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Abstract

During the opening moves of a chess game, a player (typically White) may offer a number of 

gambits, which involve sacrificing a chess piece for an opponent for capture to achieve long-term 

positional advantages. One of the most popular gambits is called the Queen’s Gambit and involves 

White offering a pawn to Black, which will open a lane for White’s Queen if accepted by Black. 

In the present study, the generalized matching law (GML) was applied to chess openings involving 

the Queen’s Gambit using over 71,000 archived chess games. Overall, chess players’ opening 

moves involving the Queen’s Gambit exhibited orderly matching as predicted by the GML, and 

the GML accounted for more variance in players’ chess decision making as their relative playing 

experience increased. This study provides support for the generality of the GML and its 

application to complex operant behavior outside of laboratory contexts.
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Organisms allocate their behavior among concurrently available response alternatives as a 

function of the relative reinforcement the alternatives produce (e.g., Hernstein, 1970). The 

matching law is a mathematical description of this relation between relative responding and 

rates of reinforcement (Hernstein, 1961). A modified version of the matching law, referred 

to as the generalized matching law (GML; Baum, 1974), can describe systematic deviation 

from strict matching in terms of the sensitivity of behavior to relative reinforcement rate or 

as a function of variables other than rate of reinforcement (e.g., response effort, 

reinforcement quality). The GML predicts that relative response allocation varies linearly 

with relative reinforcement rate when log transformed, and is expressed by the following 

relation:

log
B1
B2

= alog
R1
R2

+ logb

where B1 represents the rate of responding on one response alternative and B2 represents the 

rate of responding on the second response alternative; R1 and R2 represent the relative rates 

Correspondence concerning this article should be addressed to Ian Cero, Department of Psychiatry, University of Rochester Medical 
School, Rochester, NY 14642. ian_cero@urmc.rochester.edu. 

HHS Public Access
Author manuscript
J Appl Behav Anal. Author manuscript; available in PMC 2021 April 01.

Published in final edited form as:
J Appl Behav Anal. 2020 April ; 53(2): 835–845. doi:10.1002/jaba.612.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of reinforcement for those alternatives. The slope of the line (a) reflects sensitivity to 

reinforcement, and the intercept (b) reflects bias for one of the response alternatives when 

equality of reinforcement would predict indifference between the response choices (e.g., 

Baum, 1974). If behavior matches reinforcement perfectly, the slope of the function, a, 

equals one and the intercept, log b, is zero. Sensitivity to reinforcement more (a > 1) or less 

(a < 1) extreme than strict matching would predict is known as overmatching or 

undermatching, respectively (see McDowell, 2013).

The GML has described complex operant behavior in a variety of contexts, including severe 

problem behavior (Borrero & Vollmer, 2002), conversation allocation (Borrero et al., 2007), 

academic behavior (Mace, Neef, Shade, & Mauro, 1994), risky sexual behavior (Bulow & 

Meller, 1998), and both simulated (Schenk & Reed, 2019) and nonsimulated sport-related 

behavior (e.g., Alferink, Critchfield, Hitt, & Higgins, 2009; Falligant, Boomhower, & Pence, 

2016; Reed, Critchfield, & Martens, 2006; Vollmer & Bourret, 2000). For example, in the 

context of sports, research has shown that both collegiate and professional basketball players 

attempt more three-point shots (relative to two-point shots) as the relative number of three-

point shots scored increases (Vollmer & Bourret, 2000). Research has also shown that shot 

selection is sensitive to alterations in the distance of the three-point line (that arose from rule 

changes in 1994 and 1997) in that the relative number of three-point shot attempts increased 

as the relative number of three-point shots scored increased (Romanowich, Bourret, & 

Vollmer, 2007). Other variables, such as a high team success rate, more competitive NCAA 

divisions (i.e., Division I and Division II), and whether players are starters (as opposed to 

substitutes) are associated with increased sensitivity of shot selection to relative rates of 

shots made (Alferink et al., 2009). Thus, a wealth of research suggests parameters of the 

GML are sensitive to subtle variations in complex operant behavior across a variety of 

populations and contextual variables.

Importantly, the GML has advanced the analysis of choice occurring in both laboratory and 

naturalistic environments, serving as a powerful vehicle of translational behavioral research 

(see Mace & Critchfield, 2010; Vollmer, 2011). Continuing to evaluate the utility of the 

GML in describing complex choice behavior has the potential to advance the study of 

behavior analysis. For example, the extent to which this choice model accurately predicts 

behavior in other complex activities, such as chess, where the number of legal moves a 

player may make during a game is extremely large (10120; Shannon, 1950), is unknown. 

Chess can serve as a unique model for behavioral research (see Mechner, 2010), and there is 

a considerable body of quantitative research evaluating various aspects of the game of chess, 

such as the power-law distribution of chess openings (Blasius & Tönjes, 2009). Thus, a 

behavior-analytic assessment of chess openings using the GML may speak to the generality 

of the GML in describing complex choice behavior, highlighting the applicability of basic 

behavioral concepts to novel, naturally occurring operant phenomena.

During the opening moves of a chess game, a player (typically White) may offer a number 

of gambits, which involves presenting material to an opponent for capture in order to gain a 

positional advantage. In other words, gambits (if accepted by the opponent) typically result 

in a short-term loss of chess pieces, but long-term positional advantages. One of the most 

popular gambits offered during chess openings is the Queen’s Gambit (e.g., Kasparov & 
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Keene, 1994; Ramiz, 2006). To offer the Queen’s Gambit, White opens by advancing the 

pawn in front of the King two spaces (1.d4) and Black counters by advancing the pawn in 

front of the King two spaces as well (1.d5). White then sets up the gambit by moving the 

pawn in front of the Queen two spaces (2.c4), as Black can then accept the gambit and 

capture the c4 pawn and gain a material advantage over White (see Figure 1). If accepted, 

White can more easily develop his/her powerful pieces and occupy centrally located squares 

in the board for a long-term strategic advantage. If declined, Black does not cede the 

positional advantage to White, but foregoes a material advantage and allows White to 

advance two pawns to the center of the board.

The goal of the present study was to analyze the ratio of chess games in which the Queen’s 

Gambit was not offered versus games in which it was offered relative to the ratio of victories 

accrued without the Queen’s Gambit to victories accrued with it using a sample of 71,716 

archived chess games played by 348 tournament chess players. In other words, the purpose 

of the present study was to assess the degree to which White’s use of the Queen’s Gambit is 

accounted for by the GML. Additionally, given that previous research has suggested 

differences in skill or experience levels are associated with changes in parameters of the 

GML (i.e., sensitivity and bias) within sports contexts (e.g., Alferink et al., 2009), 

differences in sensitivity, bias, and variance accounted for by the GML across chess players’ 

experience levels were assessed.

METHOD

Data Source

All data were acquired through ScidBase (Scid version 4.6.4; SCID, 2017), a large online 

database of chess games that has been utilized for multiple studies of statistical phenomena 

in the game (Blasius & Tönjes, 2009; Maslov, 2009). Each record in this database represents 

a single game of chess archived in Portable Game Notation (PGN), a digital-friendly format 

for documenting chess play. A single PGN record typically includes a variety of information 

about a particular match, including the names of the players, the date and location of the 

match, the moves executed by each player in a standardized algebraic format, and other 

contextual information about the match (e.g., commentary, player rankings).

Data Acquisition and Processing—On November 4, 2017, the experimenters 

downloaded every available record in the standard database (n = 127,810). Of these initial 

games, 108,008 included sufficient information to identify the players and were retained for 

further analysis, during which a range of game-specific variables were extracted. These 

variables included the name of the White player, whether that player offered the Queen’s 

Gambit to Black, whether Black accepted the gambit, and whether the White player 

ultimately won the match. The experimenters then calculated aggregate statistics for each 

player (n = 1,336), including the total number of games played as White, the number of 

games in which they offered the Queen’s Gambit, in how many games their gambits were 

accepted, and the number of games won and lost with and without the Queen’s Gambit. The 

program R 3.5.3 (R Core Team, 2017) generated all statistical analyses and figures.
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Minimum game requirement.—A preliminary analysis of the database revealed that 

players offered the Queen’s Gambit in approximately 11% of all games. This implies players 

with a small number of games in the database may not have had sufficient opportunities to 

offer and benefit from the Queen’s Gambit, preventing reliable assessment of their 

conformity to the GML. To address this limitation, a prospective power analysis was 

conducted to estimate the number of observed games a player would need to have played in 

order for the probability of offering 5 Queen’s Gambits to reach at least .80 (i.e., the typical 

power threshold; Cohen, 1992). This was achieved using the Negative Binomial distribution, 

which is commonly implemented for sampling questions of this kind (Casella & Berger, 

2001). The results indicated that any given player would need to play 61 games before that 

player would have at least an 80% chance of producing 5 Queen’s Gambits, assuming 

players offered the Queen’s Gambit in 10% of games on average (rounded down from 11% 

to be conservative). Thus, the games of players that had at least 61 games in the database 

were included in the analysis, resulting in a final dataset of 71,716 games played by 348 

players (mean games per player = 206.08, SD = 147.48, min. = 61, max. = 858).

Analytic Procedure—Research on the GML has shown that behavior allocation is often 

characterized both by a baseline bias favoring one alternative over its counterparts and by 

deviation in sensitivity (over or under) to relative reinforcement from the prediction of strict 

matching (McDowell, 2013). To estimate each of these parameters among chess players, we 

conducted a linear regression analysis. The outcome variable was the ratio of games in 

which a White player did not offer the Queen’s Gambit to Games in which White did offer 

the gambit (i.e., a behavior ratio).1 The predictor variable was the ratio of victories White 

accrued without the Queen’s gambit to victories accrued with it (i.e., a reinforcement ratio). 

Prior to analysis, each of these quantities were converted to log10 units to linearize their 

relationship. In the resulting regression model, the intercept represents the bias parameter of 

the GML and the slope represents the sensitivity (McDowell, 2013). Thus, a regression 

model with an intercept of 0 and a slope of 1 would represent “perfect” matching; values 

significantly different from these would represent deviations from the strict interpretation of 

the matching law that are greater than would be expected by chance. To analyze changing 

levels of conformity to the GML as the number of games played increased, players were 

later broken into brackets based on the number of games they had played. This analysis was 

reconducted on each bracket, separately, and regression results across brackets were 

compared. In the second regression analysis, the possibility that players’ behavior conforms 

more strongly to the matching law as they are exposed to additional games—and thus 

opportunities for reinforcement (i.e., winning)—was also considered. This was achieved by 

recon-ducting the previous GML regression analysis, but with players grouped by the 

number of games played. Note that, to ensure a balanced analysis, only a player’s last 100 

games were included for this analysis.

1The non-Queen’s gambit openings and non-Queen’s gambit victories were treated as the numerator in the outcome and predictor 
variables because they were more common than Queen’s gambit openings and victories (respectively). The logarithms of their ratios 
will thus be positive, greatly simplifying the visual analysis of subsequent figures. Note, the conclusions produced from the regression 
analysis described here will be the same, regard-less of the numerator/denominator choice.
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Of concern, aggregate data may produce illusory matching effects and suggest functional 

response–reinforcer relations at a molar level even when there is no differential 

reinforcement to facilitate learning. For example, consider a hypothetical group of players 

who intermittently choose to rotate all their pieces by 90 degrees before some of their 

games. Although such behavior should have no impact on a victory (and thus putative 

reinforcement), it is still the case that players who perform the rotation in twice as many 

games will accrue twice as many wins with it (holding the base rate for chess wins constant 

across groups). This will produce a matching pattern similar to our observed results in 

Figure 2, as well as a significant and positive regression slope, even though there is no 

possibility of learning through differential reinforcement (i.e., no functional relation between 

piece rotation and victory). Note that this is true of individual-level time series as well. A 

player who exhibits variable preference for the piece turning strategy over time will still 

produce an illusory matching-like pattern similar to those of the players in Figure 3. Thus, it 

is possible the Queen’s Gambit reflects the same illusory phenomenon. In other words, our 

observed results may be a function of base rates for the probability of a victory, and do not 

necessarily imply a functional relation that players have learned through differential success 

with the Queen’s Gambit. To address this concern, consider three quantities: (1) the 

probability a player offers the Queen’s Gambit in the next game after winning with it in the 

previous game, (2) the probability a player offers the Queen’s Gambit in the next game after 

winning with a non-Queen’s Gambit opening in the previous game, and (3) the difference, 

D, between the two. If the Queen’s Gambit has no effect on victories, D = 0. However, if 

there is differential reinforcement for using the Queen’s Gambit, D > 0. We randomly 

sampled n = 100 players who had played at least 60 games (per our power analysis above) 

and had accrued at least one win with and without the Queen’s Gambit. We also took the 

event records (games) of the n = 100 players above and shuffled them randomly (within 

players) n = 1,000 times, recording the resulting Dsim for each iteration. This strategy 

mirrors a scenario where the probability a player uses the Queen’s Gambit in the next round 

has nothing to do with the previous round (i.e., a context where no learning can occur).

RESULTS

Results from regression analysis revealed that the behavior of chess players conforms to the 

primary prediction of the GML. As shown in Figure 2, players with more previous wins 

from the Queen’s Gambit offered it in proportionally more games (df = 346, R2 = .71). 

There was a small, but statistically significant, bias (i.e., regression intercept) toward 

offering non-Queen’s Gambit openings (b = 0.10, SE = 0.03 p < .001) and a modest, but 

statistically significant, under-sensitivity to relative victories (a = 0.85, SE = 0.03, p < .001). 

Recall that the standard error (SE) is an estimate of the variation in slopes (b) and intercepts 

(a) that would be expected from repeated sampling. When the SE is small, as is the case 

here, it increases confidence in the accuracy of those slopes and intercepts.

To interpret these values in practical terms, first note that the intercept of a regression 

represents the model predicted value of an outcome (the Queen’s Gambit offer ratio), when 

the predictor variable (the log ratio of wins with and without the Queen’s Gambit) is held at 

0. Because both the outcome and predictor variable in this model are in log10 units, a 

player’s data will occupy point 0 of the horizontal axis of Figure 2 if they have won exactly 
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as many games with the Queen’s Gambit as without (i.e., log10
X
X = log10(1) = 0). Thus, a 

predicted log10 ratio of 0.10 implies that players who win as often as they lose with the 

Queen’s Gambit are expected to offer openings other than the Queen’s Gambit 100.10 = 1.26 

times more often than perfect matching would predict. Similarly, the sensitivity parameter of 

the model is represented by its slope of .85, which is again in log10 units. This implies that a 

10-fold increase in non-Queen’s Gambit victories (i.e., a log10-unit increase of 1.0) would 

yield only a 100.85 = 7.08-fold increase in non-Queen’s Gambit offerings.

Figure 3 depicts example performance from five individual tournament-level players. As 

shown in the figure, players generally exhibit correspondence between their relative rate of 

victory with Queen’s Gambit (dashed line) and the rate at which they offered it (solid line) 

in each block. This is true despite variable usage and success with the Queen’s Gambit 

across players (different average height on the vertical axis) and across time for each player.

As shown in Figure 4, the variance explained by the GML increases with the number of 

games played, starting as low as R2 = .30 (df = 79) for players with 100 to 200 games and 

increasing to R2 = .59 (df = 24) for players with more than 400 games. Changes in bias and 

sensitivity were also observed as players experienced more games. Specifically, bias was 

reduced from .34 in the least experienced players to .18 in the most experienced. Like-wise, 

sensitivity increased from .55 in the least experienced to .88 in the most. Together, these 

general patterns indicate players’ behavior increasingly conforms to the GML as they play 

more games.

Notably, it is possible that the reinforcement schedule alone could have produced the 

matching results above. That is, a “trivially true” matching pattern can occur in observed 

data when the number of possible responses is not meaningfully greater than the number of 

reinforcement occasions. To guard against this risk, Equations 2 and 3 from Herrnstein 

(1970) were used to calculate the minimum and maximum possible rates of Queen’s Gambit 

offerings for a given rate of reinforcement (i.e., relative success with the Queen’s Gambit). If 

these two bounds were very close together, there would be no possible deviation from 

matching. However, as shown in Figure 5, this was not the case. Instead, the observed rates 

of Queen’s Gambit offerings clearly diverge from both their maximum and minimum 

possible values, suggesting (a) the reinforcement schedule of wins and losses with the 

gambit indeed allowed for potentially poor matching, but (b) players seldom exhibited such 

poor matching.

In this group, the observed Dobs = .07 suggests there is a measurably higher observed 

probability a player will offer the Queen’s Gambit after winning with it than after winning 

with an alternative opening. However, it is plausible that the true population D = 0 and these 

players just coincidentally evidenced a different value. As described above, the event records 

of 100 players were shuffled randomly 1,000 times, and the resulting Dsim was recorded for 

each iteration. Across all simulations, the mean Dsim = .01 (SD = .02) and not a single 

simulation surpassed the Dobs = .07 (p < .001), suggesting that the probability of observed 

results occurring in the absence of a functional relation between the Queen’s Gambit and 

victory is incredibly low.
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DISCUSSION

We evaluated the applicability of the GML to chess players’ use of the Queen’s Gambit 

during chess openings across a large sample of chess games played by experienced chess 

players. Across players, the GML accounted for a significant amount of the variance in 

players’ use of the Queen’s Gambit. As the relative number of games won in which White 

offered the Queen’s Gambit increased, the relative number of games in which White offered 

the Queen’s Gambit increased proportionally. Follow-up analyses implied this proportional 

increase was highly unlikely to be the result of forced matching due to a constrained 

reinforcement schedule or from the mere base-rate of players’ victories. Consistent with 

results from Alferink et al. (2009), the GML accounted for a greater proportion of variance 

in players’ use of the Queen’s Gambit as the relative experience levels of the players 

increased. Sensitivity estimates suggest players’ reinforcement sensitivity (i.e., sensitivity to 

games won) when offering the Queen’s Gambit approached optimal levels for nonlaboratory 

investigations of the GML (McDowell, 2013), though players demonstrated slight 

undermatching. Bias estimates were low, suggesting only a modest preference for non-

Queen’s Gambit openings relative to Queen’s Gambit openings given the experienced rates 

of wins.

Overall, the GML successfully described chess players’ use of the Queen’s Gambit as a 

chess opening across a large sample of games, and the GML accounted for more variance in 

players’ decision-making behavior as their relative experience increased. However, the 

current findings do not explain why matching occurs in the context of chess openings 

involving the Queen’s Gambit, and the descriptive nature of the methodology used in the 

present study cannot identify causal relations between sensitivity, bias, and choice for 

Queen’s Gambit and non-Queen’s Gambit openings yielding wins and losses. Future 

research should evaluate how Black’s responses to White’s Queen Gambit (i.e., accepting 

vs. denying the gambit) conform to the GML, in addition to assessing how non-gambit chess 

openings (e.g., the “Ruy Lopez,” the “English”) also conform to the predictions of the GML. 

Broadly, our findings suggest that the matching law may be useful in the context of teaching 

chess, as well as evaluating chess strategies and tactical decisions. There may be a benefit to 

using bias and sensitivity parameters as dependent variables for improving chess play. That 

is, one could study their own chess games (or the previous games of their opponents) to 

assess undermatching/overmatching or systematic responding within molecular (i.e., 

gambits, move-by-move decisions) and molar (e.g., middle game, end game) move 

sequences.

Results from this project add to the considerable basic and applied literature highlighting the 

empirical utility and descriptive power of the matching law. Matching processes are 

ubiquitous in complex human behavior, allowing researchers to use the matching law to 

study operant behavior across varied laboratory and real-world contexts. An analytical 

factotum, the matching law may be used to study a wide range of topographically or 

functionally distinct behaviors within a single individual or across a large number of 

individuals (e.g., 71,716 chess games played by 348 chess players). The current study serves 

as a useful proof of concept for future researchers interested in using the matching law 

within “big data” contexts, highlighting the requisite steps and procedural logic necessary to 

Cero and Falligant Page 7

J Appl Behav Anal. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



evaluate the presence of functional relations (and not necessarily matching as a forced 

property of a schedule) when using aggregated data and unique schedules of reinforcement.
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Figure 1. 
Illustration of the Queen’s Gambit. If black takes the pawn offered by white, the gambit is 

accepted. If black makes any other move, the gambit is denied. QG = Queen’s Gambit.
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Figure 2. 
White’s opening chess moves conform to the generalized matching law (GML). Points 

represent White players. The size of each point grows in proportion to the number of games 

completed by the player in the database. Vertical axis represents the ratio of each player’s 

non-Queens Gambit (QG) openings to QG openings (log10 scale); horizontal axis represents 

the ratio of victories each player accrued through non-QG openings relative to QG openings 

(log10 scale). The dashed line represents theoretically perfect conformity to the GML; the 

solid line represents the line of best fit to the data (estimated using Ordinary Least Squares). 

The shaded ribbon around the line of best fit represents the 95% confidence interval for the 

slope of that line. R2 is the proportion variance explained by the line of best fit.
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Figure 3. 
Selected players’ individual matching performance. Each point represents a 50-game block 

of a player’s recorded history in the dataset. The horizontal axis represents the log-10 ratio 

of Non-QG victories to QG victories for White in each block. The vertical axis represents 

the log-10 ratio of Non-QG openings to openings in which White offered the QG. The 

dashed lines represent theoretically “perfect” matching. Solid lines represent regression 

slopes for each individual player. Note that because these points are arrayed relative to QG 

offers and victories, they do not depict a temporal sequence (i.e., moving farther right does 

not indicate a later game block). VAR = variance explained, b = sensitivity (regression 

slope), a = bias (regression intercept).
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Figure 4. 
Bias, sensitivity and proportion of variance explained (R2) by the line of best fit as a 

function of total games White has played. Note the change in vertical scale across panels. 

Game ranges are given in traditional mathematical notation, where a square bracket is 

inclusive, and a curved bracket is exclusive (e.g., “[100, 200)” indicates players with at least 

100 games, but strictly less than 200). Note, as the number of games played increases, the 

number of players in that bracket decreases (i.e., n [100, 200) = 81, n [200, 300) = 41, n 

[300, 400) = 23, n [400, 900) = 24).
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Figure 5. 
Observed matching (dark triangles) by maximum and minimum possible matching (light 

circles) for each player. Optimal matching is given by the dashed line. Maximum and 

minimum possible matching were calculated using Equations 2 and 3 from Herrnstein 

(1970).
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