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Summary
The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during

domestication and human-made selection. Groundnut varieties lacking FSD experience

precocious seed germination during harvest imposing severe losses. Development of easy-to-use

genetic markers enables early-generation selection in different molecular breeding approaches.

In this context, one recombinant inbred lines (RIL) population (ICGV 00350 9 ICGV 97045)

segregating for FSD was used for deploying QTL-seq approach for identification of key genomic

regions and candidate genes. Whole-genome sequencing (WGS) data (87.93 Gbp) were

generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and

nondormant). After analysis of resequenced data from the pooled samples with dormant parent

(reference genome), we calculated delta-SNP index and identified a total of 10,759 genomewide

high-confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the

B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate

genes—RING-H2 finger protein and zeaxanthin epoxidase—were identified in these two regions,

which significantly express during seed development and control abscisic acid (ABA) accumu-

lation. QTL-seq study presented here laid out development of a marker, GMFSD1, which was

validated on a diverse panel and could be used in molecular breeding to improve dormancy in

groundnut.

Introduction

The life begins in most of the higher plants through seed and

regulation of its germination plays a crucial role for plant survival,

particularly during unfavourable environmental conditions (Shu

et al., 2015). Seed dormancy and germination are highly coor-

dinated molecular processes which influence the crop productiv-

ity in both cereals and legumes in two ways (a) uneven

seed germination at the time point of sowing and (b) in situ

seed germination during harvesting, notably both affect the seed

quality and crop yield (Finch-Savage and Leubner-Metzger, 2006;

Penfield, 2017). Therefore, fresh seed dormancy (FSD) is one of

the most important traits that control the initial short period of

dormancy in the freshly matured or harvested seed/kernel.

Groundnut (Arachis hypogaea) is an important grain legume

and oilseed crop a key role in the human nutrition. Groundnut is

an allotetraploid crop with a genome size of 2.7 Gbp and was

domesticated in South and Central America from its wild

ancestral species A. duranensis and A. ipaensis (Bertioli et al.,

2016; Chen et al., 2016). The sequencing of both the subspecies

of cultivated tetraploid groundnut along with other diverse

accessions provided greater insights of evolution and domestica-

tion (Bertioli et al., 2019; Chen et al., 2019; Zhuang et al., 2019).

In Asia and Africa, groundnut is grown as major legume crop.

During 2017, the annual world groundnut production was more

than 47 million tons of which Asia contributed 62.5% (FAOSTAT,

2017). Particularly, most of the varieties grown in the Asia are

Spanish type that lack fresh seed dormancy have significant

economic losses due to in-situ germination of seeds during harvest,

which affect economic strength of small holder farmers. In

addition, this reduces the quality of groundnut seeds, thereby

limiting their end use and global trade. As an option, foliar spray of

maleic hydrazide (growth retardant) has been used to accelerate

dormancy in groundnut (Gupta et al., 1985), which is not an

economical substitute. Therefore, it is important to cultivate

varieties that significantly possess 2–3 weeks of FSD for sustainable

agricultural benefit for smallholder farmers and industries.

In recent years, significant efforts have been made in cereals to

understand seed dormancy trait in order to reduce the yield loss

and the kernel quality caused due to preharvest sprouting (PHS)

or in situ seed germination (Gao and Ayele, 2014; Nakamura,

2018). As a result, several quantitative trait loci (QTLs) and

candidate genes for PHS have been identified in wheat (Li et al.,

2004; Nakamura, 2018; Ogbonnaya et al., 2008), rice (Lee et al.,

2017; Li et al., 2004) and barley (Li et al., 2003, 2004; Nakamura,

2018). Earlier, a gene GA20-oxidase was also identified as a

candidate gene in the QTL region controlling PHS in rice (Li et al.,

2004). Nevertheless, after more than a decade of hard work,

causal genes associated with the seed dormancy and PHS have

been identified in wheat and barley. These genes include alanine
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aminotransferase (AlaAT) and mitogen-activated Protein Kinase

Kinase 3 (MKK3) in barley (Nakamura et al., 2016; Sato et al.,

2016) and Phs1 and mother of FT and TFL1 (MFT) in wheat

(Nakamura et al., 2011; Torada et al., 2016). Although it has

been reported that groundnut germplasm possesses significant

diversity for seed dormancy (Issa et al., 2010; Nautiyal et al.,

2001; Wang et al., 2012; Yaw et al., 2008), it is worth

mentioning that such detailed studies on FSD in groundnut are

lacking (Silva et al., 2017; Vishwakarma et al., 2016).

Genomics-assisted breeding (GAB) can significantly shorten the

breeding cycle time for the improvement of elite cultivars with

desired traits (Varshney et al., 2015, 2018a,b). Notably, for the

fruitful GAB, primary requirement is identification of marker

tightly linked with the desired trait(s). Although Vishwakarma

et al. (2016) reported two major QTLs controlling FSD, however,

the use of F2 generation with limited multiseason phenotyping

does not help in precise detection of candidate genomic regions.

With the availability of draft genome sequences of the diploid

progenitors and tetraploid cultivated groundnut (Bertioli et al.,

2016; Chen et al., 2016; Bertioli et al., 2019; Chen et al., 2019;

Zhuang et al., 2019), candidate gene discovery and marker

development have become more precise and reliable. Of the

available sequencing-based approaches, QTL-seq approach offers

great benefits by identifying genomic region(s) and candidate

genes leading to development of diagnostic markers. This

approach has already been deployed successfully in some legume

crops including groundnut for foliar disease (rust and LLS)

resistance (Pandey et al., 2017), shelling percentage (Luo et al.,

2019a), bacterial wilt (Luo et al., 2019b) and test a colour (Zhao

et al., 2019). QTL-seq approach has also been successfully

deployed in discovery of genomic regions and candidate genes

with high accuracy and precision in some other crops such as

cucumber (Lu et al., 2014), tomato (Illa-Berenguer et al., 2015),

pigeonpea (Singh et al., 2016a) and chickpea (Das et al., 2015;

Singh et al., 2016b). In view of above, we have used RIL

population (ICGV 00350 9 ICGV 97045) for performing whole-

genome sequencing of pooled samples from contrasting pheno-

types and dormant parent followed by QTL-seq analysis. This

study has identified candidate genomic regions and genes, and

reports development of molecular markers for FSD in groundnut.

Results

Phenotyping and construction of pools

The RIL population (ICGV 00350 9 ICGV 97045) used in this

study had high phenotypic variability for FSD. The dormant parent

ICGV 97045 was used as source for dormancy, which has FSD up

to 15 days, whereas ICGV 00350 was used as nondormant

parent which germinate within 48 hours. The previous genetic

mapping effort using a subset (368) of large F2-3 population

(>800) performed destructive method of phenotyping and

showed clear trait segregation (Vishwakarma et al., 2016).

Therefore, we followed then SSD for rest of the F2-3 lines and

finally developed RIL population with 366 lines. Among 366 RILs,

149 lines showed nondormant phenotype (seeds germinated

within 24 h), 117 lines showed FSD between 2 and 3 days, 57

lines showed FSD up to 4–7, and 19 showed FSD up to 8–
12 days. Interestingly, only 24 lines showed dormancy up to 13–
15 days (Figure 1c and Table S1, S2). Later, the RILs with extreme

phenotypes were used to develop dormant (D) and nondormant

(ND) pools, each consisting 20 individuals, that is 20 nondormant

(germination within 48 hrs) and 20 dormant (FSD up to 13–15;

Figure S1 and Table S2) RILs. The phenotypic variability present in

RIL population was used for developing two pools with extreme

phenotypes that is dormant and nondormant (Figure 1c).

Whole-genome sequencing and SNP identification

Sequencing data were generated for the dormant parent (ICGV

97045), the dormant (D pool) and nondormant pool (ND pool). A

total of 264.2 million reads for dormant parent (ICGV 97045),

215.5 million reads for dormant (D pool) and 223.7 million reads

for nondormant (ND pool) were generated (Tables 1 and S3).

Highest amount of sequencing data was generated for the

dormant parent ICGV 97045 (33.03 Gb), followed by ND pool

(27.97 Gb) and D pool (26.94 Gb). After filtering, the dormant

parent ICGV 97045 (200.5 millions) had the maximum high-

quality reads as compared to ND pool (157.4 million) and D pool

(156.9 million). The alignment of reads generated for the

dormant genotype (ICGV 97045) achieved 85.79% genome

coverage and 8.02X of average read depth and resulted in

development of reference-guided based assembly for ICGV

97045 (hereafter referred as ICGV 97045 assembly; Figures S1

and S2). In the FSD dormant pool, the ICGV 97045 assembly

resulted in 85.30% coverage and 6.49X read depth, while

nondormant to the ICGV 97045 assembly resulted in 85.12%

coverage and 6.50X read depth (Tables 1 and S3). SNPs were

identified based on the SNP index calculation by comparing each

pool to dormant parent, ICGV 97045 (Figures S2, S3 and S4). SNP

index corresponds to the frequency of each parental allele in the

population of pooled samples. For instance, 0.5 SNP index

indicates equal contribution of alleles from both parents (Figures

S3 and S4). Therefore, if the SNP is linked to FSD trait, the SNP

index for that SNP site associated with D pool would be >0.5,
whereas SNP index <0.5 in the ND pool. In general, greater

absolute value of ΔSNP index indicates higher probability for the

association of SNP site with trait. Thus, to identify key genomic

regions and genes associated with FSD trait, we analysed

genomewide SNP index with a sliding window of 2-Mb interval

with an increment of 50 kb for D and ND pools which deviated

from allele frequency of 0.5. After SNP index calculation, DSNP
was calculated with a minimum statistical confidence of P < 0.05

(Figure S5; Table S4). Thus, after examining the dormant and

nondormant pools, a total of 10,759 genomewide SNPs for FSD

were identified (Table S4). Of the 10,759 SNPs, A- and B-genome

harboured 5,970 and 5,184 SNPs (Tables 2, 3 and S4), respec-

tively. Altogether, 5,452 SNPs were found to be intergenic, 312

SNPs intronic, 90 SNPs synonymous, 178 SNPs nonsynonymous,

eight SNPs resulted in stop codon, seven SNPs at spice junctions,

29 SNPs in 3ʹUTR and 13 SNPs in 5ʹ UTR (Tables 2 and 3).

Identification of genomic regions and candidate genes
for fresh seed dormancy

After computing SNP index and DSNP index in the two extreme

pools D and ND, a FSD-associated genomic region was identified

on the pseudomolecule B05 from 114.45 Mb to 116.69 Mb

(2.24 Mb) of B-subgenome (Figure 1). This genomic region

harboured total 52 SNPs (Table 4), and 18 of these SNPs were

highly significant (P value ≤ 0.01, DSNP index = �1). The nega-

tive sign of DSNP index indicates the presence of biasedness in the

inheritance of parental genomes in the pools towards dormant

parent or vice versa. The dormant pool had SNP index = 0 at all

SNP positions indicating the contribution of alleles coming from

the dormant parent, ICGV 97045 (Table 4). Similarly, the

nondormant pool scored SNP index = 1 indicating the source of
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alleles for nondormancy from nondormant parent (ICGV 00350).

Of the 52 SNPs, 49 SNPs were intergenic and three were intronic

affecting three genes viz Araip.S6QRU (encodes receptor-like

protein kinase), Araip.YHU92 (encodes RING-H2 finger protein;

Figure 2) and Araip.X9V0W (encodes SOUL heme-binding family

protein; Table 4). Previously, role of RING-H2 finger protein has

been demonstrated during ABA biosynthesis and signalling (Bu

et al., 2009). Notably, Clevenger et al. (2016) has reported

significantly high expression of gene Araip.YHU92 during seed

development (Figure 3; https://peanutbase.org/search/gene),

Figure 1 A QTL-seq approach to identify genomic regions controlling fresh seed dormancy (FSD). (a) ICGV 97045: dormant parent for FSD; (b) ICGV

00350: nondormant parent for FSD; (c) Phenotypic segregation for FSD phenotype in F2, dormant lines were progressed for RIL development. The DNA of

20 RILs with extreme phenotypes (dormant and nondormant) was used to develop dormant (D) and nondormant (ND) pools; (d) SNP index plot between

D pool and ICGV 97045 assembly (top), ND pool and ICGV 97045 assembly (middle) and ΔSNP index plot (bottom) of pseudomolecule B05 with

statistical confidence interval under the null hypothesis of no QTLs (orange, P < 0.01; and green, P < 0.05). The significant genomic region identified for

FSD is shaded (114.45–116.69 Mb).
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especially at the later stages of maturity when endogenous ABA

accumulates (Rodr�ıguez-Gacio et al., 2009), suggesting its plau-

sible role during seed development and ABA metabolism in

groundnut. Additionally, this genomic region consists of 46

important genes which control the growth and development of

seed as well as dormancy (Table S5A).

Notably, during analysis of WGS data, we computed DSNP
index to identify nonsynonymous SNPs distributed on 20 pseu-

domolecules. During analysis, we observed a nonsynonymous

SNP (with DSNP index = �1) on one gene Aradu.D94AQ, which

encodes for an abscisic acid biosynthetic enzyme zeaxanthin

epoxidase. This gene was located in the genomic region of A09

pseudomolecule (114873000..115603500; 0.74 Mb) of A-gen-

ome which is appeared to be a hot spot for genes regulating seed

development and ABA signalling (Figure 3, Table S5). This

genomic region consists of 24 important genes viz., four

homologs of zeaxanthin epoxidase (Aradu.D94AQ, Aradu.-

D1YZ0, Aradu.YN681 and Aradu.E3EHQ), seven homologs of

pentatricopeptide repeat (PPR) superfamily protein genes (Ara-

du.S2S1T, Aradu.YK416, Aradu.IIT7A, Aradu.D14WA, Ara-

du.GPN3U, Aradu.64B2V, Aradu.61TTJ and Aradu.P7UBS), two

homologs of protein phosphatase 2C/2A family protein (Ara-

du.X74QT and Aradu.NF928), three homologs of GRAM domain

protein/ABA-responsive-like (Aradu.1SK9N, Aradu.VX0W5 and

Aradu.H03WX), two homologs of heat shock proteins family

genes (Aradu.YU6QF and Aradu.88GAJ) and one homolog for

each serine carboxypeptidase 46 (Aradu.DFV35), Sec23/Sec24

protein transport family protein (Aradu.SXR6U), Ankyrin repeat

family protein (Aradu.87ECD) and DDB1- and CUL4-associated

factor 8-like (Aradu.U3RQV). Previously, these genes have been

characterized to play important role in ABA biosynthesis/sig-

nalling, seed dormancy and germination (Table S6). As the

developmental transcriptome map for cultivated groundnut

species is available in public domain (Clevenger et al., 2018;

https://peanutbase.org/search/gene/), it provides the complete

picture of transcriptomic shift for 22 different tissue including five

important developmental stages of seed. Therefore, we surveyed

the transcript abundance of these genes in the seed at different

developmental stages. Interestingly, we found many of them

identified as seed-specific or highly expressed during develop-

ment of groundnut seeds (Figure 3; Table S5B).

Development and validation of allele-specific markers
for fresh seed dormancy

Based on the DSNP index, a total of 143 SNPs (located in QTL

region and other pseudomolecules; see Table S7) were targeted

for the development of allele-specific markers. Of 143 allele-

specific markers, 42 markers showed clear polymorphism

between dormant and nondormant parents. These 42 polymor-

phic markers were tested on D and ND pool of RILs and a set of

breeding material to identify the promising marker(s) which co-

segregate with the dormancy phenotype (Table S6). As a result,

of these 42 markers, one marker GMFSD1 (B05_8196) showed

consistency in differentiating the parents, pooled samples as well

as a set of breeding material for dormancy and nondormancy

(Figure 4).

Discussion

Advances in the field of genomics have brought a dramatic

reduction in the cost of sequencing technologies. Advent of next-

generation sequencing (NGS) technologies has greatly facilitated

development of genome assembly, trait mapping and candidate

gene discovery (Varshney et al., 2015). Thus, NGS technology has

augmented faster and precise trait discovery through rapid

detection of linked genomic regions (also gene discovery), trait-

associated polymorphism and identification of diagnostic markers

(Varshney et al., 2015, 2018a,b). There are several sequencing-

based trait-mapping approaches which provide faster discovery of

candidate genes and facilitate marker development; and one of

such approach for trait mapping is QTL-seq (Pandey et al., 2017;

Takagi et al., 2013). It has been successfully deployed in several

important crop species for trait dissection such as rice blast

disease (Takagi et al., 2013), grain length and weight in rice

(Yaobin et al., 2018), flowering time in tomato (Ruangrak et al.,

2018), foliar disease resistance (Clevenger et al., 2018; Pandey

et al., 2017), shelling percentage (Luo et al., 2019a) and bacterial

wilt resistance (Luo et al., 2019b) in groundnut, 100 seed weight

and root/total plant dry weight in chickpea (Singh et al., 2016a),

plant height in soybean (Zhang et al., 2018), etc. Many of these

efforts facilitated successful development of diagnostic markers

which are being deployed in GAB. In coming years, there will be a

shift from GAB to sequence-based breeding (Varshney et al.,

2018a) and these SNP-based diagnostic markers will be of great

use in enhancing the modernization and precision of breeding

programmes for achieving higher genetic gains in farmers’ field

(Varshney et al., 2018b).

FSD/PHST/in situ germination leads to a reduction in the grain

or kernel yield and often attributes to medium to large yield losses

and quality deterioration of the produce in both cereals (Abe

et al., 2019; Benech-Arnold and Rodr�ıguez, 2018; Gao and Ayele,

2014; Nakamura, 2018; Rodr�ıguez et al., 2015) and legumes

(Dias et al., 2011; Patro and Ray, 2016; Vishwakarma et al.,

2016). Due to domestication and extensive human-made selec-

tion during varietal development programs, modern groundnut

represents much low genetic diversity compared to its wild

ancestral species (which produces dormant seeds). As a result,

in situ sprouting of groundnut seeds caused due to lack of FSD

results in a loss of up to 20%–50% (Nautiyal et al., 2001; Yaw

et al., 2008). Several researchers have studied this trait in order to

find suitable new sources for FSD in groundnut (Faye et al., 2009;

Patro and Ray, 2016; Yaw et al., 2008). Our previous study, the

only one, was performed in F2 population derived from the cross

between ICGV 00350 and ICGV 97045 which provided prelim-

inary idea on inheritance pattern and reported two major QTL

regions associated with FSD using Diversity Arrays Technology

(DArT) and DArTseq platform (Vishwakarma et al., 2016). The

DArT and DArTseq are useful genotyping approaches but they do

not provide exact position of SNPs in the reference genome which

Table 1 Summary of Illumina sequencing of parental lines and pools

for fresh seed dormancy

Sample ID

Genotype/

pools

Total data

generated

(Gb)

%

Alignment

Genome

coverage

(%)

Average

depth

(X)

Dormant

parent

ICGV 97045 33.03 87.8 85.79 8.02

Dormant

pool

D pool 26.94 95.1 85.30 6.49

Nondormant

pool

ND pool 27.96 95.2 85.12 6.50

ª 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 18, 992–1003

Candidate genes and marker for seed dormancy in groundnut 995

https://peanutbase.org/search/gene/


is very much required for performing fine mapping, candidate

gene discovery and marker development. Earlier, it has been

successfully demonstrated by Sato et al. (2016) that the previ-

ously reported candidate genes can be validated the previously

reported candidate gene, followed by its use in improving target

trait. Therefore, we advanced the same population in this study

for applying QTL-seq approach to perform high-resolution trait

mapping and identify genomic region(s) associated with FSD. The

use of highly homozygous RIL-F7 line provided highly significant

SNPs and genomic region(s) associated with the desired trait for

the discovery of candidate genes. As a result, sequence compar-

ison discovered distribution of 5,970 and 5,184 SNPs (P

value ≤ 0.01) on A- and B-genome; among them only 767 and

1071 SNP were with ΔSNP index equivalent to �1. These highly

significant SNPs (P value ≤ 0.01, ΔSNP index = �1) were mostly

distributed among pseudomolecule—A09 (221 out of 767), A10

(356 out of 767) and B05 (897 out of 1071), suggesting

plausible association of these three pseudomolecules with FSD

trait.

The comprehensive QTL-seq analysis for FSD detected a major

genomic region of 2.24 Mb on the pseudomolecule B05 of B-

subgenome. This promising region contains 46 important genes,

and four of these genes were found with important functions

namely SOUL heme-binding family protein (Araip.X9V0W), RING-

H2 finger protein (Araip.YHU92), far1-related sequence 6-like

(Araip.LKN71), ascorbate oxidase (Araip.K7Y13) and heavy metal

transport/detoxification superfamily protein (Araip.2F1GS).

Sequencing data suggested synonymous SNPs among genes

encoding RING-H2 finger protein, far1-related sequence 6-like

and SOUL heme-binding family protein, which are key regulator

of developmental processes (Bu et al., 2009; Ko et al., 2006; Li

et al., 2018). Likewise, a 0.74-Mb SNP-enriched genomic region

was identified on the pseudomolecule A09 of A-subgenome,

containing a nonsynonymous SNP on an ABA biosynthetic gene

zeaxanthin epoxidase (ZEP, Aradu.D94AQ). Further, this genomic

appeared as one of the key controllers of ABA biosynthesis in

groundnut as this genomic region is home to several important

genes which are known to participate in ABA signalling and

control seed dormancy such as PPR superfamily protein gene,

protein phosphatase 2C/2A family protein gene, GRAM domain

protein/ABA-responsive-like and serine carboxypeptidase 46

(Mauri et al., 2016; N�ee et al., 2017; Xia et al., 2018).

Abscisic acid crosstalk with other hormones such as ethylene

and gibberellic acids (GAs) is crucial during plant developmental

processes including seed development and germination

(Rodr�ıguez-Gacio et al., 2009). It is well-accepted fact that ABA

signalling plays an important role in seed dormancy, affecting

seed germination process (Dejonghe et al., 2018; Finch-Savage

and Leubner-Metzger, 2006; Liu et al., 2013; Nishimura et al.,

2018). In Arabidopsis, a transcription factor RING-H2 finger

protein positively regulates the ABA biosynthesis and signalling

during seed germination (Bu et al., 2009) and confers abiotic

Table 2 Genomewide distribution of SNPs and their categories identified in A-subgenome

Chromosome

Length

(Mbp)

Total

SNPs

Significant

SNPs (ΔSNP �1 or 1) SNPs categories

Total

SNPs

Significant

SNPs (ΔSNP �1 or 1)

Araip.A01 107.00 315 26 Intergenic 5455 710

Araip.A02 93.87 539 70 Intron 311 35

Araip.A03 135.10 203 14 Intron splice junction 2 0

Araip.A04 123.60 332 25 Synonymous 52 6

Araip.A05 110.00 195 14 Non-synonymous_Missense 105 14

Araip.A06 112.80 298 11 Non-synonymous_Stop gained 4 0

Araip.A07 79.13 136 8 UTR_3_PRIME 28 2

Araip.A08 49.46 204 22 UTR_5_PRIME 13 0

Araip.A09 120.70 1993 221 Total 5970 767

Araip.A10 109.50 1755 356

Total 1041.16 5970 767

Table 3 Genomewide distribution of SNPs and their categories identified in B-subgenome and their effect

Chromosome

Length

(Mbp)

Total

SNPs

Significant

SNPs (ΔSNP �1 or 1) SNPs categories

Total

SNPs

Significant

SNPs (ΔSNP �1 or 1)

Araip.B01 137.40 282 13 Intergenic 4789 1023

Araip.B02 109.00 229 12 Intron 246 36

Araip.B03 136.10 153 10 Intron splice junction 5 0

Araip.B04 133.60 348 44 Synonymous 38 3

Araip.B05 149.9 2714 897 Non-synonymous_Missense 73 7

Araip.B06 137.10 347 28 Non-synonymous_Stop gained 4 0

Araip.B07 126.40 295 29 UTR_3_PRIME 16 2

Araip.B08 129.60 199 11 UTR_5_PRIME 13 0

Araip.B09 147.10 362 17 Total 5184 1071

Araip.B10 136.20 255 10

Total 1342.40 5184 1071
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Table 4 List of SNPs identified in the QTL region pseudomolecule B05 and their significance

Chromosome Position

Reference

call

Alternate

call

Delta SNP

index

U99 (99%

confidence)

L99 (99%

confidence) Gene ID Effect type Gene description

Araip.B05 114451556 T A �1 0.800 �0.800 INTERGENIC

Araip.B05 114543183 G A �0.86 0.800 �0.800 INTERGENIC

Araip.B05 114643837 G T 0.63 0.800 �0.800 INTERGENIC

Araip.B05 114729123 G A �0.62 0.700 �0.700 INTERGENIC

Araip.B05 114759444 T A �0.83 0.833 �0.833 INTERGENIC

Araip.B05 114768155 G A �0.83 0.833 �0.833 INTERGENIC

Araip.B05 114778599 C A �0.75 0.750 �0.750 INTERGENIC

Araip.B05 114796399 C T �0.78 0.666 �0.666 INTERGENIC

Araip.B05 114864254 G A �0.88 0.833 �0.833 INTERGENIC

Araip.B05 114889476 G A �0.83 0.800 �0.800 INTERGENIC

Araip.B05 114893409 G T �0.86 0.800 �0.800 INTERGENIC

Araip.B05 114947595 G A �1 0.714 �0.714 INTERGENIC

Araip.B05 115014514 A G �0.67 0.833 �0.833 INTERGENIC

Araip.B05 115077058 A G �1 0.800 �0.800 INTERGENIC

Araip.B05 115081834 G C �0.86 0.833 �0.833 INTERGENIC

Araip.B05 115084232 T G �0.75 0.750 �0.750 Araip.S6QRU INTRON probable receptor-like

protein kinase

Araip.B05 115182881 G T �0.83 0.833 �0.833 INTERGENIC

Araip.B05 115373942 G A �1 0.800 �0.800 INTERGENIC

Araip.B05 115375662 G T �1 0.833 �0.833 INTERGENIC

Araip.B05 115544050 G A �0.9 0.833 �0.833 INTERGENIC

Araip.B05 115568667 C T �1 0.800 �0.800 INTERGENIC

Araip.B05 115578247 C A �0.80 0.800 �0.800 INTERGENIC

Araip.B05 115606146 T C �0.75 0.750 �0.750 INTERGENIC

Araip.B05 115621197 G A �0.90 0.833 �0.833 INTERGENIC

Araip.B05 115622058 C A �0.57 0.700 �0.700 INTERGENIC

Araip.B05 115631384 C T �1 0.800 �0.800 INTERGENIC

Araip.B05 115634902 G A �0.86 0.714 �0.714 INTERGENIC

Araip.B05 115697798 C T �1 0.800 �0.800 INTERGENIC

Araip.B05 115717881 G A �1 0.700 �0.700 Araip.YHU92 INTRON RING-H2 finger protein

Araip.B05 115753322 G A �0.83 0.636 �0.636 INTERGENIC

Araip.B05 115754681 T C �0.88 0.750 �0.750 INTERGENIC

Araip.B05 115878234 C T �0.71 0.800 �0.800 INTERGENIC

Araip.B05 115972726 C T �1 0.714 �0.714 INTERGENIC

Araip.B05 115998546 G A �0.73 0.800 �0.800 INTERGENIC

Araip.B05 116010768 G A �0.91 0.750 �0.750 INTERGENIC

Araip.B05 116022147 G T �0.78 0.750 �0.750 INTERGENIC

Araip.B05 116061110 G A �1 0.833 �0.833 INTERGENIC

Araip.B05 116085057 G T �1 0.666 �0.666 INTERGENIC

Araip.B05 116143047 G T �0.80 0.800 �0.800 INTERGENIC

Araip.B05 116143048 A G �0.80 0.800 �0.800 INTERGENIC

Araip.B05 116155115 G A �0.83 0.800 �0.800 INTERGENIC

Araip.B05 116160728 C A �1 0.833 �0.833 INTERGENIC

Araip.B05 116198871 C T �0.75 0.750 �0.750 INTERGENIC

Araip.B05 116205168 G A �0.76 0.750 �0.750 INTERGENIC

Araip.B05 116215363 G A �0.82 0.833 �0.833 INTERGENIC

Araip.B05 116237485 C G �1 0.714 �0.714 INTERGENIC

Araip.B05 116426085 T A �1 0.714 �0.714 INTERGENIC

Araip.B05 116563656 G A �1 0.800 �0.800 INTERGENIC

Araip.B05 116581795 G T �0.75 0.800 �0.800 INTERGENIC

Araip.B05 116670829 G T �1 0.714 �0.714 Araip.X9V0W INTRON SOUL heme-binding

family protein

Araip.B05 116676958 C T �0.88 0.833 �0.833 INTERGENIC

Araip.B05 116695578 G C �1 0.800 �0.800 INTERGENIC
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stress tolerance through increased ABA biosynthesis (Ko et al.,

2006; Liu et al., 2016). Notably, overexpression of an Arabidopsis

RING-H2 finger protein-encoding gene, XERICO, confers drought

tolerance through enhanced ABA accumulation (Ko et al., 2006).

As anticipated from these previous findings, the expression of

gene RING-H2 finger protein (Araip.YHU92) is also substantially

high in groundnut developing seeds, suggesting its role in ABA

accumulation, which might also impact seed dormancy.

Zeaxanthin epoxidase is one of the key enzymes involved in

ABA biosynthesis, which catalyses the first step of ABA biosyn-

thesis by epoxidation of zeaxanthin to violaxanthin (Thompson

et al., 2000). Earlier, role of ZEP in seed dormancy has been

demonstrated in Arabidopsis and tobacco (Frey et al., 1999;

Marin et al., 1996) and peach (Wang et al., 2016). Also, a QTL

analysis for preharvest sprouting in Arabidopsis has identified

DOG locus (Alonso-Blanco et al., 2003), now identified as one of

the key regulators in the ABA signalling pathway (Nishimura

et al., 2018). Further, in rice, ABA receptor mutants showed

pleotropic effects including seed dormancy and rice productivity

(Miao et al., 2018). Further, dormancy and germination are

complex physiological process involving complex interaction

between several pathways, including redox signalling through

reactive oxygen species (ROS). We also identified a ROS-

scavenging enzyme ascorbate oxidase encoding gene Ara-

ip.K7Y13 in the genomic region identified on B05. In practical

terms, our data suggest several candidate genes controlling FSD

in groundnut. Among them, ZEP (Aradu.D94AQ) and RING-H2

finger protein (Araip.YHU92) might be the most relevant genes

regulating preharvest sprouting caused due to lack of FSD in

ground nut. Further, it would be interesting to know the genetic

regulation of RING-H2 finger protein transcription factor over

ABA synthesis, as it could be plausible that this transcription

factor might be binding to the promoter region of ZEP and ABA

biosynthetic genes including NCED. Additionally, finding haplo-

types associated with SNPs in these genes in the natural

population(s) and breeding material and characterization of these

gene(s) by genome editing tools will provide new insight towards

the genetic control of FSD.

Major advantage of sequencing based trait mapping

approaches is mapping accurate genomic regions on the

genome, discovery of candidate genes in addition to develop-

ment of DNA markers. Earlier, Pandey et al. (2017) and Luo et al.

(2019a and) Luo et al. (2019b) have demonstrated the benefits of

QTL-seq approach; identification of candidate gene(s) and devel-

opment of markers in the candidate genomic region. The present

study also successfully developed a marker GMFSD1 near the

identified genomic region on the B05 which is closely linked to

the one of the candidate gene Araip.YHU92. This marker was

able to distinguish both parents and the extreme bulks and

successfully differentiated both diverse breeding and germplasm

materials with FSD trait. Thus, our study provides an important

marker linked to FSD, which can be used in groundnut breeding

programme for early section of FSD trait.

In summary, our study suggests WGS-based QTL-seq approach

as one of the most efficient techniques for the identification

putative regions/SNPs associated with desired traits. Further, it is

reasonable to target ZEP and RING-H2 finger protein as candidate

genes for introgression of fresh seed dormancy. Furthermore,

more evidences are required to functionally validate these genes;

plausibly genome editing would be best to deliver this. Therefore,

Figure 2 Details of QTL region identified on the

pseudomolecule B05 and expression of gene

Araip.YHU92. (a) A closer view of the genomic

region identified for FSD (114.45–116.69 Mb)

harbouring SNP on gene Araip.YHU92; (b)

transcript abundance of gene Araip.YHU92.

Stages S1 to S5 represent successive stages of

seed development in chronological order.
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we are interested to characterize the impact of candidate genes

identified in the present study through overexpression study as

well as CRISPR/Cas9. Additionally, we have developed multiple

RIL populations which will be helpful in delineating and identi-

fying additional candidate genes and markers for use in marker-

assisted breeding to improve FSD in groundnut.

Materials and methods

Plant materials and construction of pools based on
phenotyping

The RIL population derived from the cross ICGV 00350 9 ICGV

97045, earlier described by Vishwakarma et al. (2016), was used

in this study. Both parents used in this study are short-duration

Spanish varieties (subspecies fastigiata; botanical type vulgaris)

and are widely cultivated in the states of Tamil Nadu and Andhra

Pradesh in India under both irrigated and rain-fed condition. The

nondormant parent, ICGV 00350, is drought-tolerant genotype,

but prone to sprout in the field, that is lacks fresh seed dormancy.

In contrast, ICGV 97045 possesses fresh seed dormancy up to

15 days, and being used as donor parent for improving FSD in

several varieties at ICRISAT. Our previous genetic mapping effort

for FSD used a subset F2:3 population (368) (Vishwakarma et al.,

2016) of large segregating F2:3 population (>800). We followed

then SSD for rest of the F2 lines and finally developed RIL

population with 366 lines. For phenotyping, the noncured seed

from freshly harvested mature pods (post rainy season) was used

for the germination assay and enough care was taken to avoid

test a damage while removing seeds from the pods. The maturity

of pods was determined by the development of black coloration

inside the shell as explained by Miller and Burns (1971). To

minimize the experimental variation, good-quality uniform-sized

20 seeds from each RIL were chosen for germination assay and

the experiment was conducted in technical replicates. The seeds

were treated with fungicide Captan, n-[(trichloromethyl) thio]-4-

cyclohexene-l,2-dicarboxymide, at 2 g/kg seed (Upadhyaya and

Nigam 1999), placed on filter paper in a petri dish which was kept

moist with sterilized distilled water during the course of the study

and were incubated at 35 � 2 °C in the dark in an incubator, and

the seed germination was recorded daily. The dormant RILs which

showed FSD upto 13–15 days were used for creating dormant

pool/bulk; and the RILs which showed phenotype similar as ICGV

00350 (germinated within 24 h) were used for the nondormant

pool/bulk. Based on above phenotyping results, equimolar

concentration DNA (100 ng each) of 20 RIL individuals with

above-mentioned extreme phenotype, that is dormant and

nondormant seeds, was pooled together to create dormant (D)

and nondormant (ND) pool, respectively (Figures 1, S1).

Sequence libraries construction and Illumina sequencing

The WGS data were generated for three samples namely ICGV

97045 (dormant parent), dormant pool for fresh seed dormancy (D

pool) and nondormant pool for non-fresh seed dormancy (ND

pool) were prepared and used for sequencing on Illumina HiSeq

2500 at Center of Excellence in Genomics and Systems Biology

(CEGSB), ICRISAT, Hyderabad, as described in Pandey et al. (2017).

In brief, single Illumina library for each sample was made using

TruSeq DNA Sample Prep kit LT (set A) FC-121-. Two micrograms

Figure 3 Detail of genomic region identified on the pseudomolecule A09. (a) A closer view of a region harbouring nonsynonymous SNP on ABA

biosynthetic gene zeaxanthin epoxidase (Aradu.D94AQ) and its other three homologs Aradu.D1YZ0, Aradu.YN681 and Aradu.E3EhQ. Black box indicates

gene harbouring nonsynonymous SNP. (b) Transcript abundance of some of the important genes which are present this genomic region.
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DNA from each of these three samples was first sheared using

diagenode Bioruptor� NGS and then was subjected to end

repairing and adapter ligation. For size selection, 2% agarose gel

was used for electrophoresis and 500–600 bp insert size was

selected, purified and then enriched by using adaptor compatible

PCR primers. The size of the DNA libraries was reconfirmed

through chip assay using Agilent Technologies 2100 Bioanalyzer

(Agilent Technologies, Palo Alto, CA). Later, these libraries were

used to generate 250 bases pair-end reads by sequencing them on

Illumina HiSeq platform with Reagent Kit v2 (500-cycles).

Construction of reference-guided assembly

SNP index was calculated by using QTL-seq pipeline (http://ge

nome-e.ibrc.or.jp/home/bioinformatics-team/mutmap), devel-

oped at Iwate Biotechnology Research Center, Japan. For analysis,

a reference tetraploid genome assembly for groundnut was

constructed by using diploid genome assemblies of A. duranensis

(A-genome) and A. ipaensis (B-genome) developed by Bertioli

et al. (2016). The cleaned reads of ICGV 97045 were first aligned

to the constructed reference tetraploid genome assembly using

Figure 4 Validation of a linked marker. (a) A circos map representing GMFSD1 (B05_8196) marker developed from the B-subgenome. A. Lower

probability values at 99% confidence (P < 0.01) and 95% confidence (P < 0.05) for declaring D index and a marker GMFSD1 identified on chromosome

B05; B. genomewide DSNP index = 1 and contributed by dormant parent (ICGV 97045); C. genomewide DSNP index = �1 and contributed by non-

dormant parent (ICGV 00350); D. upper probability values at 99% confidence (P < 0.01) and 95% confidence (P < 0.05) for declaring significant DSNP

index; E. 20 chromosomes of Arachis hypogaea with their respective start and end positions. (b) Marker validated on a validation panel comprising a set of

parents, RIL bulks (D and ND) and breeding material.
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inbuilt Burrows-Wheeler Alignertool (Li and Durbin, 2009).

Thereafter, we used Coval software for postprocessing and

filtering of the alignment files which were developed after

aligning sequence reads to both diploid genomes separately

(Kosugi et al., 2013). Followed by variants call between ICGV

97045 (dormant parent) and the both diploid reference genomes.

ICGV 97045 reference-guided assembly was developed by using

these variants and the synthetic tetraploid genome assembly by

substituting the alternate bases with high-confidence SNP vari-

ants. Thereafter, reads of both dormant and nondormant pools

were then aligned onto ICGV 97045 assembly. The variants (SNP

index) were then called for both pool samples with ICGV 97045

assembly.

Implementation of QTL-seq pipeline and SNP index
calculation

SNP index for both pools was calculated by equating with the

ICGV 97045 assembly using a formula previously described

method (Abe et al., 2012; Pandey et al., 2017; Takagi et al.,

2013). SNP index at a position in a pseudomolecule is derived by

division of the counts of alternate base with the number of reads

aligned. The SNP positions with read depth <5 in both the pools

and SNP index <0.3 in either of the pool were filtered out. ΔSNP
index was then calculated by subtracting SNP index of nondor-

mant pool from SNP index of dormant pool. It is important to

mention that only those SNPs were selected for ΔSNP index

calculation that had homozygous alleles in both pools. SNPs

which passed the criteria of having ΔSNP index = �1 were

considered as causal SNPs for FSD. ΔSNP index = �1 indicates

that the allele called in dormant pool was same as that of

dormant parent, while alternate base in nondormant pool or vice

versa (Figure S6). These ΔSNP index value was used for QTLs

identifications. In order to find minor alleles or important SNPs

controlling FSD traits, we also analysed the overall ΔSNP index

data obtained through whole-genome resequencing data by

comparing SNP index of nondormant pool from SNP index of

dormant pool to find the SNPs associated with important genes

which are known to be involved in seed development and

hormone homeostatsis including ABA signalling and synthesis.

Designing of primer pairs, polymerase chain reaction
(PCR)

Based on the ΔSNP index, candidate SNPs were targeted to

design allele-specific primers (marker) using Primer3 (http://prime

r3.ut.ee/; You et al., 2008; Table S7). To avoid complication and

have PCR condition consistency, we specifically designed allele-

specific primer pairs with Tm of 61–62 °C.
Polymerase chain reaction was carried out according to a

previous report with minor modifications (Pandey et al., 2017). In

brief, the PCR mix of 15 lL consisted of 5 ng of DNA template,

1X PCR buffer, 2.5 mM each dNTPs, 2.0 mM MgCl2, 0.12 lL Taq

polymerase (KAPA Biosystems) and 3 pmoles (0.15 lM) each of

forward and reverse primers. The cycling conditions for PCR

amplification were 94 °C-4 min, 5 cycles of 94 °C-20 s, 62 °C-
30 s, 72 °C-30 s (extension), followed by 30–35 cycles of 94 °C-
20 s, 58 °C-30 s, 72 °C-30 s, final extension at 72 °C-10 min.

After PCR amplification, the alleles were scored on 2% agarose

gel electrophoresis as present and absent. The markers were

amplified using both dormant and nondormant parent parents

used for development RIL population. Identified polymorphic

markers were used to screen polymorphism between RILs F7
individuals (with extreme phenotype) that were used to create

dormant and nondormant pool. Identified polymorphic markers

were validated in a diverse panel consist of both FSD and non-FSD

accessions for their broader applicability.
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Figure S1 Schematic representation of QTL-seq approach used

for trait mapping in groundnut for fresh seed dormancy.

Figure S2 Sequencing depth of the dormant parent ICGV 97045

Black line indicates the sliding window average of 2 Mb interval

with 50 kb increment for SNP-index.

Figure S3 SNP-index plots for 20 pseudomolecules dormant (D)

pool with the dormant parent. Red lines indicate the sliding

window average of 2 Mb interval with 50 kb increment for SNP-

index.

Figure S4 SNP-index plots for 20 pseudomolecules nondormant

(ND) pool with the dormant parent.

Figure S5 The D (SNP index) plot obtained by subtraction of
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