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In recent years, there has been a move away from the use of static in vitro
two-dimensional cell culture models for testing the chemical safety and
efficacy of drugs. Such models are increasingly being replaced by more
physiologically relevant cell culture systems featuring dynamic flow and/
or three-dimensional structures of cells. While it is acknowledged that
such systems provide a more realistic environment within which to test
drugs, progress is being hindered by a lack of understanding of the physical
and chemical environment that the cells are exposed to. Mathematical and
computational modelling may be exploited in this regard to unravel the
dependency of the cell response on spatio-temporal differences in chemical
and mechanical cues, thereby assisting with the understanding and design
of these systems. In this paper, we present a mathematical modelling frame-
work that characterizes the fluid flow and solute transport in perfusion
bioreactors featuring an inlet and an outlet. To demonstrate the utility of
our model, we simulated the fluid dynamics and solute concentration pro-
files for a variety of different flow rates, inlet solute concentrations and
cell types within a specific commercial bioreactor chamber. Our subsequent
analysis has elucidated the basic relationship between inlet flow rate and cell
surface flow speed, shear stress and solute concentrations, allowing us to
derive simple but useful relationships that enable prediction of the behav-
iour of the system under a variety of experimental conditions, prior to
experimentation. We describe how the model may used by experimentalists
to define operating parameters for their particular perfusion cell culture sys-
tems and highlight some operating conditions that should be avoided.
Finally, we critically comment on the limitations of mathematical and com-
putational modelling in this field, and the challenges associated with the
adoption of such methods.
1. Introduction
Drug discovery is a long and expensive process, with the development of a
single drug taking many years to complete and the cost increasing significantly
at each stage of testing [1,2]. In addition, regulation states that animal usage in
drug testing must be minimized or avoided [3]. Therefore, it is critical that the
drug discovery process is as efficient as possible in order to develop drugs
quickly while lowering costs and reducing the use of animals.

The first stageofdrugdevelopment is to identifyandoptimize leadcompounds
to create potential drugmolecules. Properties such as absorption, metabolism and
toxicity are tested in preclinical studies (in vitro cell-based and in vivo animal-based
experiments) before human clinical trials take place prior to marketing and
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approval of the drug. In order to maximize the efficiency of the
screeningprocess, drugswhich are likely to fail need to be elimi-
nated as early as possible. In vitro experiments conducted at the
initial stages of testing are often poorly representative of the
in vivo environment since cells are typically cultured under
static conditions in a two-dimensional (2D) array, whereas in
reality, cells in three-dimensional (3D) configurations are able
to communicate with other cells while being exposed to flow.
Animal studies are unethical, costly and often poorly predictive
of the human response due to species differences. Thus, it is
essential that new drug-testing systems are developed which
do not involve (or limit the use of) animals and which reflect
the physiological environment so that drugs likely to fail will
be eliminated earlier in the screening process [1,2].

Mathematical modelling can be useful in the design and
optimization of novel drug testing systems. For example, proto-
types of new devices can be built virtually and features such as
geometry can be easily modified allowing the ‘best’ design to
be chosen prior to fabrication of the device. Despite the fact
that experiments are usually runwith constant inlet solute con-
centrations (e.g. oxygen (O2), drug, nutrients) and flow rates,
spatial gradients and time-dependencies in solute concen-
trations and fluid forces (shear stress) often emerge, meaning
that cells are not exposed to a homogeneous environment.
Mathematical and computational modelling may be exploited
in this regard to unravel the dependency of the cellular
response on spatio-temporal differences in chemical andmech-
anical cues, thereby assisting with the understanding and
design of these systems. A range of suitable operating
parameters can then be established depending on the desired
experimental outcome, allowing for the accurate configuration
of devices with less reliance on a ‘trial and error’ approach.

Perfusion bioreactors are dynamic cell culture systems
which have been gaining much attention in recent years.
These systems allow cells to be cultured in 2D and 3D configur-
ations while being exposed to flow. Improved cell viability
and metabolic function has been observed under cell culture
conditions provided by bioreactors: the presence of flow pro-
vides a supply of nutrients to the cells, co-culture promotes
cell–cell interactions and cells cultured in 3D configurations
are able to retain their physiological morphology [4].

There are a number of existing studies in the literature
which use mathematical modelling to characterize certain
perfusion bioreactors. For example, models of fluid flow and
solute transport have been employed to optimize chamber
design [5], design a gradient generator for drug toxicity testing
[6], predict concentration gradients [7] and maximize mass
transfer while controlling shear stress levels [8]. Other studies
have adopted multiphase approaches to investigate the effect
of flow on tissue growth [9] and elucidate the relationship
between shear stress and cell yield and distribution within
hollow-fibre bioreactors [10]. A comprehensive review of
continuum modelling approaches in artificial scaffolds and
bioreactors more generally, covering cell population dynamics,
the cell’s mechanical environment and cell–environment inter-
actions, within a multiphase framework, may be found in [11].
Most relevant to this study, amodel was developed to optimize
the design of amodular bioreactor chamber [12] and to assess if
the O2 delivery and shear stress levels would be acceptable for
the culture of hepatocytes within a hydrogel layer [13]. More
recently, models were developed to predict flow patterns, O2

transport and test compound distribution within three differ-
ent bioreactors to identify which of the systems would be
most suitable for long-term culture of hepatocytes within algi-
nate beads [14]. A key limitation of these existingmodels is that
they account for very specific experiments and cell types (e.g.
culturing hepatocytes within a hydrogel layer or alginate
beads). Since perfusion bioreactors are increasingly being
used for a variety of applications incorporating different cell
types and solutes with different mechanisms of action, it is
important to consider potential differences in the environment
and operating conditions.

The primary purpose of this paper is to provide mathemat-
ical and computational models and results that can assist with
the design and operation of advanced cell culture systems. In
addition, we aim to highlight potential barriers to the adoption
of in silico models in this field. We present a more general
modelling framework that characterizes the fluid flow and
solute transport in perfusion bioreactors featuring an inlet and
an outlet. We start by presenting the model equations, as well
as initial and boundary conditions that describe the environ-
ment within an arbitrary bioreactor chamber. We consider
two common types of solute reaction with the cells—nonlinear
saturable binding andMichaelis–Menten (M–M) kinetics—and
we use mathematical arguments to justify simplifications of the
underlying equations in certain cases. We then provide simple
relationshipswhich allow for the rapid prediction of cell surface
solute concentration profiles in single and connected chambers,
prior to experimentation. To demonstrate the utility of our
model,we simulate the fluid dynamics and solute concentration
profiles for a variety of input flow rates, inlet concentrations and
cell types within a specific bioreactor chamber: the Kirkstall
QV900. For single and connected chambers, we examine the
relationships between input flow rate and cell surface flow
speeds, shear stress levels and solute concentrations and inves-
tigate the effect of varying cell-specific parameters on solute
concentration profiles at the cell surface. Finally, we critically
comment on the limitations ofmathematical and computational
modelling in this field, and the challenges associated with the
adoption of such methods.
2. Mathematical and computational methods
We begin by considering an arbitrary geometry to represent a
bioreactor chamber featuring an inlet and an outlet, assuming
that cells are cultured at the base of the chamber either in a
3D region or within a monolayer. We note that the model
is applicable to any chamber geometry with these properties.
Figure 1 illustrates how we set up the model equations to
describe fluid flow and solute transport and this will be
discussed in detail in the following text.

2.1. Fluid dynamics in the chamber
Assuming we have an incompressible Newtonian fluid, the
flow velocity and pressure are described using the continuity
and Navier–Stokes equations

r � u ¼ 0, (2:1)

and

r
@u
@t

þ r(u � r)u ¼ �rpþ mr2u, (2:2)

where u (m s�1) is the velocity field, p (Pa) is the pressure, ρ
(kg m�3) is the fluid density and μ (Pa s) is the dynamic
viscosity. Initially, the fluid velocity is zero (u = 0) in the
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Figure 1. Schematic drawing of an arbitrary bioreactor geometry featuring an
inlet and an outlet with cells cultured at the base of the chamber to illustrate
the model set-up. For full details of the equations, the reader is referred to
the text.
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chamber. At the inlet, we assume a normal inflowparabolic vel-
ocity profile with magnitude derived from the volumetric flow
rate, Q, which can be controlled in experiments (see electronic
supplementary material). We assume zero pressure (p = 0) at
the outlet and no-slip and no penetration conditions (u = 0)
are imposed on all interior walls.

2.2. Solute transport in the chamber
The transport of each solute through the fluid is described
using an advection–diffusion equation:

@cj
@t

þ (u � r)cj ¼ Djr2cj, (2:3)

where cj (mol m�3) is the concentration of solute j and Dj

(m2 s−1) is the diffusion coefficient associated with solute j.
We assume that each solute is present at a sufficiently low
concentration such that the presence of one solute has
no impact on the transport of another (dilute assumption).
We further assume no binding of solute j to components of
the fluid (e.g. proteins) but note that Dj may be adjusted to
account for this process [15]. Initially, the solute concentration
is zero (cj = 0) in the chamber. A constant supply of each
solute (c j ¼ cinj ) is prescribed at the inlet and a convective
flux (�n �Djrc j ¼ 0, where n is an outward facing normal)
is imposed at the outlet. We assume the walls of the chamber
are impermeable and impose a zero flux condition of the
form n � (�Djrc j þ uc j) ¼ 0 on all interior walls.

2.3. Solute reaction with the cells
We assume the cells are cultured at the base of the chamber
either (i) within a 3D region of thickness hc or (ii) as a mono-
layer. We further assume that the cells reside within media
that does not facilitate proliferation, which is common in
many applications. For cases where cell proliferation is impor-
tant, this may be incorporated following existing approaches in
the literature (e.g. [9–11]). To demonstrate howwemay charac-
terize different types of reaction between the solute and the
cells, we present two common reaction mechanisms. First, we
consider a reaction governed by nonlinear saturable binding
kinetics, suitable for describing the effect of a wide range of
drugs whose mode of action is governed by ligand–receptor
interactions. Then, we consider a reaction governed by M–M
kinetics, commonly used in the literature to describe O2
consumption [5,7,8,12–14] and paracetamol (APAP) metab-
olism [16,17].

2.3.1. Reaction within a 3D cell region.
Within the 3D cell region, there will be fluid flow in the inter-
stitium between cells. This may be modelled by considering
the cell region as a porous medium and using Darcy’s Law
to calculate the flow field. However, the thinness of the cell
region and the relatively low lateral pressure differences and
low permeability of the cell region, suggest that flow in the
cell region will be negligible. In instances in which interstitial
flow is important, the reader is directed to [11] for models
that include this effect. We, therefore, describe solute transport
using a reaction–diffusion equation:

@c j
@t

¼ r � (Dcell
j rc j)� R3D

j , (2:4)

whereDcell
j (m2 s−1), the diffusivity tensor associated with solute

j, is assumed to capture any heterogeneity in cell distribution
within the 3D region and, here, R3D

j (mol m�3 s�1) describes
the bulk reaction between solute j and the cells. Initially, the
solute concentration is zero (cj = 0) in the cell region and we
assume continuityof concentration and flux across theboundary.

2.3.2. Reaction within a monolayer
If we are interested in estimating only cell surface solute con-
centration profiles of a monolayer, we may replace the 3D cell
region with a flux boundary condition of the following form:

n � (�Djrc j þ uc j) ¼ R2D
j , (2:5)

where, here, R2D
j (mol m�2 s�1) describes the surface reaction

between solute j and the cells. We note that (2.5) may also be
used if we are interested in estimating solute concentrations
on the surface of a 3D region of cells (as in §2.3.1) in the
special case of isotropic diffusion within a sufficiently thin
cell region.

2.3.3. Reaction governed by nonlinear saturable binding kinetics
We describe the first type of reaction by nonlinear saturable
binding:

R3D
j ¼ k f

j c j(B j � b j)� krjb j, (2:6)

where cj (mol m�3) is the concentration of free drug,
Bj (mol m�3) is the local density of binding sites and k f

j
(mol−1 m3 s−1) and krj (s

−1) are the forward and reverse reaction
rates, respectively. Here, we require an additional equation to
track the concentration of bound drug, bj (mol m�3), in the 3D
cell region:

@b j

@t
¼ k f

j c j(Bj � b j)� krjb j: (2:7)

We remark that nonlinear saturable irreversible binding
and linear binding kinetics may be recovered as special cases
of (2.7) through appropriate choice of the model parameters.
We also note that althoughwe have chosen tomodel the binding
process within a 3D cell region, these equations may be easily
adapted to describe the binding process via a flux boundary
condition, as in (2.5), by defining bj in units of mol m�2 and
employing an appropriate mass conservation condition.

2.3.4. Reaction governed by Michaelis–Menten kinetics
We describe the second type of solute reaction by M–M
kinetics. These kinetics describe the relationship between the
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concentration of solute and speed of a reaction: as solute
concentration increases, the reaction rate increases before
approaching a maximum for higher solute concentrations
[18,19]. In this case,we have chosen tomodel themetabolic pro-
cess using a flux boundary condition but, again, these equations
may be easily adapted to describe the metabolic process within
a 3D cell region by suitably adjusting the units of themodel par-
ameters. A general M–M reaction term has the following form:

R2D
j ¼

Xm
i¼1

Vi
jc j

Ki
j þ c j

, (2:8)

where m is the number of metabolic pathways involved in the
reaction, Ki

j (mol m�3) is the M–M constant for solute j and
pathway i and Vi

j (mol m�2 s�1) is the maximum reaction rate
for solute j and pathway i. It may be readily shown that

R2D
j �

Pm
i¼1

Vi
j when

Ki
j

c j
� 1

Pm
i¼1

Vi
jc j
Ki

j
, when

Ki
j

c j
� 1

8>><
>>:

, (2:9)

so that when the ratio of Ki
j to cj satisfies the above criteria, we

can reasonably replace the full M–M kinetics (2.8) by the
approximate expressions (2.9).

2.4. Derivation of relationships to inform experimental
operating conditions

For each type of reactionmechanism,weprovide simple relation-
ships which allow for the rapid prediction of steady-state solute
concentrations, prior to experimentation.

2.4.1. Predicting steady-state solute concentrations when
reaction is governed by nonlinear saturable
binding kinetics

Within the cell region, drug dynamics are typically character-
ized by a reaction rate considerably faster than the timescale
associated with diffusion [20], meaning that binding is
usually diffusion-limited. The implication is that bound and
free drug coexist in a quasi-equilibrium with bound drug
concentrations given by

b j �
Bjc j

kdj þ c j
: (2:10)

In such cases of rapid binding, it may readily be shown (see
electronic supplementary material) that in the case of isotro-
pic diffusion, we are able to reduce the nonlinear saturable
binding model by combining (2.4) and (2.7) to obtain an
equation for the total drug concentration (Tj = cj + bj)

@Tj

@t
¼ r � (D�

jrTj) and

D�
j �

Dcell
j

1þ (Bjkdj=(k
d
j þ c j)

2)
,

(2:11)

where Dj* is an effective concentration-dependent diffu-
sion coefficient, kdj ¼ krj=k

f
j is the equilibrium dissociation

constant and

c j ¼ � 1
2
(kdj þ Bj � Tj)+

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(kdj þ Bj � Tj)

2 þ 4kdjT j

q
: (2:12)

For physically meaningful results, we require cj≥ 0 so we
consider only the positive root. It is clear that the role of
binding is accounted for through a reduced diffusion
coefficient. In the limit of rapid binding, the coupled time-
dependent equations (2.4) and (2.7) may then be replaced
with the single partial differential equation (2.11) with bj
obtained through the algebraic expression (2.10). Expressing
the model in terms of total drug concentration is often useful,
since experimental researchers often measure total drug
concentrations (for reasons of convenience or due to limita-
tions of measurement protocols). Since no drug is lost from
the system in this model (it is either bound or unbound), at
steady state the free drug concentration should be equal to
the inlet concentration, i.e. c j ¼ cinj , and thus we may use
(2.10) to calculate the partitioning of drug between cj and bj
prior to experimentation. Note that since these expressions
rely only on the parameters kdj and Bj, they may be used to
calculate the steady-state concentrations for any drug
whose interactionwith the cells is governed by nonlinear satur-
able binding kinetics, given that the drug is supplied as a
constant source and diffusion of drug within the cell region
is isotropic.

2.4.2. Predicting steady-state cell surface solute concentrations
when reaction is governed by Michaelis–Menten kinetics

Since experiments can span over many days and it is often
possible to connect multiple bioreactor chambers together
for high throughput testing, it would be useful to establish
relationships between the inlet and cell surface concentrations
in single and connected chambers so that cell surface solute
concentration profiles may be predicted a priori. When the
solute reaction is governed byM–Mkinetics, the rate of metab-
olism is dependent on the solute concentration at the cell
surface, i.e. metabolism is variable unless the cell surface
solute concentration is uniform. However, if the solute concen-
tration is high enough (c j�Ki

j), then from (2.9) the rate of
metabolism is approximately constant. In this case, if we
vary only the inlet concentration, cinj , then the shape of the cell
surface solute concentration profile will stay approximately
the same since the fluid dynamics are unchanged and approxi-
mately the same amount of solute is metabolized across the
entire cell surface; however, the magnitude of the cell surface
solute concentration will vary according to the change in the
inlet concentration. Thus, provided that Rj �

Pm
i¼1 V

i
j, if

the cell surface concentration profile is known for a given cinj ,
we may predict the cell surface concentration profile for any
cin

�
j via the following equation:

c�j (y) � c j(y)þ Dcinj and Dcinj ¼ cin
�

j �cinj , (2:13)

where y is the axis through the centre of the cell surface from the
inlet side to the outlet side of the chamber. Here, c�j (y) and cj(y)
are the concentration profiles across the centre of the cell
surface corresponding to inlet concentrations of cin

�
j and cinj ,

respectively. Note we have verified that this equation may be
generalized to predict the concentration profile across the
entire surface of the cells, but for simplicity, we consider only
the profile across the centre of the cell surface.

We can extend this idea to chambers connected in series:
clearly, the solute concentration will decrease from the first to
the last chamber due to metabolism so it would be useful to
establish a relationship between the cell surface solute con-
centration profiles in the first chamber and in subsequent
chambers. This would enable the prediction of the cell surface
solute concentration profile in chamber n based only on
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knowledge of the profile in chamber 1. Similarly to (2.13),
we have

cnj (y) � c1j (y)þ Dcinj and Dcinj ¼ cin
n

j � cin
1

j ,

where cnj (y) is the unknown concentration profile across the
centre of the cell surface in chamber n, c1j (y) is the known con-
centration profile across the centre of the cell surface in
chamber 1 and Dcinj is the difference between the unknown
inlet concentration in chamber n and the known inlet concen-
tration in chamber 1. Thus, in order to make use of this
equation, we need to be able to estimate cin

n

j .
Let us first consider the concentration flux (mol s�1) enter-

ing and leaving chamber 1. At steady state, the concentration
flux leaving the chamber via the outlet must be equal to the
concentration flux entering the chamber via the inlet minus
the concentration flux at the cell surface due to metabolism, i.e.

ð
Aout

n � (�Djrc1out þ u1
outc

1
out) dAout

¼
ð
Ain

n � (�Djrc1in þ u1
inc

1
in) dAin

�
ð
Acells

Xm
i¼1

Vi
j dAcells, (2:14)

where c1out and c1in (mol m�3) are the concentrations at the outlet
and the inlet faces of chamber 1, respectively, and Aout, Ain and
Acells are the areas of the outlet face, the inlet face and the cell
surface, respectively. Note that again we assume metabolism
is approximately constant and for convenience we define
a ¼ Ð

Acells

Pm
i¼1 V

i
j dAcells.

Also at steady state, the concentration flux leaving
chamber 1 via the outlet must be equal to the concentration
flux entering chamber 2 via the inlet, i.e.

ð
Aout

n � (�Djrc1out þ u1
outc

1
out) dAout

¼
ð
Ain

n � (�Djrc2in þ u2
inc

2
in) dAin, (2:15)

and combining (2.15) with (2.14) gives
ð
Ain

n � (�Djrc2in þ u2
inc

2
in) dAin

¼
ð
Ain

n � (�Djrc1in þ u1
inc

1
in) dAin � a: (2:16)

We know that c1in is constant across Ain and if we also assume
that c2in is constant then we have

�Djrc2in ¼ �Djrc1in ¼ 0:

We therefore neglect the diffusive flux at the inlets and this
assumption will always be appropriate when the system is
convection-dominated. Then, from (2.16) we have

c2in

ð
Ain

u2
in � ndAin ¼ c1in

ð
Ain

u1
in � ndAin � a,

and if we assume that the velocity profiles at the inlet to each
chamber are identical then we obtain:

c2in

ð
Ain

u1
in � ndAin ¼ c1in

ð
Ain

u1
in � ndAin � a

¼) c2in ¼ c1in �
aÐ

Ain
u1
in � ndAin

¼ c1in �
a

Q
,

where Q (m3 s−1) is the input flow rate. Similarly, we have

c3in ¼ c2in �
a

Q
¼ c1in �

2a
Q

,

and for n chambers we obtain

cnin ¼ c1in �
(n� 1)a

Q
:

Thus, provided that Rj �
Pm

i¼1 V
i
j, the cell surface concen-

tration profile in chamber 1 is known, the inlet concentrations
are constant and the velocity profile at all inlets are the same,
we may predict the cell surface concentration profile in
chamber n via the following equation:

cnj (y) � c1j (y)�
(n� 1)a

Q
: (2:17)

As before, we have verified that this equation may be general-
ized to predict the concentration profile across the entire
surface of the cells, but for simplicity we consider only the
profile across the centre of the cell surface.

2.5. Computational geometry
In order to demonstrate the utility of our model, we choose the
geometry of a specific commercial perfusion cell culture system
which is gaining popularity: the QV900 (figure 2a) manufac-
tured by Kirkstall Ltd (York, UK). The QV900 is a modular
system comprising six cell culture chambers that can be con-
nected together in any combination. This allows experiments
to be performed either in parallel or in series, providing a
high degree of flexibility as well as the potential to culture
cells over a defined set of conditions.

Initially, a computational 3D representation of a single
chamber (figure 2b) was constructed. The overall height of a
single chamber ranges from 18.6 mm at the inlet side to
20.7 mm at the outlet side. The diameter of the chamber is
taken to be 16.0 mm, while the inner diameter of the inlet and
the outlet is 1.0 mm and 1.8 mm, respectively. The cells are
assumed to be cultured at the base of the chamber in either a
3D region of height hc or a monolayer.

We subsequently created a geometry to represent six
chambers connected in series. Each chamber is connected by
a cylindrical tube of length 100 mm and diameter 2.4 mm.
This is representative of a typical connecting tube, although it
is noted that there is a choice of various tube lengths; however,
we have verified that this feature does not significantly influ-
ence the results since employing various tube lengths from 5
to 100 mm alters the results by approximately 1% or less.

2.6. Parameter values
There are a number of parameters in the model that can be
adjusted to represent different cell culture conditions. Variable
parameters such as input flow rate and inlet concentration
are specified for each set of results and table 1 presents the
remaining parameters. For simplicity, the values of ρ and μ
are chosen under the assumption that the fluid is water;
however, it is recognized that these parameters may vary
depending on the specific fluid used. Also note that for this
study we assume isotropic diffusion of solute within the 3D
cell region and choose Dcell

j ¼ Dj, but we acknowledge that
in reality these parameters may differ. To illustrate the results
of our model, we choose representative parameters for three
different solutes. For the reaction governed by nonlinear



–0.01

inlet

0 0.01
0

0.005

0.010

0.015

0.020

0 outlet

x
y

z

(b)(a)

Figure 2. (a) The QV900. (www.kirkstall.org). (b) Idealized 3D geometry of a single QV900 chamber, showing the orientation of the x-, y- and z-axes where the
origin is located at the centre of the base (indicated by the red dot). Note that length scales are in metres.
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saturable binding, we describe the action of sirolimus (a drug
with potent anti-proliferative and immunosuppressive proper-
ties commonly used to coat arterial stents) on smooth muscle
cells. For the reaction governed by M–M kinetics, we describe
O2 consumption for four different cell types (rat cardiomyo-
cytes, human cardiomyocytes, rat hepatocytes and HepG2
cells) and we describe APAP metabolism using parameters
obtained from a study performed in vivo in humans. Note
that the maximum reaction rate for M–M kinetics is often pro-
vided in varying units for different solutes; in order to balance
the equations, we need to either multiply this parameter by the
cell density or divide this parameter by the cell area for O2 and
APAP, respectively.

2.7. Numerical implementation
Since the equations describing fluid flow are independent of
solute concentration, we first solved the fluid equations and
then used this solution to subsequently solve the transport
equations. The computational geometry was constructed and
the finite-element method was implemented in COMSOL
Multiphysics®, 5.3 (Stockholm, Sweden). We note that a
number of alternative finite element codes may also be used
to solve the model equations and boundary conditions as
detailed in §2. Since preliminary simulations showed that the
solution to the problem is symmetric about the y, z plane pas-
sing through the origin, we used symmetry of the geometry
to reduce the computational cost of the model so that only
half of the problemwas solved numerically. The computational
mesh was generated using the physics-controlled ‘extremely
fine’ setting. This choice was made based on a mesh sensitivity
study where we established that refinement of the mesh from
the ‘extra fine’ setting to the ‘extremely fine’ setting resulted
in less than 1% change in the quantities of interest (mass con-
servation, shear stress and solute concentration at the cell
surface). This indicates that further refinement would have a
negligible effect on the results. The final mesh consisted of
2 152 947 tetrahedral elements with size ranging from 0.03 to
0.46 mm and, where we modelled the cells as a 3D region,
we generated a swept triangular prism mesh in this domain.
Note that we consider only the steady-state results since our
time-dependent simulations show that equilibrium is estab-
lished relatively quickly. Specifically, the flow reaches steady
state rapidly for all flow rates considered (within 50 s) while
the time to steady state is more variable when solute transport
is considered, ranging from 5 to 20 h between the lowest and
highest flow rates considered. The time to steady state was
assessed by quantitative comparison of fluid flow patterns,
cell surface shear stresses, patterns of solute concentrations
and cell surface solute concentrations at different times. The
model may, of course, be used to generate time-dependent
solutions if required.
3. Results
3.1. Fluid dynamics
Wedescribe the velocity profile and cell surface shear stress in a
single chamber forQ ¼ 100–1000ml min�1, covering a realistic
range of operating flow rates. As an example, we display only
the results forQ ¼ 100ml min�1 (figure 3) and the correspond-
ing results for the remaining flow rates can be found in the
electronic supplementary material. In this case, some small
zones of recirculation arise around the periphery at the base
of the chamber and the peak flow speed (4:20� 10�3 m s�1)
is located at the inlet. Given the considerable decrease in flow
speed with chamber depth, in figure 3b, we use a log scale to
plot the velocity magnitude in order to better emphasize the
variation in flow speed throughout the chamber. The magni-
tude of the cell surface shear stress is of the order of 10−8 Pa
and rises from all sides of the chamber towards the peak
(6.39 × 10−8 Pa) located at the centre. As input flow rate is
increased, the recirculation zones increase in size and even-
tually merge to form one large zone which takes up the
majority of the chamber. The cell surface shear stress rises in
magnitude with increasing input flow rate and the profile
changes most substantially between Q ¼ 200ml min�1 and
Q ¼ 500ml min�1, where the flow pattern transforms dramati-
cally. We note that for chambers connected in series there is no
significant difference in the fluid dynamics in downstream
chambers (not shown).

The peak cell surface flow speed and shear stress increase
with input flow rate in a nonlinear manner (figure 4). As input
flow rate increases, the peak cell surface flow speed and shear
stress increase until around Q ¼ 200ml min�1 after which the
profiles dip, reaching a minimum at around Q ¼ 300ml min�1.
After Q ¼ 400ml min�1 the peak cell surface flow speed and
shear stress increase rapidly with increasing input flow rate.
We deduced that a significant change in the pattern of flow is
responsible for the dip: up to Q ¼ 200ml min�1 and after
Q ¼ 500ml min�1 thebehaviourof the flow is relativelyunchan-
ging, whereas in between we observe substantial differences in
the appearance of the streamlines (most noticeably in the mer-
ging of the recirculation zones) and cell surface shear stress
profiles (see electronic supplementary material).
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Table 1. Parameter values.

parameter
description value reference

fluid parameters

density (ρ) 9:94�102 kg m�3 [21]

dynamic viscosity (μ) 6:89�10�4 Pa s [21]

diffusion coefficients

sirolimus (DS) 2.50 × 10−10 m2 s−1 [22]

O2 (DO2 ) 3.00 × 10−9 m2 s−1 [12]

APAP (DAPAP) 6.00 × 10−10 m2 s−1 [23]

binding parameters for sirolimus

forward reaction

rate (k fS )

2.00 mol−1 m3 s−1 [22]

reverse reaction

rate (krS)

5.20 × 10−3 s−1 [22]

local density of binding

sites (BS)

3:63�10�1 mol m�3 [22]

Michaelis–Menten constants

O2 (KO2 ) 6:60�10�4 mol m�3 [12]

glucuronidation (K 1APAP) 6:89 mol m�3 [17]

sulphation (K 2APAP) 9:70�10�2 mol m�3 [17]

oxidation (K 3APAP) 3:03�10�1 mol m�3 [17]

maximum O2 consumption rates

rat cardiomyocytes

(VO2 )

4:01�10�8 mol m�2 s�1 [24]

human cardiomyocytes

(VO2 )

9:81�10�8 mol m�2 s�1 [24]

rat hepatocytes (VO2 ) 2:39�10�8 mol m�2 s�1 [25]

HepG2 cells (VO2 ) 1:17�10�8 mol m�2 s�1 [25]

maximum APAP metabolic rates

glucuronidation (V1APAP) 8:86�10�2 mol m�2 s�1 [17]

sulphation (V2APAP) 1:02�10�3 mol m�2 s�1 [17]

oxidation (V3APAP) 3:41�10�4 mol m�2 s�1 [17]

general parameters

total number of

cells (N)

1.00 × 105 this study

volume of a smooth

muscle cell (Vcell)

1.50 × 10−14 m3 [26]

area covered by the

cells (A)

2.01 × 10−4 m2 this study

thickness of 3D cell

region

(hc = NVcell/A)

7.46 × 10−6 m this study

cell density (d = N/A) 4:97�108 cells m�2 this study
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3.2. Reaction governed by nonlinear saturable
binding kinetics

We examine drug concentration profiles in the chamber for
an input flow rate of Q ¼ 100ml min�1 and a nominal inlet
sirolimus concentration of cinS ¼ 5:00�10�3 mol m�3. Our
simulations confirm (not shown) that at steady state the
free drug concentration profiles are uniform in the chamber
in line with our rationale described in §2.4.1. Furthermore,
the bound drug concentration within the cell layer takes
the constant value bS ¼ 0:2388mol m�3, as predicted from
(2.10). The significance of this result is that since the steady-
state concentration profiles are uniform throughout, this
implies the binding model is effectively a 1D problem
which suggests the geometry of the chamber and the flow
profile within the chamber are irrelevant features. To confirm
this, we compared results between identical simulations
using: (i) the QV900 geometry versus a simple cylindrical
geometry, and (ii) flow versus no flow. The results were
identical (data not shown).
3.3. Reaction governed by Michaelis–Menten kinetics
We examine solute concentration profiles in the chamber and
at the cell surface for an input flow rate of Q ¼ 100ml min�1.
For the O2 profiles (figure 5), we show results for rat cardio-
myocytes as an example and we set cinO2

¼ 0:21mol m�3 to
represent atmospheric O2 levels [12]. Corresponding results
for the remaining cell types are detailed in the electronic sup-
plementary material. The O2 concentration decreases from
cinO2

¼ 0:21mol m�3 at the top of the chamber to approxi-
mately 0:07mol m�3 at the base of the chamber. The cell
surface O2 concentration ranges from approximately 0.07 to
0:09mol m�3.

Similar trends are observed for the APAP profiles (figure 6).
Here, we show the results for human liver cells with an inlet
concentration of cinAPAP ¼ 0:4mol m�3 to represent a dose of
60 mg kg−1 [17]. The APAP concentration decreases from
cinAPAP ¼ 0:4mol m�3 at the topof the chamber to approximately
9:15�10�7 mol m�3 at the base of the chamber. The APAP con-
centrations are very low at the cell surface, ranging from
approximately 9.15 × 10−7 to 1:86�10�6 mol m�3, suggesting
that the majority of the APAP is metabolized by the cells.

In figure 7, we plot the average cell surface concentration
versus flow rate for both O2 and APAP. In the case of oxygen
consumption, we consider four cell types (rat cardiomyocytes,
human cardiomyocytes, rat hepatocytes and HepG2 cells),
while for APAP, we consider only human liver cells due to
the available data. The results of the simulations show that
the average cell surface concentration tends to increase as
input flow rate increases across all cell types. As with the pro-
files for the peak cell surface flow speed and shear stress, we
observe a dip in average cell surface concentration between
Q ¼ 200ml min�1 and Q ¼ 500ml min�1 which is explained
by changes in the flow pattern.

Next, we test our hypotheses (2.13) and (2.17) which
should allow for the prediction of the solute concentration
profiles at the cell surface in single and connected chambers,
respectively. Recall that these relationships inherently
assume that the rate of metabolism is constant and so only
hold true for c j�Ki

j. For the parameters in table 1, this
criteria is not satisfied by APAP and so we consider O2

as an example and illustrate the results for rat cardio-
myocytes. In figure 8a, we compare our prediction of
the cell surface O2 concentration profile from (2.13) to the
results of the simulation when we increase the inlet concen-
tration from cinO2

¼ 0:21mol m�3 to cinO2
¼ 0:3mol m�3, and

excellent agreement is found. Integrating (2.13) with respect
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to y over the diameter of the cell surface (−r < y < r) and
rearranging gives

g1 ¼
Ð r
�r c

�
j (y) dy�

Ð r
�r c j(y) dy

2rDcinj
� 1, (3:1)
where we have defined γ1 as a measure of how good the
approximation (2.13) is. Therefore, to test the validity of our
hypothesis for predicting the cell surface solute concentration
profile in a single chamber when the inlet concentra-
tion is varied, we evaluated (3.1) for Q ¼ 100ml min�1

and Q ¼ 1000ml min�1 with cinO2
¼ 0:21mol m�3. Figure 8b
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demonstrates that γ1≈ 1 for the majority of these cases, with the
prediction improving for higher inlet concentrations where
cO2 �KO2 and metabolism is approximately constant. The
approximation is weakest for the lowest values of cinO2

where
this criteria is not satisfied. Note that the prediction is better
for the higher flow rate: increasing input flow rate gives rise
to higher cell surface concentrations and so the assumption of
cO2 �KO2 is more accurate in this case.

In certain cases, it may be that the quantity of interest is
the mean cell surface concentration, rather than spatial pro-
files. We have demonstrated that our formula (2.13) extends
to the case of predicting mean concentrations (figure 8c,d ).
Moreover, we have established that there is a linear relation-
ship between the inlet O2 concentration and the mean cell
surface O2 concentration for the majority of inlet O2 concen-
trations considered: the linear relationship breaks down
when cell surface O2 concentrations are sufficiently low that
our approximation cO2 �KO2 is no longer valid. We note
from figure 8c,d that the approximation breaks down at
higher inlet O2 concentrations for the lower flow rate.

To test the validity of our hypothesis for predicting the cell
surface solute concentration profile in chamber n given that
the profile is known in chamber 1, we simulated the environ-
ment in six connected chambers for Q ¼ 100ml min�1 and
cinO2

¼0:21mol m�3. We then used (2.17) to predict cnj (y).
Figure 9 compares the predictions (dashed lines) with the
results obtained from simulations (solid lines) for various
input flow rates. The plots show that the predictions improve
with increasing input flow rate, since the assumption of
constant metabolism is more accurate. The deviation of
the predicted values from the simulated concentrations is
a combination of numerical error and the small errors
associated with the assumptions that have been made in
deriving (2.17). We note that the difference between the
predicted values and the simulated concentrations in each
chamber is less than 1% and this small deviation is, therefore,
considered to be acceptable. As with the single chamber
predictions, our formula holds also for mean cell surface
concentrations and there is a linear relationship between
mean cell surface O2 concentration and chamber number,
provided that cO2 � KO2 .
4. Discussion
Our findings have a number of important implications
that should be considered carefully when deciding on the
operating conditions of perfusion cell culture systems.

4.1. Cell surface flow speed and shear stress critically
depend on the choice of input flow rate

Varying the input flow rate over a realistic range of operating
flow rates gives rise to qualitatively different fluid dynamics
within the chamber and strongly influences the cell surface
flow speed and shear stress levels. This means not only that
the choice of flow rate is critical but also that different
flow rates should be chosen for different applications.
For example, if one wishes to test the response of cells to a
drug where it is known that the cells are exposed to flow
in vivo, then the model presented here may be used to calcu-
late the input flow rate that gives rise to the desired cell
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surface flow speed. For some applications, it may be that the
cells should be exposed to slow-flow, while for other cell
types it may be that higher flow speeds at the cell surface
are desired. Similarly, if it is known that a given cell type is
capable of tolerating a known level of shear stress, then
again the model may be used to select a sensible flow rate
that ensures cell surface shear stress is kept within the
desired range.

4.2. Spatial placement of cells influences the flow
speed and shear stress that they experience

Figure 3c shows clearly that there is a spatial distribution of
shear stress at the cell surface. This means that the choice of
where cells are placed has an impact on the level of shear
stress they will experience. For example, in the case figure 3c,
depending on the application, it may be wise not to culture
cells in the centre of the chamber, due to the peak in shear
stress that occurs there. The spatial distribution of shear stress
changes with input flow rate (see electronic supplementary
material), most substantially between Q ¼ 200–500ml min�1

as a result of the merging recirculation zones. We remark that
the non-monotonic behaviour of the flow speed and shear
stress with increasing input flow rate is not at all obvious and
has only been identifiable through the simulation approach
considered here. For flow rates outside of this range the peak
cell surface shear stress is observed at the centre, whereas for
flow rates within this range the pattern is less predictable.
Therefore, depending on the application it may well be wise
to avoid these flow rates. It is also important to note that the
flow speed (and consequently the magnitude of the shear
stress) decreases as we move down the chamber (figure 3b).
Therefore, one may also change the flow environment the
cells are exposed to by raising the position of the cells in the
chamber. The model presented here may, therefore, be used to
optimize the spatial placement of cells within the chamber.

4.3. Flow rate and Michaelis–Menten parameters
dictate cell surface solute concentrations

Figure 7 highlights that the cell surface solute concentration
is strongly influenced by both flow rate and the cell-specific
M–M parameters. With the exception of the dip between
Q ¼ 200–500ml min�1 (due to the change in fluid dynamics
as described earlier), increasing the flow rate corresponds to
increasing the solute concentration that arrives at the cell sur-
face and is available for reaction. The variation in cell surface
solute concentration across the different cell types confirms
that the M–M reaction at the cell surface also has an important
influence on the cell surface solute concentration. Relationships
derived from themodel, such as those in figure 7, can, therefore,
be usedwhen configuring the input flow rate for experiments in
which the desired cell surface concentration is known.

4.4. Steady-state solute concentrations may be
predicted a priori

In the case of reaction governed by nonlinear saturable binding
kinetics, steady-state free and bound solute concentrations
within the cells may be calculated a priori using (2.10)–(2.12).
Since (2.10)–(2.12) rely only on the parameters kdj and Bj, they
may be used to calculate the steady-state concentrations for
any drug whose interaction with the cells is governed by
nonlinear saturable binding kinetics, given that the drug is sup-
plied as a constant source and diffusion of drug within the cell
region is isotropic. In the case of reaction governed by M–M
kinetics, we have uncovered simple relationships between
inlet solute concentrations and cell surface concentration in
single and connected chambers, provided that cj≫Kj (figures
8 and 9). Our simple formula (2.13) may be used to predict
changes in cell surface solute concentrations when the inlet
solute concentration is altered, while (2.17) may be used to pre-
dict cell surface concentrations in downstream chambers.
These relationships could be extremely useful to help deter-
mine the inlet concentration required to achieve a desired cell
surface concentration, and moreover to decide on a suitable
number of chambers to connect before concentrations fall
below some desired level. Where possible, it is advisable to
stay within the regime cj≫Kj so that the results remain
predictable.

We feel it appropriate to reiterate that a number of assump-
tions have beenmade in thiswork, as outlined in the preceding
text. While the overall conclusions above are generally true, the
quantitative results provided in §3 are specific to the particular
bioreactor that we have simulated and must be interpreted
within the context of the assumptions made. In particular, we
present results only for steady state. Depending on the specific
cell type and application, it may be more appropriate to con-
sider time-dependent solutions, for example, if the quantities
of interest need to be known in the very early stages of culture
under flow. Our results are most applicable when the steady
state (or ‘equilibrium’) conditions are of most interest.
5. Challenges
The focus of this paper has been on usingmodelling and simu-
lation to help inform experimental operating parameters.
However, these two endeavours are, of course, intrinsically
linked. Mathematical and computational models require phys-
ical parameters (e.g. diffusion coefficients and metabolism
rates) and these are not always known to a great degree of accu-
racy. It is particularly common for parameters to be gleaned
from a variety of datasets, where experiments may not have
been performed consistently, nor on the same type of cells or
species. Sensitivity analysis may be used where there is some
uncertainty over parameter values, but this has limitations,
especially when the model results are highly sensitive to
changes in the unknown parameters. Models, such as the one
presented here, are most valuable when used in a predictive
sense. However, before one may gain confidence in the
model predictions, it is crucial that the model is validated.
Therefore, it is critical that in silico tools are compared with
experimental data, even if such data is limited. This can
be challenging for a number of reasons. For example, it
may not be easy (or possible) to take non-destructive measure-
ments (e.g. cellular drug concentrations, O2 concentrations
at the cell surface, spatially varying flow speeds) within
certain in vitro perfusion systems. Advanced imaging
methods can help in this regard, but these may be limited by
the optical properties of the system at hand. Oxygen probes
are available, but again, these cannot easily be used without
disrupting the experiments. We therefore strongly encourage
the development of methods to acquire such data to facilitate
model validation. While the difficulty of providing validation
may be viewed as a disadvantage of modelling, it could
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also be seen as an advantage, i.e. modelling can allow
us to obtain insight into quantities that we cannot easily
measure experimentally.

The real value in modelling lies in the ability to reduce the
number of experiments that have to be performed. For
example, even if a system has been experimentally character-
ized under a given set of operating parameters, it may not be
obvious how the environment changes when these operating
parameters are altered. In this respect, a validated model can
be invaluable, even if the validation is performed over a
limited set of conditions.

The issue ofmodel verification is also highly pertinent in this
field, i.e. ensuring the numerical implementation of the model
is correct. It is tempting to ‘believe’ results produced from com-
putational software. However, great care must be taken to
ensure the correctness and accuracy of the results. In this
sense, mesh sensitivity studies and common-sense checks are
both an integral part of computational modelling. However,
these aspects are perhaps less familiar to non-experts,
underlining the critical role of computational modellers.

These challenges only emphasize the importance of inter-
disciplinarity in this exciting field and that modelling and
experimentation should go hand-in-hand, each complementing
the other.
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