or nucleophiles (when deprotonated) 

include cysteine thiols (─SH), persulfides (─SSH), and sulfinic acids (─SO2H). Electron-

deficient species or electrophiles include disulfides (─SSR), S-glutathione adducts 

(─SSG), and S-nitrosothiols (─SNO). Some species, like sulfenic acids (─SOH), are 

unique in that they exhibit both nucleophilic and electrophilic reactivity.

SITE-CENTRIC QUANTITATIVE PROTEOMICS

Reversible or labile cysteine OxiPTMs are extremely susceptible to perturbation during 

sample preparation and subsequent analyses. Therefore, chemical labeling is widely 

recognized in redox proteomics, because oxidation states are “trapped” by chemical tags, 

which may also enable affinity enrichment for sensitivity improvement. Stable isotope-

coded tags are often used in quantitative proteomics, since corresponding peptides have 

identical ionization ability, and therefore can serve as internal MS standards.15 In addition, 

tagged peptides must be stable and have a clear fragmentation pattern on tandem MS to 

reveal modified sites. Such site-centric quantitative approaches not only show the location 
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and multiplicity of modifications, but also provide definitive confirmation by greatly 

decreasing the rate of false discovery.

Indirect Profiling of Cysteine Oxidation

With estimated concentration up to 50 mM, protein-bound cysteine thiols are mostly reduced 

and constitute the majority (up to 70%) of reduced thiols in cells.16,17 Iodoacetamide (IAM) 

and its derivatives are among the most frequently used thiol-reactive alkylating agents, but at 

the high concentrations typically employed they are plagued by off-target modification of 

basic amino acid residues (e.g., N-terminus, lysine and histidine residue)18,19 and other 

cysteine OxiPTMs including ─SOH, ─SO2H, and ─SSH.20-22 Several novel reagents with 

enhanced selectivity, like methylsulfonyl benzothiazole (MSBT),23 do not react with 

─SOH, ─SO2H, and ─SNO (but thiol alkylation generates sulfinic acids, which may cross 

react with other species, including ─SNO)24 (Figure 1a). However, alkylation of persulfides 

(─SSH) is expected, due to its enhanced nucleophilicity originated from low pKa (CysSSH 

pKa = 4.3; CysSH pKa = 8.3).25 In fact, MSBT and IAM derivatives have been used in 

detection of ─SSH (Figure 1b).26,27

Reversibly oxidized cysteine modifications can be indirectly detected by thiol-blocking, 

reduction of oxidized species, followed by labeling of nascent thiols (Figure 2a). DTT and 

TCEP (standard reduction potential = −0.33 and −0.32 V, respectively)28 are powerful 

reducing agents that are capable of converting reversible cysteine OxiPTMs to thiols, but 

they do not effectively reduce ─SO2H or ─SO3H. Alternatively, a given OxiPTM may be 

selectively reduced and tagged for detection. Sodium ascorbate and sodium arsenite were 

considered as selective reducing agents for ─SNO and ─SOH, respectively.29,30 Likewise, 

enzymatic reduction of ─SSG by Grxs has been employed to detect S-glutathionylation.31 

Nevertheless, extreme caution is advised when interpreting data obtained from these 

strategies, as incomplete blocking, reduction, or sample degradation can occur during 

lengthy sample processing workflows, especially for labile modifications. In addition, clear 

examples of cross-reactivity with other cysteine OxiPTMs indicate that ascorbate and 

arsenite are far less selective than previously believed.9,29

In early studies, cysteine OxiPTMs were typically profiled with isotope-coded affinity tag 

(ICAT)-based platforms;32,33 however, many recent improvements to this workflow have 

been made (Figure 2b). Cysteine-reactive isobaric tags have been introduced for multiplexed 

redox quantitation, reducing run-to-run variance. For example, 6-plex tandem mass tag 

(TMT) reagents have been used to quantify ─SNO and other reversible cysteine OxiPTMs 

in three competitive samples.34,35

The application of smaller electrophiles has expanded the coverage of targetable cysteines 

due to easier access to sterically encumbered sites. Alkynyl iodoacetamide probes IA-alkyne 

and IPM can be conjugated to isotope-coded reporter groups via copper-catalyzed azide–

alkyne cycloaddition (CuAAC) or “click chemistry”. With the IPM probe, over 6500 

cysteines in multiple human cell lines were profiled, and most of them responded to H2O2 in 

a cell-specific manner.36 The Weerapana group has developed cost-effective isotope-coded 

electrophiles and applied these reagents to identify almost 1000 reversibly oxidized cysteine 

sites in HeLa lysate.37 Moreover, the inherent cytotoxicity of IA-alkyne (LC50 = 16 μM) can 
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be mitigated, at least in part, by using photocaged electrophiles. Epidermal growth factor 

(EGF)-induced cysteine oxidation in A431 cells has been analyzed using the photocaged 

probe, CBK1, which displayed little detectable cytotoxicity below 250 μM and allowed a 

degree of temporal control over cysteine labeling.38

In combination with other methodologies, researchers aim to integrate quantitative 

information on relative cysteine oxidation, termed fold-change, with total protein levels. For 

example, the SILAC-iodoTMT (metabolic labeling), GELSILOX (18O proteolytic labeling), 

cysTMTRAQ (coupled isobaric labeling), and oxSWATH (integrative chemical 

labeling)39-42 platforms have been recently reported to comprehensively evaluate the effect 

of oxidation on cysteine proteomes.

The Chemical Odyssey of Sulfenic Acid (─SOH) Detection

A chemical probe is a small-molecule reagent that allows mechanistic and phenotypic 

studies on its protein targets.43 In the context of redox proteomics, the chemical probe is 

expected to target a specific class of cysteine OxiPTM among the whole proteome, with 

minimal cross-reactivity. Because of its dynamic nature and central role in OxiPTM-based 

redox regulation, the odyssey of trapping cysteine sulfenic acids (─SOH) with nucleophilic 

compounds began in 1974, when Allison and co-workers introduced the cyclic 1,3-diketone, 

dimedone, and other nucleophiles that reacted with cysteine sulfenic acid in GAPDH.44 

Thereafter, nucleophiles functionalized with biotin, azide, or alkyne reporter groups and 

other handles for bioorthogonal ligation based upon the dimedone structure have been 

reported.9 Our laboratory has performed a comprehensive study, wherein a library of ~100 

carbon-based nucleophiles (C-nucleophiles) were designed, prepared, and screened, 

ultimately identifying several entities with exceptional reactivity (up to 3170 M−1·s−1, a 

more than 300-fold increase over dimedone) while maintaining selectivity.45-47Furthermore, 

our survey of linear C-nucleophiles showed reversible covalent labeling of sulfenic acids for 

the first time, enabling target release under defined conditions (Figure 1c).46

Complementary to nucleophilic probes, several strained alkynes and alkene electrophilic 

reagents have been engineered to capture ─SOH.48-51 Because these reactions are strain-

promoted and the alkenes/alkynes are not as electron-deficient as Michael acceptors, thiol–

ene/yne side reactions can be suppressed, yet incompletely.49,52 The issue of thiol–ene/yne 

side reaction is magnified given the much higher abundance of ─SH than ─SOH in cells. 

Moreover, ─SSH was found to participate in the reaction with strained alkynes under a 

mechanism analogous to that of ─SOH.53

Regardless of the chemistry or probe used for trapping, sulfenic acid models are essential 

touchstones in reactivity and selectivity studies (Figure 3). A small-molecule 

anthraquinone-1-sulfenic acid (Fries’ acid) is stabilized via intramolecular hydrogen 

bonding, but not “bio-representative”.9 In comparison, protein-stabilized sulfenic acids are 

typically preferred choices, including C165S AhpC and C64,82S Gpx3.45,48 On the other 

hand, certain electrostatic or steric effects can clearly modulate the rate of probe reactivity 

with protein ─SOH. Therefore, an alternative model developed by our group consists of a 

dipeptide cyclic sulfenamide, which is stable in dry, powdered form and organic solvent, but 

readily hydrolyzes to form sulfenic acid in aqueous solution; this model has been employed 
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with great success to benchmark our extensive library of ─SOH probes and reactive 

fragments.45-47 Thermal-driven sulfoxide elimination reactions also produce sulfenic acids.
9,54 Recently, we have reported an approach for the generation of small-molecule and 

protein sulfenic acids from photocaged sulfoxide precursors with applications in unnatural 

amino acid (UAA) incorporation.55

The Selectivity of Dimedone-Based Probes for Sulfenic Acid (─SOH)

Dimedone-based C-nucleophile probes for ─SOH do not possess intrinsic reactivity with 

biological nucleophiles, such as the thiol in cysteine, hydroxyl in serine, amino in lysine, or 

cysteine sulfinate (─SO2
−).45 They are also inert toward weak electrophiles, such as the 

disulfide of a protected cysteine (Z-Cys-OH)2, oxidized glutathione (GSSG), or S-

nitrosoglutathione (GSNO) (Figure 4a).45,56 No reaction between dimedone-based C-

nucleophiles and protein disulfides (such as those in Trx, Gpx3, and Prx I) has been 

observed either. It has been noted that the activated methylene in dimedone can undergo 

Knoevenagel-type condensation with nonprotein bound aldehydes, including pyridoxal, 

acrolein, and glyceraldehyde.57 From a chemoproteomic standpoint, however, this reaction 

is a red herring. Indeed, the rate constant for the reaction of dimedone with glyceraldehyde 

(0.06 M−1·s−1) is approximately 200-fold less than that of ─SOH (~10 M−1·s−1). Also, no 

reaction was observed between butyraldehyde (a representative model of an aldehyde-

modified protein) and dimedone at physiological pH and temperatures up to 100 °C (Gupta, 

unpublished results).

Another electrophilic species that could conceivably react with dimedone-based probes is 

the cyclic sulfenamide, which exists in equilibrium with the corresponding sulfenic acid 

(Figure 4c).45 Protein tyrosine phosphatase 1B (PTP1B) is the first and best-characterized 

example of this cysteine OxiPTM, whose crystal structure showed a cyclic sulfenamide 

linkage in its active site.58 The nitrogen atom on an amide (pKa ~ 17) is less nucleophilic 

than the nitrogen of an amine, due to the resonance stabilization afforded by the amide 

carbonyl group. However, in the case of PTP1B, the pKa of the Ser216 amide nitrogen is 

decreased via extensive hydrogen bonding within the phosphate-binding loop (P-loop), 

which enables nucleophilic attack on the neighboring sulfur atom of the Cys215─SOH 

precursor. Although quite interesting, this phenomenon is rare and there are few well-

characterized examples.58,59 Additionally, dimedone does not react with PTP1B in its cyclic 

sulfenamide state.60 Due to the high energy barrier for cyclization, cyclic sulfenamide 

formation is quite slow.54,61 On this basis, after ─SOH is formed, sulfenamidation would be 

outcompeted by nucleophilic attack of a thiol or, if present, dimedone-based probes (Figure 

4b), in contrast to some recent assertions.62 Similarly, it is energetically unfavorable for 

weakly electrophilic species such as ─SSR, ─SSG, ─SSH, and ─SNO to form a cyclic 

sulfenamide and subsequently be tagged with dimedone-based probes.63

Other studies have suggested that dimedone labeled polysulfides (─SnH) or 

polythiosulfenic acid (─SnOH), but they were performed in vitro under nonphysiological 

conditions, with 0.2–0.3 mM Na2S2.64,65 Such adducts have never been reported in any 

proteome-wide experiments, most likely due to their exceedingly rare existence in cells. 
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Given consideration to all aspects above, ─SOH is the only meaningful protein target of C-

nucleophile probes in biological systems.

Profiling Protein Sulfenic Acids (─SOH)

Compared to indirect thiol reactivity-based approaches that involve blocking, reduction, and 

reprobing steps, chemoselective reactions allow direct tagging of a specific cysteine 

chemotype, providing precise molecular information about the OxiPTM identity and 

minimizing artifacts stemming from incomplete blocking and reduction, which can be 

significant in cell lysates and lengthy workflows. In order to capture dynamic cysteine 

OxiPTMs in living systems, successful activity-based probes should be both selective and 

kinetically competitive, while maintaining high stability and membrane permeability as well 

as low cytotoxicity.

As discussed above, dimedone-based nucleophilic probes show remarkable chemoselectivity 

with ─SOH. We have also demonstrated that dimedone and related probes are well suited 

for tandem MS.66 The first dimedone-based probes, reported by the Poole and King groups, 

were directly conjugated to biotin or fluorescent tags for visualization.9 However, these tools 

were incompatible with MS and suffered from poor cell permeability. To address this issue, 

our lab developed azide-functionalized dimedone derivatives, termed DAz-1 and DAz-2, that 

are compatible with bioconjugation techniques, including Staudinger ligation (Figure 5a). 

Although both probes are small in size, DAz-2 exhibited better reactivity and membrane 

permeability due to the replacement of the amide linkage at C-6 with a hydrocarbon linker at 

C-4. Using DAz-2, we reported the first first survey of S-sulfenylation in living cells, 

identifying both established redox-sensitive targets and more than 175 new candidates.67 As 

a continuation of developing ─SOH probes for in situ detection, we replaced the azide 

functional group on our probes with an alkynyl group, since alkyne reporters offer superior 

sensitivity and stability in vivo.68 At the same time, we switched from Staudinger ligation 

chemistry to the more efficient CuAAC reaction. Subsequently, two platforms, termed 

SulfenM and SulfenQ, were developed in close collaboration with the Liebler group. These 

methods featured an alkyne-containing probe, DYn-2, to probe ─SOH modifications in 

human cancer RKO and A431 cells (Figure 5d, e).69 Both strategies enabled precise 

mapping of sulfenic acid modifications to individual cysteines in complex proteomes. 

SulfenM was employed to map more than 1000 S-sulfenylation sites from 700 proteins in 

RKO cells. SulfenQ featured a heavy isotopomer, DYn-2-d6, to quantify the fold-change in 

─SOH between samples (Figure 5b). Using the SulfenQ workflow, cells were treated with 

stimulus (H2O2 or EGF) or vehicle control in the presence of heavy or light DYn-2. 

Treatment of RKOs with exogenous H2O2 led to detectable changes in S-sulfenylation 

(heavy/light > 2) in >89% of 360 identified ─SOH sites; similar observations were made 

with H2O2 treatment of A431 cells. By contrast, fewer than half of ─SOH sites were 

modulated by stimulation of A431 cells with EGF, demonstrating that growth factor-driven 

cysteine S-sulfenylation was more target-selective.

Although DYn-2 is an effective probe, its moderate reactivity (10 M−1·s−1) poses some 

inherent limitations for quantitative detection, particularly ─SOH with short cellular 

lifetimes. To address the demand for kinetically superior probes, we made structural 
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modifications to the dimedone 1,3-diketone scaffold, swapping one or both ketones to other 

electron withdrawing groups, such as amides, esters, sulfones, sulfonamides, and nitro or 

cyano groups on a linear or cyclic skeleton.45-47 Four representative cyclic nucleophiles 

equipped with alkyne handles (PD, PYD, PRD, BTD) showed diverse reactivity with 2–170-

fold increased rates relative to DYn-2 (Figure 5c). These five probes were applied in the 

SulfenM platform, resulting in the discovery of 1283 sulfenylated sites on 761 proteins.70 

The most efficient probe, BTD, was also applied in a site-centric quantitative proteomics 

platform for global detection of ─SOH in cell lysates and living cells. The platform is a 

modified version of SulfenQ, where paired samples are distinguished by isotope-coded UV-

cleavable azido-biotin (Az-UV-biotin) instead of an isotope-coded ─SOH probe (Figure 5f). 

Due to the enhanced reactivity of BTD relative to DYn-2, the input of lysate material was 

reduced more than 10-fold (e.g., from 30 mg of protein for DYn-2 to 2 mg of protein for 

BTD) while increasing the coverage of ─SOH sites (1867 sites for BTD versus 1105 sites 

for DYn-2) in RKO cells.71

In addition to quantifying relative fold-changes in cysteine oxidation, another important goal 

is to measure the stoichiometry of ─SOH modification. By installing an iodo group on 

dimedone at C-2, we created a new thiol-reactive alkylating agent, yielding the same 

reaction product as sulfenic acid labeling by dimedone. Isotope-coded dimedone and 

iododimedone (ICDID) reagents were subsequently prepared such that the two reagents 

were separable by 6 Da, which enabled absolute quantification of the fraction ─SOH at a 

given cysteine (Figure 6a).72 In one proof-of-concept study, oxidation of Cys149 and 

Cys244 of GAPDH were profiled simultaneously. Importantly, only redox-sensitive Cys149 

exhibited an increase in the fraction of sulfenic acid modification in response to H2O2. In an 

elegant modification of this chemical strategy, Guengerich and co-workers prepared BTD 

and iodo-BTD derivatives 13C6d7-pBTD, d7-ipBTD, and d0-ipBTD to quantify sulfenic 

acids, free thiols, and reversible OxiPTMs in complex proteomes (Figure 6b).73 A relatively 

low number (~600) of sulfenylated peptides can be attributed to the lack of an enrichment 

handle.

Although other chemical probes for sulfenic acids have been reported, few of them have 

actually been used to globally quantify sulfenomes using MS platforms. Fox and co-workers 

recently reported the SAM-TCO probe, a strained trans-cyclooctene with an axial hydroxyl 

group proposed to facilitate the reaction via an intramolecular attack. Additionally, a 

bioorthogonal tetrazine-alkene reaction was employed to quench excess SAM-TCO, which 

may help to minimize artifacts that can result from cell lysis.51

To date, site-specific mapping of protein S-sulfenylation in the aforementioned 

chemoproteomic studies has illuminated many novel thiol-based regulatory mechanisms. For 

example, application of DYn-2 in A431 cells revealed S-sulfenylation of epidermal growth 

factor receptor (EGFR) at a critical cysteine adjacent to its active site, Cys797. Further 

biochemical and cellular studies in our laboratory demonstrated that S-sulfenylation of this 

site augments EGFR tyrosine kinase activity, thus creating a positive feedback loop with the 

enzymatic source of EGF-induced generation of H2O2 and NADPH oxidase (Nox).6,74 In 

another example, we demonstrated that S-sulfenylation of SIRT6 Cys18 leads to 

intermolecular disulfide formation with the transcription factor, HIF1A, disclosing a new 
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mechanism for regulating the expression of multiple glycolytic genes.69 A recent study of S-

sulfenylation with BTD in Arabidopsis thaliana mapped more than 1000 protein targets 

including AtMAPK4, an orthologue to human MAPK1, which is a known redox switch.75 

Finally, application of BTD in mouse livers revealed the redox control of circadian 

pacemaker CLOCK via a reversibly oxidized cysteine.76

In addition to the discovery of new mechanisms of thiol-based redox regulation, quantitative 

site-specific mapping of S-sulfenylation has applications in drug design. Profiling with 

structurally and chemically distinct cyclic C-nucleophiles (DYn-2, PD, PYD, PRD, and 

BTD) identified > 1280 S-sulfenylated cysteines present in “druggable” proteins and orphan 

targets, revealing both disparate reactivity profiles and target preferences.70 Among the 

unique ligand–protein interactions, we identified a planar pyrrolidinedione nucleophile, 

PYD, that reacted preferentially with protein tyrosine phosphatases (PTPs). This study 

shows that fragment-based covalent ligand discovery with C-nucleophiles can be applied to 

generate an expansive view of the ligandable “redoxome” with significant implications for 

covalent inhibitor pharmacology.

Profiling Protein Sulfinic Acids (─SO2H)

Protein S-sulfinylation was traditionally detected by antibodies or label-free MS. These 

methods suffer from limited affinity and specificity, or lengthy preparation steps. On the 

other hand, electrophilic nitrogen species (ENS) only form stable adducts with ─SO2H and 

can therefore serve as chemoselective probes for activity-based detection of S-sulfinylation 

(Figure 1d). Our group has designed two ENS-based ─SO2H probes: one compound is a C-

nitroso benzoic ester named NO-Bio and the other probe, DiaAlk, is based upon an electron 

deficient diazine scaffold.77-79 The latter has superior sensitivity and compatibility with MS, 

facilitating site-centric quantitative analyses of protein sulfinic acids (Figure 7a). 

Biotinylated S-nitrosothiols have been used to detect ─SO2H,24 but side reactions generate 

an aggressive electrophilic oxidant nitroxyl (HNO) that converts thiols to sulfinic acids.79

Most recently, in close collaboration with the Yang laboratory, we have developed a site-

centric proteomic approach to profile cysteine sulfinic acids. Application of DiaAlk 

uncovered 387 ─SO2H sites from native lysates of A549 and HeLa cells, hundreds of which 

were previously unknown. Interestingly, S-sulfinylation levels under acute H2O2 exposure 

remained relatively static at the majority of sites, in contrast to the dynamic changes 

observed in the S-sulfenylome, suggesting that sulfinic acid modification likely takes place 

on a different time scale, with fewer biological pathways for repair. To investigate these 

observations in greater detail, we probed S-sulfinylome repair in a cysteine sulfinic acid 

reductase sulfiredoxin (SRX) knockout model. Comparative study of Srx+/+ and Srx−/− 

mouse embryonic fibroblasts (MEFs) revealed more than 50 potential substrates of SRX, 

with subsequent biochemical validation of several new targets (Figure 7b). Our findings 

expand the substrate scope of SRX significantly beyond Prx isoforms 1–4, with new 

implications for the role of SRX in oxidative stress-associated diseases and drug 

development programs.79
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Profiling Protein Persulfides (─SSH)

Protein persulfidation (S-sulfhydration) generates persulfides (─SSH) that were detectable 

by alkylating agents. Although there are limited reports from small-molecule models, 

possibly as a result of low yield from product decomposition,80 our lab has convincingly 

demonstrated that a variety of persulfide models, including protein persulfide Gpx3─SSH, 

readily react with most thiol-reactive agents.22 However, they are often accompanied by 

issues in selectivity. An alkylation/tag-switch approach was introduced as a reliable method 

to detect persulfides, where the disulfide products of ─SSH alkylation are substituted by a 

nucleophilic probe and alkylated ─SH are irreversibly modified. For example, thiols and 

persulfides were alkylated with MSBt-A, and only the latter subsequently reacted with a 

cyanoacetate nucleophile with a biotin reporter (Figure 8a).26 Recently, the Filipovic group 

used NBD-Cl and a dimedone derivative to detect protein persulfides. An evolutionary-

conserved correlation between aging and a decay in persulfidation levels was observed, 

suggesting a protective role of ─SSH against irreversible cysteine oxidation (Figure 8b).81 

A direct method to simultaneously profile thiol and persulfide proteomes has also been 

reported.27 In this method, termed low-pH quantitative thiol reactivity profiling (QTRP), the 

alkylation by IPM is performed at pH 5.0, because persulfides (pKa of Cys─SSH = 4.3) are 

expected to maintain high reactivity, whereas more abundant free thiols (pKa of Cys─SH = 

8.3) are mostly protonated and less reactive (Figure 8c).

CONCLUSIONS AND OUTLOOK

LC-MS platforms featuring chemoselective probes (Table 2) offer compelling advantages on 

resolution, throughput, accuracy, and reproducibility. At the same time, our evolving 

understanding of cysteine OxiPTMs presents new challenges in detection. For example, 

reagents believed to be thiol-selective were found to react with ─SOH, ─SO2H, and 

─SSH species, which are of increasing biological relevance. Certain cysteine OxiPTMs 

exhibit dual reactivity (e.g., ─SOH is both nucleophilic and electrophilic), diverse reactivity 

(e.g., ─SSR), or similar reactivity to other OxiPTMs (e.g., ─SH and ─SSH). Therefore, it 

is critical to conduct a comprehensive survey of cross-reactivity while keeping the biological 

relevance and abundance of cysteine OxiPTMs in mind. More importantly, caution is 

advised against extrapolating the reactivity of an entire cysteine chemotype on the basis of 

studies with compounds that are not biorepresentative, as such models which may not 

represent the true reaction profiles as in complex proteomes.

In order to profile cysteine OxiPTMs with high fidelity, many efforts have been made in 

recent years including but not limited to the following: (1) Direct “activity-based” sensing of 

OxiPTMs with chemoselective probes to minimize various sources of artifacts generated by 

tag-switch methods. (2) In situ detection with smaller, cell permeable, nontoxic probes, 

which makes discovery in live cells or tissues possible. (3) Temporal control of labeling with 

probes that can be switched on/off. This decreases the cytotoxicity of the probes and can 

reduce labeling after cell lysis. (4) Site-centric profiling, which is significantly more 

stringent than protein level discovery and provides mechanistic information. (5) Multiplex 

labeling that allows multiple samples or modifications to be analyzed simultaneously, 

reducing the cost and run-to-run variations.
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Novel discovery of proteomic cysteine oxidation fuels the future development in the fields of 

redox signaling and disease mechanism. Moreover, complementary to covalent inhibitors 

that target free cysteine thiols, redox-based covalent inhibitors targeting cysteine OxiPTMs 

may be developed. For example, we have shown that sulfenylation of EGFR not only 

enhances its activity but also masks its reactivity toward thiol-targeting covalent inhibitors 

like afatinib.6,74 Proteome-wide ligand discovery on cysteine OxiPTMs is ongoing and is 

expected to reveal additional targets. Another interesting direction is organelle-specific 

profiling of cysteine oxidation. As one of the major source of ROS, mitochondria are an 

intriguing host of cysteine OxiPTMs. Along these lines, the Furdui and King laboratories 

have reported ─SOH probes conjugated with mitochondria targeting vectors, such as 

fluorescent coumarin and rhodamine moieties, or triphenylphosphonium groups, which 

serve as proof-of-concept for localized profiling of OxiPTMs.82,83 Last but not least, direct 

probing of protein disulfides remains an extremely challenging but vital mission. To date, 

protein disulfides are detected by indirect tag-switch methods, hampering our ability to 

profile disulfide reactivity and assign disulfide pairs. Although a sophisticated MS-based 

technique to characterize disulfide linkages in IgG2λ antibodies has been reported,84 going 

forward, a reaction-based approach to map disulfides at the proteome level is still in great 

demand. This is an active area of research in our group, as we currently explore several 

promising chemical strategies; these findings are forthcoming and will be reported in due 

course.
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Figure 1. 
Common chemical reagents that selectively target cysteine oxoforms. (a) Reagents that label 

free cysteine thiols. (b) Thiol-reactive reagents also label persulfides. (c) Sulfenic acid 

probes. (d) Sulfinic acid probes.
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Figure 2. 
(a) Indirect detection of cysteine OxiPTMs with thiol-reactive reagents. (b) Recent advances 

in thiol-reactivity profiling.
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Figure 3. 
Small-molecule and protein models used in developing sulfenic acid probes. (a) Stabilized 

small-molecule and protein sulfenic acids. (b) Hydrolytic equilibrium of cyclic sulfenamide. 

(c) Generation of sulfenic acids via sulfoxide elimination. (d) Photocaged sulfenic acid.
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Figure 4. 
Energy profiles of cysteine OxiPTMs. Graphs (a,b) are drawn qualitatively based on 

reactivity of a Cys-Val dipeptide representing an unperturbed cysteine residue. (a) 

Dimedone-based nucleophiles readily label ─SOH but do not react with disulfides, 

indicating E1 < E2. (b) Cyclic sulfenamide (─SNR′) rapidly hydrolyzes to form ─SOH, 

indicating E1 < E3. (c) Representative rate constants of chemotype transformations of the 

dipeptide model compound. Data was extracted from ref 45.
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Figure 5. 
(a) Structures of DAz sulfenic acid probes. (b) Structures of DYn probes. (c) Structures of 

dimedone-based probes with enhanced reactivity. (d) General workflow of the SulfenM 

strategy. (e) General workflow of the SulfenQ strategy. (f) Modified workflow of the 

SulfenQ strategy with the BTD probe.
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Figure 6. 
(a) Basic principle of the ICDID strategy of sulfenic acid quantification. (b) BTD-derived 

probes used in the quantification of cysteine oxidation.
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Figure 7. 
(a) DiaAlk reacts with sulfinic acids followed by hydrolysis to form a stable MS-compatible 

product. (b) Discovery of SRX substrates by a chemical proteomics approach. With a 

recovery period, putative SRX substrates showed a lower recovery/control (blue/red) ratio in 

wild type cells, and a higher ratio in SRX knockout cells.
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Figure 8. 
(a) Persulfide detection by MSBt-A alkylation and cyanoacetate tag-switch. (b) Persulfide 

detection by NBD-Cl alkylation and dimedone derivative tag-switch. (c) Direct thiol and 

persulfide activity profiling with the low-pH QTRP workflow.
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Table 2.

List of Chemical Probes Discussed in This Account

name of probe targets notes refs

DYn-2, BTD ─SOH BTD is ~170× faster than DYn-2 69-71,74

ICDID, iTROC reagents ─SH, ─SOH for stoichiometric analysis 72,73

BCN, Norb-bio, SAM-TCO ─SOH may react with Cys─SH, ─SSH 48-51

NO-bio, DiaAlk ─SO2H DiaAlk is MS-compatible 77-79

IPM ─SH, ─SSH operates at low pH 27,36

MSBT, NBD-Cl ─SH, ─SSH tag-switch with C-nucleophiles 26,81
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