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Network connectivity fingerprints are among today’s best choices to obtain a
faithful sampling of an individual’s brain and cognition.Widely availableMRI
scanners can provide rich information tapping into network recruitment
and reconfiguration that now scales to hundreds and thousands of humans.
Here, we contemplate the advantages of analysing such connectome profiles
using Bayesian strategies. These analysis techniques afford full probability
estimates of the studied network coupling phenomena, provide analytical
machinery to separate epistemological uncertainty and biological variability
in a coherent manner, usher us towards avenues to go beyond binary state-
ments on existence versus non-existence of an effect, and afford credibility
estimates around all model parameters at play which thus enable single-sub-
ject predictions with rigorous uncertainty intervals. We illustrate the brittle
boundary between healthyanddiseasedbrain circuits byautism spectrumdis-
order as a recurring theme where, we argue, network-based approaches in
neuroscience will require careful probabilistic answers.

This article is part of the theme issue ‘Unifying the essential concepts of
biological networks: biological insights and philosophical foundations’.
1. Introduction
In network-centred research, as well as many other fields of neuroscience,
drawing statistical conclusions from brain data is essential to understand
the measurements of the studied phenomenon despite the presence of noise.
Typical examples include inferring whether a given functional brain connection
is strengthened or weakened by administering a certain environmental stimu-
lus, or predicting a clinical diagnosis of a given individual on the basis of
neuroimaging data. In this article, we argue that adopting a Bayesian perspec-
tive on network-based explanation and modelling offers several benefits, which
arise from the ability to coherently handle uncertainty in developing model
predictions about phenomena observed in network circuits.

Bayesian analysis and conceptualization have a long history, with origins in
the eighteenth century [1]. In essence, the Bayesian framework treats all par-
ameters in a given model as random variables and quantifies their uncertainty
using Bayes’ rule. For a model M with parameters θ, this principle indicates
that the prior belief in the probability of the parameters pðujMÞ should be updated
in the light of observed data, y, to derive the posterior distribution over the entire
set of model parameters, p(ujy,M)

p(ujy, M) ¼ p(yju,M) pðujMÞ
pðujMÞ :
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Figure 1. Bayesian model estimation of drug response in four autism popu-
lations based on whole-brain connectivity profiles. Suppose that a new
candidate treatment for autism is being developed, such as a special psychother-
apeutic intervention. The investigator now wishes to know whether there is a
difference in how reliably a favourable treatment response can be estimated
in four different subgroups of autism (e.g. these could correspond to male
and female high-functioning and not high-functioning individuals carrying a
diagnosis of autism) based on inter-subject differences in connectomic finger-
prints. Before acquiring any network coupling measurements of patients
about to undergo the new treatment option, the investigators pre-suppose
that each of the four autism subgroups should be expected to have the exact
same chance of turning out to be a treatment responder. This initial belief is
reflected in four probability distributions with equal height (i.e. mean) and
equal dispersion (i.e. variance) (a)—incorporating fully probabilistic expec-
tations even before any real-world data are considered. After specifying this
assumed prior knowledge of equal response probabilities, the Bayesian model
is updated (parameter updating) by simultaneously integrating the observed
clinical evidence collected from four different subgroups of autism patients to
achieve a compromise between data-independent prior (a) and data-dependent
experimental outcomes (b). In this example, the consequence is that the prior
distributions are carefully adapted in shape—affecting both magnitude and
uncertainty—for each autism subgroup. Importantly, the prior probability dis-
tribution of showing a favourable response to the novel therapy is re-calibrated
in a subgroup-sensitive fashion. After conditioning the model on the actual clini-
cal observations, subgroup 2 turns out to show the highest posterior parameter
distribution. This model solution indicates a strongest chance for the treatment
to be successful, relative to the other three considered patient subgroups. At the
same time, this subgroup posterior parameter distribution features the smallest
posterior variance (i.e. highest precision). The narrow dispersion of the posterior
treatment effect of subgroup 2 indicates that the investigator can be more sure
that the true treatment response probability is close to the estimated treatment
effect (i.e. parameter mean). In stark contrast, subgroup 1 shows the widest
posterior distribution, which makes explicit that the investigators should be
most careful about this estimated therapy response probability. That is, we
do have a specific treatment responsiveness for subgroup 1 (in form a concrete
number); the interval of this posterior parameter distribution, however, also tells
us that a much higher or a much lower probability is quite plausible as well,
which is why the obtained parameter mean should be interpreted with caution.
Note that subgroups 2 and 3 are predicted to show higher treatment response
probability based on connectivity profiles than assumed under the uniform prior
of equal response potential with possible implications for clinical practice, rather
than succumbing to the dichotomic statement that only the posterior response
probability of subgroup 2 is significant and worthy of being reported. Moreover,
the conclusion of two subgroups showing evidence for treatment benefits, yet to
different degrees with different uncertainty, illustrates the important advantage
of Bayesian analysis to allow for fully probabilistic claims in population
neuroscience studies. Adapted from [5, p. 21]. (Online version in colour.)
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The term p(yju,M) denotes the likelihood and specifies a gen-
erative model that describes how the data may have
come about. The denominator is referred to as the marginal
likelihood and is obtained by integrating out the parameters
p(ujM) ¼ p(yju,M)pðujMÞ du. Posterior computation is
typically intractable for all but the simplest models. This
is why posterior parameter estimation often invites the use of
numerical approximations or sampling methods [2,3]. Ready
computability is probably the major hurdle for
more widespread adoption of the Bayesian framework in
network-based approaches.

It is important to recognize that the Bayesian philosophy
of data analysis operates with a deeper andmore universal con-
cept of probability than is assumed by most of the quantitative
frameworks commonly used in many areas of brain network
analysis. In particular, under the frequentist paradigm [4], prob-
ability reflects long-run frequencies of repeatable events (e.g.
‘the probability of rolling a 6 on this dice is 1/6’). Under the
Bayesian paradigm, probabilities reflect degrees of belief in a
given proposition (e.g. ‘there is a low probability that the amyg-
dala will increase functional connectivity 100 times more (or
less) in autism vs. health’), which may not be repeatable. In a
networkmodelling context, investigators routinely resort to fre-
quentist notions, especially for hypothesis testing against a null
distribution, for example, to define the probability that a given
brain region shows more neural coupling strengths than would
be expected under the null hypothesis of baseline activity.

According to the frequentist philosophy, thedata-generating
mechanism underlying observed network dynamics is fixed
and only the observedmeasurements from biological networks
have a probabilistic component. Inference about the model is
therefore indirect, quantifying the agreement between the
observed biological data and the data generated by a putative
model (for example, the null hypothesis). In the Bayesian phil-
osophy, instead, inference quantifies the uncertainty about the
data-generating mechanism by the prior distribution and
updates it with the data observed from biological networks to
obtain the posterior distribution (figure 1). Inference about the
model is therefore obtained directly as a probability statement
provided by the derived posterior parameter distributions.

Over the past decade, the alternative to sampling-based
approaches, namely, variational Bayes approaches, has domi-
nated in neuroimaging analyses of (effective) connectivity.
One example of this approach is dynamic causal modelling
(DCM), a prominent Bayesian method for characterizing
imaging time series [6,7]. Crucially, variational approaches
avoid the computational cost of sampling by assuming a
particular form for the posterior density [8–11]. This leads to
analytic update equations that allow people to perform effi-
cient and quick Bayesian inference on the parameters of their
models. Furthermore, variational Bayes considerably finesses
the problems of Bayesian model comparison, selection and
reduction, to which we will return below.

Direct quantification of uncertainty is the central motif of
the Bayesian framework [12]. Bayesian modelling aims to
coherently incorporate uncertainty throughout the analysis
such that uncertainty in the parameter estimation is carefully
propagated through the generative model to form predictions
about the biological system under study. Mathematical
proofs show that probability theory is a unique way that this
can be achieved, on the basis of a simple and common-sense
set of axioms [13,14]. In short, any system of reasoning that
coherently manages uncertainty for complex biological
systems must be consistent with the rules of probability.
As such, when carrying out Bayesian analysis of biological
networks, the analyst naturally goes beyond point estimates
of parameters, such as a value indicating the network
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connectivity strength between the amygdala and the prefrontal
cortex. Rather than a single number (e.g. one Pearson cor-
relation value of ρ = +0.27), full probability distributions
are placed over all quantities in network modelling which
are updated in the light of the brain data at hand. Based on
the built Bayesian model, new predictions can be formed
for incoming data points by averaging (i.e. integrating over)
the joint posterior distribution over all model variables
on the table.

A defining characteristic of the Bayesian philosophy is that
this modelling regime requires the specification of a prior dis-
tribution, reflecting the beliefs about the model parameters
before observing any data on brain networks. Thus, each
model parameter enters with a fully specified probability
distribution, whether or not biological observations have
already been brought into play. If prior information is available
(e.g. the topology of structural connectivity constraining func-
tional connections, which functional connections describe
intra-network versus between-network connections or
whether connections between subcortical areas may be
harder to measure than those between cortical areas), this
can be incorporated in the model. This helps guide the par-
ameter updates to biologically plausible ranges in the face of
new observations from brain networks, while still permitting
solutions that exceed the pre-set ranges to the extent supported
by the data. Even in the absence of definite strong, biologically
grounded a priori information, generic priors can be employed
to exert a regularizing or smoothing effect on the parameter
estimation (e.g. to prevent overfitting connectomic profiles of
a subject sample that may not extrapolate well to the broader
population). However, the specification of the priors over
model parameters is often a point of criticism for Bayesian
methods. This is because it can often be difficult to specify
informative priors if the number of variables is large or the
dependencies between them are complex, such as in many bio-
logical systems [15]. Moreover, it is often not straightforward to
specify priors that convey a lack of prior knowledge [4,16].
Nevertheless, it is important to recognize that any network
modelling framework is predicated on certain assumptions.
The fact that the Bayesian approach forces these to be made
explicit by the investigator can be viewed as a strength.
2. Notions of probability: methodological
uncertainty and biological variability

The type of probability that is actually being modelled is an
important distinction that is often under-appreciated across bio-
logical sciences and in network-based research on the brain in
particular. Under the Bayesian conceptualization, probabilities
can service multiple different purposes in network modell-
ing [4]: probability may be treated in a ‘phenomenological’
manner to quantify natural biological variation in the brain
data (e.g. how different are amygdala–prefrontal connections
across subjects in the population). However, probability can
also be framed in an ‘epistemological’manner to quantifymod-
elling uncertainty in estimating parameter values (e.g. how
unsure arewe about different amygdala–prefrontal connections
due to finite sampling from biological networks).

This consideration reflects the distinction in statistical
machine learning [17,18] between ‘aleatoric’ uncertainty,
which reflects inherent variation in themeasured phenomenon
in biology that cannot be reduced with acquiring more
observations of the biological system, and ‘epistemic’ uncer-
tainty, which reflects uncertainty in our knowledge of model
parameters and data densities can be reduced by adding
more observations. Unfortunately, this nomenclature con-
founds the notions of variability and uncertainty described
above. To simplify the discussion, we henceforth distinguish
between (biological) variability and (methodological) uncer-
tainty. For completeness, we note that in some cases it may
be desirable to further decompose epistemic uncertainty (e.g.
as a result of scanner noise or interpolation error).

Importantly, most dominant frequentist approaches cur-
rently used for brain network modelling conflate variability
and uncertainty to a certain degree. Frequentist approaches—
at best—provide post hoc estimates of model uncertainty using
supplementary techniques such as bootstrapping [19]. For
most network-focused applications, accurately quantifying
variability is of primary explanatory interest, while minimizing
or properly accounting for uncertainty. Indeed, in the physical
and life sciences, uncertainty quantification is now regarded
as one of the most important estimation challenges (e.g.
[20–22]). This is especially the case in weather prediction and
climate change [23]. It is also an important aspect of Bayesian
model comparison and the way research hypotheses are
tested within a Bayesian framework.

To provide a concrete example from imaging neuroscience,
normative modelling is a recently introduced technique that
aims tomap centiles of variation, such as the functional connec-
tivity strength between amygdala and prefrontal cortex, across
a reference cohort in an analogousmanner to the use of growth
charts in paediatric medicine [24,25]. For example, by plotting
biological parameters as a function of age (or other clinically
relevant variables), normative modelling enables statistical
conclusions as to where the network coupling profile of each
individual participant falls within the population range. This
modelling tactic can therefore be used to chart variability in bio-
logical networks relevant to many disorders including autism
and detect the biological signatures of brain disorders in an
anomaly detection setting [26].

In such applications, the primary interest is in modelling
inter-individual variation across the cohort while accounting
formodellinguncertainty such asnoise intrinsic to the functional
magnetic resonance imaging (fMRI) signals from brain net-
works. For such neuroscience applications, the ability to
jointly model different sources of variation and appreciate
uncertainty in the same modelling instance is an important
advantage of the Bayesian culture. For example, using Bayesian
methods, the investigator canuse separatevariance components
to model variation in age-related connection strength across a
population cohort and the uncertainty in that estimation, due,
for example, to data sampling density (e.g. fewer female sub-
jects, or less high-functioning patients). By contrast, classical
methodsmayalsobeused for normativemodelling.Confidence
intervals for the centiles of variation could be derived using
bootstrapping [27]. However, bootstrapped frequentist models
cannot easily be used to draw probabilistic conclusions on
new, unseen connectomic data. In Bayesian analysis instead,
the directly estimated posterior distributions qualifying each
model parameter can be readily used to form fully probabilistic
predictions, such as on an individual’s diagnosis for autism on
the basis of connectome fingerprints.

The value of Bayesian analysis for the goal of delineating
quantities of variability and uncertainty in connectivity
analysis has been advertised through a body of literature
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(e.g. [15,28–35]). More specifically, in the context of brain net-
works, Bayesian methods have been applied for improving
the estimation of whole-brain connectivity profiles [36,37] in
finding parcellations of different brain networks [38], for
causal inference in fMRI [39] and for multi-modal data
fusion [40]. These existing neuroimaging applications have
largely focused on datasets of modest size, for which Baye-
sian methods are well suited owing to the regularizing
effect exerted by the imposed priors and the guidance of par-
ameter updates by existing neuroscience knowledge. As such,
generic priors can be used to de-prioritize exceedingly large
model parameters to discourage unrealistic model parameter
estimates. Such smooth bounding of suboptimal parameter
candidates during model estimation helps guard against
overfitting to seemingly coherent patterns in the connectivity
fingerprints of the subjects. In addition to previous appli-
cations, we argue here that Bayesian methods also provide
an excellent tool for large, population-based cohorts, which
are gaining centre stage in clinical neuroimaging [41–45].

There are several reasons for the suitability of the Baye-
sian framework in the ‘big data’ era (cf. [46,47]): the ability
to separately quantify variability and generate explainable
insight in the natural phenomenon under study and uncer-
tainty in the model under use is likely to be instrumental
to understanding inter-individual variations across large
cohorts (cf. above). Its importance is increasingly recognized
in intelligence prediction based on connectivity fingerprints
and other successful examples [24,48–50]. Bayesian methods
are also appealing because they provide estimates of the
plausible range of a parameter value given the brain data.
By contrast, in large samples, classical null-hypothesis testing
methods can easily reject the null hypothesis for nearly all
values (e.g. all network nodes in a classical frequentist con-
nection-wise analysis), even though the underlying effects
are of negligible magnitude (see [31]). It should be obvious
that quantifying methodological uncertainty is critical for
optimal decision-making in medicine [51]. For example, for
predicting an autism diagnosis on the basis of MRI scans,
where uncertainty arises at multiple levels: not only in the
diagnosis itself (i.e. at the level of clinical presentation),
but also at the level of the underlying biology (e.g. the
connectivity strength in a network modelling context).

In this paper, we will provide a conceptual overview of
the aim and utility of the Bayesian modelling framework in
clinical neuroscience, focusing on the use of such methods
for generating explainable insights on connectomics. Func-
tional connectivity fingerprints are particularly valuable for
capturing salient characteristics of momentary states of con-
scious awareness and for predicting individual differences in
cognition [43,48,52]. These analytical techniques are widely
applicable to predicting symptomatology across many clinical
populations [53,54].
3. Hierarchical Bayesian modelling: appreciating
covariates of population stratification

The boundary between signal and noise is often hard to
identify, let alone to know prior to data analysis. It is
common practice in many empirical sciences, including net-
work analysis in imaging neuroscience (e.g. [42,43]), to
adjust for nuisance variance in the data in two separate
steps. In a first modelling step, variation that can be explained
by nuisance covariates is removed, typically using linear-
regression-based deconfounding. In a subsequent modelling
step, the remaining variation in the data is then fed into the
actual statistical model of interest used to draw neuroscienti-
fic conclusions on brain network phenomena. As such, the
final explanation is typically grounded in model parameter
estimates from a version of the original data, in which any
linear association with the considered nuisance covariates,
such as age- and sex-related differences between individuals,
has already been comprehensively removed beforehand. In
this approach to network modelling, the implicit but critical
assumption is that any target effects of interest in the brain
data, such as for the goal of classifying neurotypicals from
individuals with a diagnosis of autism based on connectomic
fingerprints, are treated largely separately from what is
measured by the nuisance covariates.

In many brain disorders, including autism, the distinction
between signal and noise may be more ambiguous than
established analysis workflows belie. Age, sex and motion
are routinely chosen as nuisance covariates. However, the
majority of autism samples include 3–5 times more males
who carry a diagnosis of autism than females [55–57], reflect-
ing differences in prevalence in the wider population. While
several reasons can be brought forward [58–61], it has been
speculated that the discrepant prevalence of autism may
point to a more profound distinction in the aetiology of the
disease, potentially linked to its triggering life events, under-
lying pathophysiological mechanisms, and ensuing coping
strategies. Preceding removal of sex-related signal in the
data can also remove information on and preclude insightful
explanations about sex-specific disease pathways in autism or
lead to spurious findings or incorrect conclusions [42,62]. Let
us consider a hypothetical scenario where amygdala–
prefrontal connectivity is pathologically increased in male
patients, but pathologically decreased in female patients.
Here, a preceding deconfounding step for sex would largely
remove this sex-dependent aspect, which, however, truly is a
characteristic of disease biology, from subsequent statistical
analysis and scientific conclusion.

In a similar spirit, the age trajectories of male and female
individuals with autism, including the manifestations in
underlying network biology, may be different in multiple
ways. For instance, a commonly described clinical feature
of autism is that females are more often diagnosed later
in life [61]. Better coping strategies andmore successful camou-
flaging behaviour in women with autism is a common
explanation for this age-related divergence [63]. Consequently,
removing age-related variance in brain networkmeasurements
as a ‘data preprocessing’ routine, expected by peer scientists
and paper reviewers in the community, may systematically
withhold insights that can teach us something about the age-
dependent development of autism in different strata of the
population. We therefore argue that it is often more pertinent
tomodel shared variance explicitly, such as in jointlymodelling
age-dependent connectivity variation and autism-dependent
variation in the functional connectome, for which the Bayesian
framework is well suited. For example, Bayesian analysis could
answer a question such as ‘How certain arewe that amygdala–
prefrontal connectivity strength is similar or dissimilar in cer-
tain subgroups, such as when stratifying by sex or lifespan?’.

Rather than resorting to a deterministic decision in a black-
or-white fashion, Bayesian hierarchical modelling (BHM) is a
natural opportunity to quantify the separate contributions by
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answering which sex-, age- and motion-related components in
network connectivity couplings are related to autism-related
model parameters with which magnitude and how certain
the investigator can be about it. A set of sources of variation
in the brain data can be directly integrated in a single-model
estimation, instead of carrying out initial confound and later
effect analyses (cf. above). Said in yet another way, BHM
allows explicit modelling of the group differences in functional
brain connections in disease versus control groups as linked to
the question of how much any group difference is influenced
by age, sex and motion variation in the functional connectivity
data by hierarchically accounting for dependencies between
sources of variation.

Removing age, sex and motion-related information from
the data in an isolated modelling step hides important infor-
mation that can be instrumental in guiding the parameter
estimation of themodel actually used to gain biological insight.
While this goal can also be accommodated in a non-Bayesian
setting (e.g. using linear mixed effects models), the Bayesian
formulation is appealing because it coherently propagates
uncertainty throughdifferent levels of themodel and can there-
fore more readily disentangle different sources of variability
and uncertainty.

One prevalent form of BHM is known as parametric
empirical Bayes (PEB) [64,65]. This now underwrites most of
the between-subject analyses using DCM. In brief, PEB rests
on a hierarchical Bayesian model in which random effects at
the within- and between-subject level can be accommodated.
Usually, these hierarchical models are based on general linear
models at higher levels; hence they are parametric. Below, we
will consider non-parametric empirical Bayesian models.

Motion during brain scanning is one of the measurements
that is widely used to remove variation from connectivity data,
before starting the actual functional connectivity analysis.
A few years ago, neuroimaging investigators reported
a seemingly distinctive pattern of maturing functional
network fluctuations with weakening short-range and grow-
ing long-range connections that slowly change during child
development [66,67]. Investigators speculated that these find-
ings mean that normal children start life with prominent
short-range connectivity, which thenweakens over the lifespan
in healthy controls, and vice versa for long-range connectivity
[68]. Individuals carrying a diagnosis of autism were then
found to showmore short-range and fewer long-range connec-
tivity links [69,70], especially in children. Unfortunately, it later
became apparent that excessive head movements during brain
scan acquisition reliably entailed artefactswith these same con-
nectivity patterns in functional brain connectivity, previously
thought to reflect impaired brain maturation [71,72], which
entailed several retractions of high-profile papers (https://
www.spectrumnews.org/news/movement-during-brain-
scans-may-lead-to-spurious-patterns/).

On the other hand, at the behavioural level, it is well
established that people with a diagnosis of autism exhibit
greater degrees of movement than healthy controls [73,74].
As such, unusually high body movement can be argued to
be a hallmark feature of autism, but is now recognized to
also be a reason for spurious functional connectivity findings.
Put differently, it is hard to give a single clear-cut answer as to
which aspects of functional connectivity signals correspond
to motion-related noise and which aspects correspond to bio-
logically informative signals in functional connectivity
synchronization between brain regions. With and without a
given adjustment for motion-related influences, distinguish-
ing functional connectivity fingerprints in autism reflect
different statistical questions [75]. These data modelling scen-
arios correspond to two equally valid questions depending
on the scientific purpose. Adjustment relates to partitioning
a population into groups that are homogeneous according
to the deconfounding variable—there may be no single
right or wrong. Bayesian analysis can help in quantifying
uncertainty via joint probability distributions that explicitly
incorporate how body motion measurements are related to
network connectivity strengths and to other measurements
of interest in an integrated approach.

The inferential grip of insights about brain network
coupling can thus be enhanced by findings with models
acknowledging variation at different scales. In this way, BHM
allows us to ask more ambitious questions using hierarchical
population models of brain connectomics in strata of individ-
uals. Young people with autism are different from old people
with autism as reflected in their connectome profiles. An
additional and not mutually exclusive source of variation is
that male autism is different from female autism, conjointly
across lifespan.We can estimate differences in network connec-
tivity between autism and control groups by modelling
hierarchical dependencies between multiple sources including
covariates, like age, sex and motion, with parameters corre-
sponding to network connectivity measurements. This multi-
level modelling set-up allows partial pooling of information
between measurements suspected to exert confounding influ-
ence and genuine measurements of brain signals. For
instance, neuroscientists may find that increased amygdala–
prefrontal connectivity in autism is particularly characteristic
for females who are in early childhood and tend to move
their head little in the brain scanner as part of a joint posterior
parameter distribution incorporating all measured sources of
variability. Additionally, sex imbalance is often encountered
in population samples of autism which can reflect the popu-
lation prevalence or explicit exclusion of female cases.
Imbalance in the considered participants in each group can
be explicitly handled by BHM, with appropriate accounting
for uncertainty. To adjust for these differences in naturally
occurring group size, we can avoid being misled in the way
that we typically would be by common single-level models.
As such, the often made a priori distinction into signal and
noise, as a separate preprocessing step, can be relaxed by com-
bining and integrating statistical evidence from disparate
sources in a single probabilistic model estimation [76].

As a more concrete scenario for a key strength of flexible
Bayesian hierarchical approaches, age, sex and motion may
be modelled in well-defined nested relationships in order to
make predictions from brain connectomic variation. It is con-
ceivable that the tendency for body motion in the scanner is
a function of age and differs by sex. As such, the investigator
may wish to specify a generative model, where male and
female participant prior distributions are at the top level,
from which probabilistic distributions for age decades are
sampled that, in turn, give rise to the (age/sex-dependent)
motion covariate distributions. During model estimation, par-
tial pooling between the age, sex and motion dependencies
calibrate parameter shrinkage in a data-dependent fashion to
achieve optimal prediction performance. The obtained pos-
terior parameter distributions then allow the investigator to
draw careful conclusions about the multi-level relationships
between effects from several inter-dependent sources of age,
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based predictions. Importantly, such joint modelling of sources
of randomness is challenging in classical (non-Bayesian)
general linear models.
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4. The importance of saying no: uncertainty
estimates for single-subject predictions

As one of various supporting hints for the biological basis of
autism, the integrity of the amygdala in the limbic network
was repeatedly highlighted to differ in patients with autism,
which is thought to play a role in impaired social interaction
[77]. Statistically significant differences in the amygdala in
autism led to varying reports in different patient samples
[78,79]. Thus, this disease manifestation does not appear to
be present in every single autism patient, nor is it consistently
present on average in every patient sample recruited for studies
that compare healthy and diagnosed individuals. Asking
whether or not a strict categorical difference exists in a specific
brain region in individuals on the autism spectrummay simply
be a suboptimal analytical approach for the job.

Put differently, any modelling technique that is designed
to give categorical black-and-white answers may be inap-
propriate for probing disease features that are (i) present in
autism patients to varying degrees (i.e. reflecting biological
variability), (ii) difficult to detect from the noisy behavioural
and/or functional connectivity measurements that are avail-
able (i.e. reflecting epistemological uncertainty), or both. If
these two sources of variation have played a role in amygdala
studies in autism then using analysis approaches that can
only make raw statements declaring presence or absence of
an effect may be inherently ill-suited [80]. If the network
phenomenon under study is highly variable across people
and/or tricky to quantify methodologically, then investi-
gators in one laboratory may conclude the presence of a
difference in connectivity between amygdala and prefrontal
cortex on their sample, while another research group study-
ing a different patient sample with the same research
question may conclude the absence of group-related connec-
tivity differences. While the answer is seemingly certain in
each of these studies, the uncertainty in whether or not an
amygdala effect is present in the limbic network of autists
comes out at another end [81]: lacking reproducibility
across different studies that have carried out a dichotomic
test for statistically significant versus insignificant amygdala
alterations in autism samples [82].

In such cases, the conventional frequentist 95% confi-
dence intervals are not the solution that many investigators
desire. It is common to hear that a 95% confidence interval
means that there is a probability 0.95 that the true parameter
value lies within the interval; that is, that we do not have
enough evidence to reject the null hypothesis of equal amyg-
dala volume in both groups. In non-Bayesian statistical
hypothesis testing, such a statement is never correct, because
strict non-Bayesian inference forbids using probability to
measure uncertainty about parameters like a measure of
amygdala connectivity in healthy versus diseased individ-
uals. Instead, one should say that if we repeated the study
and analysis of a large number of different samples, then
95% of the computed intervals would contain the true par-
ameter value. The classical 95% confidence interval only
takes its meaning in the hypothetical long run of repeatedly
analysing always new samples of controls and patients.
Then we expect to be mistaken about the presence or
absence of amygdala effect in only 5%, that is 1 in 20, of
the conducted network connectivity studies.

Aparticularly clear illustrationof this point is Lindley’s para-
dox (https://en.wikipedia.org/wiki/Lindley%27s_paradox).
It describes a situation in which a classical statistical analysis
suggests a very significant effect, despite the fact that the Baye-
sian model evidence for the null hypothesis or model is far
greater than the alternative. This paradox explains the dangers
of over-powered studies that can become too sensitive to trivial
effect sizes, while, in a Bayesian setting, they would provide
evidence for the null hypothesis.

Rather than forcing definitive answers on the presence
against absence of subtle amygdala effects using null-
hypothesis statistical significance testing, Bayesian analysis
fully embraces unavoidable variation as an integral part of
model building, estimation and interpretation [2]. In the
Bayesian paradigm, each component of the model has a fully
specified probability distribution, before and after seeing the
brain data. As a consequence, a Bayesian model estimating
differences in amygdala connectivity in healthy versus autistic
individuals naturally provides estimates of the degree of
difference at the phenomenological level as well as estimates of
the modelling uncertainty at the epistemological level. Any
amount of divergence between 0 (no difference) and 1 (differ-
ence) is a possible, legitimate and interpretable result in the
Bayesian posterior parameter estimate, while fully accounting
for uncertainty in the parameter estimation.

In this way, the Bayesian modelling regime offers rigorous
statements on how much an explanation on a given group
difference in the amygdala is justified in the patient sample
at hand. The width of the corresponding parameter posterior
estimate can be narrow to indicate high certainty in the
obtained group difference (cf. figure 1). By contrast, the pos-
terior distribution can be widely spread out to indicate low
methodological certainty and thus limited neuroscientific
trustworthiness of the found parameter value reflecting amyg-
dala coupling difference. Taken together, Bayesian modelling
directly provides a confidence judgement about each quantity
on the table. For example, it allows statements such as: ‘under
the model, there is a 95% probability that amygdala connec-
tivity to other networks differs between individuals with
autism and controls’. If the evidence for the tested difference
is ambiguous, we want this to be the result of the analysis, so
that we can align the strength of our conclusions with the
certainty that the model can afford.

Most modelling approaches following the frequentist phil-
osophy have a harder time telling the investigator when the
modelling result is unsure or not. For example, linear support
vector classifiers or linear discriminant analysis can be applied
to connectomic brain data to vote for autism, rather than con-
trol, based on a brittle 51% or a solid 98% probability for
evidence of group difference in the amygdala. In other
words, Bayesian analysis frameworks are a rare opportunity
where the resulting model solution ‘knows when it does
not know’. Moreover, in null-hypothesis statistical testing,
the probability of detecting an effect (i.e. statistical power)
increases with increasing sample size, even though the effect
size (e.g. in terms of group differences in a point estimate for
a given parameter) does not [83]. Bayesian modelling does
not suffer from this shortcoming for the reasons we have
outlined above.

https://en.wikipedia.org/wiki/Lindley%27s_paradox
https://en.wikipedia.org/wiki/Lindley%27s_paradox
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Another key benefit of being able to say ‘None’ is that one
can compare the evidence formodelswith andwithout particu-
lar parameters. This affords a very simple form of Bayesian
model selection or structure learning’ namely Bayesian model
reduction (https://en.wikipedia.org/wiki/Bayesian_model_
reduction). Using the variational procedures mentioned
above, this leads to fast schemes for comparing thousands of
models in which various combinations of parameters are
‘turned off’ with appropriate priors.

The ability to say ‘None’ when the investigator asks for
whether a group difference either exists or not will probably
turn out to be crucial in our efforts towards precision medicine
[84–86]. As Bayesianmodels are fully probabilistic by construc-
tion, brain data from a new incoming individual, such as brain
scanning yielding amygdala connectivity measures, can be
propagated through the already-built model into a probabilistic
prediction for the single individual at hand. Adding such
information can be crucial in a variety of settings in neuro-
scientific research and clinical practice. First, generating
single-subject predictions in a patient may yield different
levels of certainty in assessments of autism symptoms related
to language, motor behaviour, IQ or social interaction
capacities. For example, individualswho are confidently classi-
fied may have more severe symptoms in a particular domain,
while others that are less confidently classified may be more
mildly affected. Separate judgements on the certainty of predic-
tive conclusions in each of these symptom domains may turn
out to characterize different types of autism in the spectrum,
such as high-functioning autism. Second, along the life trajec-
tory, different symptom dimensions of autism may turn out
to be predictable based on brain network measurements with
higher or lower confidence, which may turn out to be charac-
teristic for developmental periods in autism, or specific for
atypical cases or different subtypes of autism. For instance, in
women with autism, typically better camouflaging of social
deficits [63,87,88] may lead to social impairment predictions
that have non-identical confidence in men with autism.
Third, uncertainty is undoubtedly a key asset of treatment
response prediction to choose therapeutic interventions tai-
lored to single individuals. In this context, models predicting
which treatment option to choose based on an individual’s
connectomic profile will be all the more useful in clinical prac-
tice, if such algorithmic recommendations also carry forward
information on the forecasting confidence.
5. Disease subtyping: towards probabilistic
intermediate phenotype discovery

A key challenge in the study of most psychiatric disorders,
including autism, is that individuals with the same clinical
diagnosis vary considerably from one another in terms of
clinical phenotype and underlying network biology. This
has led to some investigators proposing that it may be prefer-
able to consider the ‘autisms’ [69]. Many studies have aimed
to dissect the clinical phenotype of autism (e.g. [89,90]), for
which functional connectivity provides promising candidate
features (e.g. [91]). Moreover, since atypicalities are often
complex and multifaceted, the features used for this purpose
are often high-dimensional (e.g. consider even more whole-
brain nodes in functional connectivity matrices) and/or
multi-modal (e.g. combine measures derived from structural
and functional connectivity).
In general, the goal of such connectome-based studies is to
derive the latent structure underlying the clinical phenotype
(e.g. partitioning the cohort into subtypes) on the basis of psy-
chometric or biological variables, while accounting for
nuisance variation. There are many ways that this can be
achieved, including classical clustering techniques and matrix
factorization techniques such as non-negative matrix factoriz-
ation (NMF) and independent components analysis (ICA).
Briefly, clustering approaches focus on finding subtype clusters
in the data, whereas matrix factorization approaches focus on
finding useful decompositions of a data matrix under various
assumptions. This can be used, for example, to find latent fac-
tors that may overlap across individuals, in that any given
individual may express multiple latent factors [92]. While
these approaches are widely applied in a classical frequentist
context, Bayesian variants have also been developed. In
addition, highly promising Bayesian ‘non-parametric’ cluster-
ing and matrix factorization approaches have been developed
such as Dirichlet process mixtures (DPMs) (Chinese restaurant
processes) and the ‘Indian buffet’ process (IBP). Adopting a
Bayesian approach to such problems confers many benefits,
including providing good control over latent representations
of the data, thereby helping to attenuate problems with high-
dimensional estimation, providing predictive intervals
around parameter estimates and predictions and providing
flexible noise models for different forms of data. Moreover,
Bayesian models are always generative in the sense that they
always provide a model for how the brain connectivity
measurements may have been generated. Collectively, such
Bayesian approaches are increasingly applied in clinical and
neuroimaging contexts [38,40,93,94].

A key problem in most classical stratification techniques is
the issue of model order selection, or in other words, deter-
mining the optimal number of clusters or latent factors for
the data at hand [95]. For example, ‘How many subtypes of
autism can be distinguished in a given clinical dataset
based on brain connectivity profiles?’. This is a notoriously
difficult problem in classical statistics for which no uniquely
optimal solution has imposed itself [96,97], leading to sugges-
tions that model order selection is perhaps sometimes largely
a matter of taste [98]. There are many heuristic approaches for
this problem, but these are subject to difficulty in practice.
Additionally, choosing between a variety of viable model
order selection criteria, which are by themselves objective,
still amounts to taking a subjective choice on the number of
latent factors best supported by the data. Different cluster
validity criteria often give different answers or do not indicate
a clear preference for one model order over others [99], nor
whether a given clustering solution explains the data better
than a continuous model (i.e. with no clusters [100]). This
has contributed to inconsistencies in the clinical stratification
literature such that there are no consistently reported sub-
types for autism [101] or indeed any psychiatric disorder,
despite decades of effort [102].

Above, we considered parametric empirical Bayesian
models [65] as prevalent examples of hierarchical Bayesian
modelling. The use of Bayesian model comparison and
reduction to prune these models provides an efficient way to
test hypotheses about the role of any particular brain region
can be associatedwithmany other connections. A similar func-
tionality can be afforded by Bayesian non-parametric
approaches. These provide an appealing solution to this pro-
blem because they can automatically adjust the model

https://en.wikipedia.org/wiki/Bayesian_model_reduction
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complexity (e.g. number of clusters or latent factors) on the
basis of the data at hand. In other words, non-parametric
models allow the flexibility to grow with the number of data
points used for model building. The simplest examples of
Bayesian non-parametric models are Gaussian process
models [103], which are widely used for nonlinear regression
and have been used in normative modelling approaches
described above. In a similar manner, DPM [104,105] and
IBPs [106] provide an elegant potential solution to the problem
of model order selection in clustering and matrix factorization,
respectively. For example, the DPM model can be viewed as a
clusteringmodel where the number of clusters is bounded only
by the sample size, effectivelymaking theDPMan infinitemix-
ture model [107]. This has already been shown to be useful in a
recent neuroimaging study on autism [89]. As noted, a very
appealing feature of this model is that it is self-calibrating in
that it allows the optimal model order (i.e. the number of clus-
ters) to be automatically derived from the data while allowing
the model order to grow with more data (i.e. increasing rep-
resentational capacity). In practice, the number of clusters
often grows sublinearly with the number of observations
[105]. At the same time, by computing (or approximating)
the full posterior distribution over the model parameters, this
approach helps to attenuate overfitting. This non-parametric
clustering approach has clearly desirable features for the strati-
fication of psychiatric disorders such as autism in large data
cohorts. Particularly, as the size of the available datasets
grows (e.g. through larger consortia), such models offer the
ability to produce increasingly more fine-grained fractiona-
tions of the clinical phenotype. Similarly, in the context of
brain networks, this approach has been shown to be useful
for automatically parcellating brain networks into component
regions [38].

A more recent addition to the Bayesian non-parametric
toolbox is the ‘Indian buffet’ process (IBP) [106]. The name
is derived by analogy to the ‘Chinese restaurant process’ for-
mulation of Dirichlet process mixtures (see [108]). The IBP
differs in that it does not assume that a single class is respon-
sible for generating each data point (i.e. it does not provide a
hard clustering solution). Rather, it allows each data point to
express multiple features simultaneously, potentially reflect-
ing multiple causes. While this approach is yet to see
extensive application in brain connectomics, IBPs have been
shown to provide an elegant way to model comorbidity in
psychiatric disorders, where each individual expresses
multiple latent factors to varying degrees [93].

The key advantage of Bayesian techniques for model
order selection in brain network modelling in health and dis-
ease is that they provide a formal framework for reasoning
about model structures and deducing the plausibility of
different candidate structures in view of the data at hand
(e.g. [109,110]).
6. Conclusion
In this conceptual overview, we have provided a pitch for the
Bayesian perspective on modelling biological network cir-
cuits in the healthy brain and their perturbation in autism
spectrum disorder. There are many different ways in
which adopting a Bayesian philosophy to analysis and
interpretation can open new windows of explanation for
neuroscience investigators building on population neuro-
science initiatives like UK Biobank, CamCAN or the
Human Connectome Project (e.g. [111]).

These analysis techniques provide an appealing inter-
pretation of probability in terms of degrees of belief in a
proposition, which is a more general notion than the more
restricted notion of reasoning about long-run frequencies of
repeatable events; they provide analytical machinery to separ-
ate (methodological) uncertainty and (biological) variability
along with a calculus for reasoning about both in a coherent
manner; and they usher towards avenues away from classical
null-hypothesis significance testing, which is particularly valu-
able in data richness, and may contribute to overcoming the
current reproducibility crisis in biomedicine. Finally, Bayesian
methods afford estimates of uncertainty around all model par-
ameters at play and can hence form predictions about single
individuals by appropriate handling of all considered sources
of variation in network approaches. Their value resides for
instance in explaining brain network connectivity at different
hierarchical scales in the same modelling instance. Promoting
such approaches to uncovering key features of biological net-
works can bear further advantages in the context of data
fusion, individual prediction, and subgroup stratification of
cohorts, and for precisely quantifying statistical differences
between experimental cohorts. We anticipate that in the
coming years, the Bayesian arsenal will be endorsed for appli-
cations in network-focused neuroscience studies more than is
currently the norm.
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