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Network explanations raise foundational questions about the nature of
scientific explanation. The challenge discussed in this article comes from
the fact that network explanations are often thought to be non-causal, i.e.
they do not describe the dynamical or mechanistic interactions responsible
for some behaviour, instead they appeal to topological properties of network
models describing the system. These non-causal features are often thought to
be valuable precisely because they do not invoke mechanistic or dynamical
interactions and provide insights that are not available through causal expla-
nations. Here, I address a central difficulty facing attempts to move away
from causal models of explanation; namely, how to recover the directionality
of explanation. Within causal models, the directionality of explanation
is identified with the direction of causation. This solution is no longer
available once we move to non-causal accounts of explanation. I will suggest
a solution to this problem that emphasizes the role of conditions of
application. In doing so, I will challenge the idea that sui generis mathemat-
ical dependencies are the key to understand non-causal explanations. The
upshot is a conceptual account of explanation that accommodates the possi-
bility of non-causal network explanations. It also provides guidance for how
to evaluate such explanations.

This article is part of the theme issue ‘Unifying the essential concepts of
biological networks: biological insights and philosophical foundations’.
1. Network explanations and evaluations of model aptness
for explanation

We are often interested not only in prediction but in understanding what
is responsible for the behaviour, pattern or phenomenon that we are interes-
ted in; we are interested in explanations. Scientific explanations based on
network models bring to the surface foundational questions about the nature
of scientific explanation.

On the one hand, many applications of network models appear explanatory
while not providing causal mechanistic information. For example, Huneman [1]
and Kosti�c [2] both argue that network models are sometimes genuinely expla-
natory but not by providing information about causal processes. Instead, they
argue, network models sometimes derive their explanatory power from topolo-
gical properties of the network model. Kosti�c [2, pp. 80–81] gives an example of
explanation using Watts & Strogatz’s [3] small-world graph model and the
spread of infectious disease.
In topological explanation, the explanatory relation (the relation between the explanans
and explanandum) stands between a physical fact or a property and a topological prop-
erty. In the Watts & Strogatz [3] example, we have seen that the explanation of the
physical fact is a function of the system topology, i.e. in this example, small-world
topology shortens the path lengths between the whole neighbourhoods, and neigh-
bourhoods of neighbourhoods and in that way the infectious disease can spread
much more rapidly.
These types of examples push towards regarding network models as explana-
tory of physical facts in ways that do not fit with taking explanations to provide
information about causal dynamical or mechanistic interactions.
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Figure 1. A simplified modelling schema showing four types of dependence.
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On the other hand, a common way to distinguish mere
predictions from explanations is to distinguish between
mere correlations and causation. In particular, many philoso-
phical accounts of scientific explanation of physical facts rely
on the directionality of the causal relation (from cause to
effect but not vice versa) to account for the directionality of
explanation and to distinguish mere prediction from expla-
nation.1 Once we allow non-causal network explanations of
physical facts we face the difficulty of distinguishing explana-
tory from non-explanatory network model applications in
some way that allows us to recover the distinction between
mere prediction and explanation. Craver [6, p. 707] stresses
this challenge (taking it to push against recognizing network
explanations as a type of non-causal explanation).2
Types 1–3 are dependencies involved in the modelling process while type 4 is
the dependence that is the target of the model. The arrows run from depen-
dee to depender (the depender depends on the dependee). (Online version
in colour.)
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The problem of directionality and the puzzle of correlational
networks signal that, at least in many cases, the explanatory
power of network models derives from their ability to represent
how phenomena are situated, etiologically and constitutively, in
the causal and constitutive structures of our complex world.
 .B
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This article presents an alternative way of addressing the
problem of directionality. Instead of focusing on directed
notions, such as causation, I will suggest a solution focused
on taking into account background knowledge about the net-
work model’s conditions of application. That is, I will focus
on the conditions that have to hold in order for the model
to aptly be applied to the system of interest. This removes
one source of worry about non-causal network explanations.
They do not require a new directed metaphysical notion akin
to causation where it can be unclear what this relation is and
how we can evaluate whether it holds.
2. Assumptions about explanation
I will work with the assumption that explanation is distin-
guished from prediction by providing information about
what the explanatory target (the explanandum) depends on.
That is, explanations offer information about what would
have happened in non-actual circumstances as well as infor-
mation about what can be predicted to hold given the actual
circumstances. This focus on counterfactual information is in
common with several accounts of causal explanation (notably,
[4]). On its own, this focus on dependence does not yet provide
us with a solution to the problem of directionality. In Jansson
[8], I argued that we can provide a solution to the problem of
directionality when it comes to law-based explanations by
focusing on the law’s conditions of application. This solution
does not, however, cover the types of non-causal explanations
that we seem to find in network explanations where topologi-
cal properties are doing the explanatory work. To start to cover
such network explanations, I need to say a little more about the
schematic structure of explanatorymodels of physical facts that
I am working with. I take the process of giving a model expla-
nation to have as a target a dependence external to the model
(type 4) and to have three steps that are of interest when captur-
ing the directionality of network explanations (dependence of
types 1–3) (figure 1).3

First, we can ask how features of the model selected vary
with features of the explanatory target (type 1). Here, the
model’s conditions of application are crucial. When we are
selecting a model for some particular explanatory target, we
typically confront questions about whether or not a particular
model is apt. For example, in order to judge whether a particu-
lar type of pendulum can aptly be modelled for some purpose
by using a simple pendulum model we need to answer ques-
tions such as: Is the pendulum forced? Is the amplitude of
swing small? Is the mass of the pendulum rod negligible? Is
the friction at the pivot low?, etc. Once we decide that a
simple gravitational pendulum model is an apt model of the
target, these considerations are typically no longer explicitly
represented in themodel itself. Second,we can ask how features
explicitly represented in the model chosen depend on other
features similarly explicitly represented (type 2) (figure 1). For
example, in the simple pendulum model, the period is a func-
tion of the length of the pendulum rod and the acceleration
due to gravity at the location of the pendulum. Third, we can
ask how features of the target system can be expected to vary
when features of the model do (type 3).

If we are willing to grant my starting assumption that
explanation is a matter of providing information both about
what can be predicted to hold given the actual circumstances
and information about what would have held had circum-
stances been different, then there are multiple sources of
information about such dependencies in the three steps
outlined above. If we are interested in dependencies of
type 4 but are approaching them via a modelling processes
then all of types 1–3 are needed.

It is tempting to take only the dependencies explicitly
represented in the explanatory model (type 2) to matter. How-
ever, thiswould be amistake on the viewoutlined above. In this
article, Iwill be particularly interested inhowdependencies that
capture what it takes for the model to be an appropriate model
for the problem at hand (type 1) enter into explanations by the
model. In order to take the dependencies internal to model
(type 2) to have succeeded in capturing part of what the expla-
natory target depends upon, those dependencies have to be
capable of being embedded in a fuller account of the dependen-
cies of the explanatory target. When the explanatory target is
sensitive to variations in the conditions that make the appli-
cation of the model apt, then we might take the dependencies
internal to the model (type 2) to be part of a broader account
of what the explanatory target depends upon. This broader
account of what the explanatory target depends upon includes
considerations of what the model aptness depends upon (type
1). If, however, the explanatory target does not depend on the
conditions that make the model apt, then we have no reason
to view the dependencies within the model itself (type 2) as a
partial story of the full dependencies of the explanatory
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target. There is now no reason to take the internal dependencies
(type 2) to be part of amodelling schema that considers type 1–3
dependencies relative to the explanatory target.4

This is not to deny that when the conditions which make
the model apt hold, we can have reason to take the model to
be predictively accurate. However, being predictively accu-
rate in the actual circumstances does not show that we have
a model capable of being trusted to answer questions about
what the explanatory target would have been like had cir-
cumstances been different. To do this, we require reliable
dependence information throughout (from types 1 to 3).

For example, consider again the case of modelling a par-
ticular type of pendulum by using a simple pendulum
model. Let us say that the explanatory target is the period
of the pendulum. Here, the simple pendulum model can be
explanatory. The model itself details the dependence of the
period on, for example, the length of the pendulum rod. In
addition, the explanatory target, the period of the pendulum,
is sensitive to violations of the conditions that make the
model apt. For example, in general, had the friction at the
pivot not been negligible then the period of the pendulum
would have been different, etc. The same does not hold for
the intuitively predictive but non-explanatory application of
the simple pendulummodel to calculate the length of the pen-
dulum rod.Within the simple pendulummodel, the length can
be expressed as a function of the period and the acceleration
due to gravity. This is what allows themodel to be predictively
successful in calculating the length of the pendulum rod when
the conditions for the model to be apt are fulfilled. However,
the length of the pendulum rod is not sensitive to whether or
not the conditions of aptness for the model are fulfilled.
For example, we do not have reason to think that had the fric-
tion at the pivot not been negligible then the length of the
pendulum rod would have been different.
3. Direction without a directed relation
The suggestion that I have outlined above is one that allows
us to recover the directionality of explanation without postu-
lating any particular directed relation that is responsible for
the directedness of explanation of a certain type. An other-
wise common response is to argue that the directedness
of the causal relation (from cause to effect) is responsible
for the direction of causal explanation. This approach leaves
the directionality of non-causal explanations unaccounted
for unless we can postulate a similar directed notion in the
case of non-causal explanations. There are several sugges-
tions that do this. For example, Pincock [9] ([1,2] also have
versions of such proposals) postulates a type of sui generis
directed relation of dependence from the more abstract to
the less abstract in order to account for a type of non-causal
explanation while Lange [10] makes use of a distinction
between strengths of necessity.5 In the case of network expla-
nations, Craver [6, p. 701] suggests that they sometimes
require a directed non-causal notion of constitution.
Network properties are explained in terms of nodes and edges
(and not vice versa) because the nodes and edges compose and
are organized into networks. Paradigm distinctively mathemat-
ical explanations thus arguably rely for their explanatory force
on ontic commitments that determine the explanatory priority
of causes to effects and parts to wholes.
The suggestion that I am making in this article differs from
all of these approaches in that it does not start from the
postulation of some metaphysical asymmetric relation that
is used to account for the direction of explanation. Rather,
the directionality in explanatory applications of network
models to physical facts is identified either from within the
model or from an asymmetry in the sensitivity of the expla-
natory target to the conditions they have to obtain in order
for the model to be aptly applied. There are several advan-
tages to this approach. First, the problem of identifying the
direction of explanation is transformed from a metaphysical
problem where we face the challenge of how we can deter-
mine whether the appropriate relation holds, to an
epistemic one. When there is a dispute over the direction of
explanation (if any) for a particular case, we do not immedi-
ately need to settle metaphysical questions over which
relation holds.6 Of course, this is not to say that it is always
easy to determine the direction of explanation (if any), but
the type of questions that we have to answer are theoretically
and, sometimes, directly empirically tractable.

Second, it allows for a unified treatment of causal and non-
causal explanations of physical facts. This is important when
we are dealing with explanations from connected models that
cross the causal/non-causal divide, and particularly so in
cases where a multiscale model covers scales that are typically
treated very differently. For example, Pedersen et al. [12] sum-
marize such challenges in modelling an avian compass as
a distinctively quantum process. The proposed model of
avian navigation is radically multiscale because it involves
both distinctively quantum notions such as entanglement
and distinctively higher scale notions such as bird behaviour.
Shrapnel [13, pp. 409–410] articulates the difficulty of
recovering the directionality of explanation in these cases.
Many philosophers believe that scientific explanations display an
asymmetry derived from underlying causal structure [5,14,15].
From this perspective, the explication of the phenomena listed
above provides clear support for the existence of quantum causa-
tion. The philosophical literature, however, contains considerable
skepticism concerning objective quantum causal structure [16–18].
Typically, those who eschew quantum causation derive their argu-
ments from analysis of the correlations that appear in EPR type
experiments, the problem being that while themeasurement results
in such experiments are clearly strongly correlated, they are thought
not to be so in virtue of underlying causal structure.
The need to capture directionality in multiscale explanatory
models has been part of the motivation to develop quantum
causal models (QCMs).7 However, these models come with
challenges, particularly when combined with other causal
models in order to provide multiscale explanatory models.8

This article explores an option that avoids imposing uni-
formity by exporting causal frameworks for explanation to
(intuitively) non-causal cases. In the next section, I will
argue that the approach which focuses on conditions of apt
model application is promising in addressing directionality
in non-causal cases.
4. Königsberg’s bridges
In §§1 and 2, I argued the need for criteria for determin-
ing when a model appropriately captures the direction of
explanation and highlighted some of the advantages of doing
this in terms that are neither directly causal nor given by a
metaphysical analogue to causation. I think that attention to
the sensitivity of the explanatory target to violations of the
conditions of application of the model are a promising source
for recovering this directionality in non-causal terms.9
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However, network explanations seem particularly problematic
for the prospect of allowing us to recover the directionality of
explanationwithout some sui generisnotionof a directed relation
between mathematical properties and physical phenomena.

Let me illustrate the problem and the suggested solution
with the familiar case of Königsberg’s bridges and the
graph-theoretic explanation of the impossibility of making a
tour of the (historical) Königsberg by crossing each and
every of its seven bridges exactly once and returning to the
starting point. Below is Pincock’s description of the expla-
nation of the impossibility of touring Königsberg in the
way described above that appeals to the graphs in figure 2.
[A]n explanation for this is that at least one vertex has an odd
valence. Whenever such a physical system has at least one
bank or island with an odd number of bridges from it, there
will be no path that crosses every bridge exactly once and that
returns to the starting point. If the situation were slightly differ-
ent, as it is in K0, and the valence of the vertices were to be all
even, then there would be a path of the desired kind. [22, p. 259]
In this case, it is possible to run inferences in both explanatory
and (intuitively) non-explanatory directions. The appeal to the
existence of a vertex with an odd valance seems explanatory of
the impossibility to do the suggested round tour. However, the
impossibility to do the suggested round tour also allows us to
infer the existence of a vertex with an odd valance (given that
the graph is connected). However, it does not seem to explain
the existence of such a vertex. If we want to accommodate
this difference in explanatory directionality in a non-causal
way, we need to locate a difference that is not visible as a differ-
ence in implicationwhen the model’s conditions of application
are fulfilled.

Some aspects relevant to explanatory directionality can be
recovered from within the model itself and so hold whether
or not the model has a physical fact as the explanatory
target. For example, while the graph determines the valence
of the vertices, the valence of the vertices do not (in general)
determine the graph. This contributes to the directionality
mentioned in Jansson & Saatsi [11]; merely fixing that the
bridge system in question cannot be toured in the suggested
way does not fix the bridge system to any particular confi-
guration but fixing the bridge system to a particular
configuration does determine its round-tourability.

However, this is not enough for a full solution to the direc-
tionality of explanation in this case. The issue facing us now is
that the non-tourability (in the suggested way) of the bridge
system in question does fix the existence of at least one vertex
with an odd valance and vice versa. If this was the full story
thenwewould get the result that the non-tourability of Königs-
berg explains the existence of at least one vertex with an odd
valence. This suggests that directionality from within the
model is not the only source of explanatory directionality.

My suggestion is that this is where we need to consider the
conditions of application of the model. Within a dependence
account of explanation, we are interested in information
about what the explanatory target depends on. When we are
explaining physical facts, some information about how the
target would have been different had other conditions been
different can be expected to come from within the explanatory
model itself. However, once we recognize that explanatory
models typically have limited areas of application, part of
what the explanatory target depends on is likely to be captured
in the conditions of application.Whilewe typically do not have
a perfect understanding of the conditions of application, we
can generally articulate such conditions (at least in outline).
When we do so, we are, on this view, providing a better under-
standing of what the explanatory target depends upon and,
thereby, providing more detailed explanations.

The model’s conditions of application provide an avenue
for recovering directionality of explanation beyond what is
explicitly covered in the explanatory model itself. We can
have good reason to take a particular target to depend on the
conditions of application of the model in question and to
take the model to be an explanatory one. Alternatively, we
can have good reason to take a particular target to fail to
depend on the conditions of application and the model to fail
to be an explanatory model even while maintaining that the
model is (when the conditions of application do hold) inferen-
tially reliable. To illustrate this, consider our case ofmaking use
of a graph-theoretic model to explain the non-tourability of
Königsberg by the existence of at least one vertex with an
oddvalance. At first glance, it is easy to overlook the conditions
that make the application of the model appropriate because
they are so readily available. Nonetheless, the model in ques-
tion is only appropriate under the assumption that the
bridges are the only way to travel between the different parts
of Königsberg, are such that they are possible to cross at will,
etc. If such conditions hold and the graph-theoretic model is
appropriate to use, then we can support the inference both
from the existence of a vertex with an odd valance to the
non-tourability of the bridge system and vice versa. However,
only the round-tourability of the bridge system depends on the
conditions of application. The tourability of the bridge system
is, in general, sensitive towhether or not these conditions hold.
Whether it is possible to make the described round tour
depends on whether the bridges are the only permitted way
of travelling between the different parts of Königsberg,
whether they can be traversed, etc. However, the valance of
the vertices is not sensitive to these conditions of application.
The valences of the vertices in the graph-theoretic represen-
tation of the bridge system are the same whether or not we
could also travel between two parts of town via boat or
whether a bridge was blocked. The valences of the vertices is
determined by the graph. Although we can appropriately
make inferences in both directions when the conditions of
application hold (from the non-tourability of Königsberg to the
existence of at least one vertex with an odd valance and vice
versa), the target is only sensitive to the conditions of application
in one direction.Granting thatwe take explanation to differ from
mere prediction in providing information about dependencies,
the application of the graph-theoretic model can explain the
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non-tourability of Königsberg’s bridge system in terms of the
existence of a vertex with an odd valence, but not vice versa.

The reason that conditions of application of the model are
easily overlooked in this case is that there are closely related
explananda that are less directly about a physical system such
as Königsberg’s bridges and, when pushed, eventually not
about a physical system at all but about the mathematical
graph.10 For example, Lange [24, p. 14] takes the explanan-
dum to rule out the use of boats.
/journal/rstb
Phil.Trans.R.Soc.B

375:20190318
Likewise, the ‘law’ that a network lacking the Euler feature is non-
traversable has no conditions of application but helps to explain
why Jones failed in attempting to traverse Königsberg’s bridges.
Jansson might reply that the law’s conditions of application
include (for instance) that the bridges are the only way to get
from one Königsberg island to another region of land—that there
are no ferryboats, for instance. After all (on this suggestion), had
there been ferryboats, then it would have been possible to traverse
all of the bridges, each exactly once, simply by crossing a bridge
and then taking a ferryboat to the start of the next bridge. (And
if there had been ferryboats, then the bridge arrangement would
have been no different—exactly the asymmetry that Jansson
emphasizes.) However, this suggestion fails to save Jansson’s pro-
posal: the absence of ferryboats is not a condition of the law’s
application because the explanandum is the impossibility of traver-
sing (or the failure to traverse) each bridge exactly once by a
continuous, landlocked path (etc.). To use ferryboats to ‘traverse’
the bridges would be cheating. So even if there had been ferry-
boats, it would have been impossible to traverse the bridges in
the requisite way. The law has no conditions of application to the
relevant sort of bridge traversal.
What Lange is suggesting is that there is an explanandum
(or maybe the right explanadum) that rules out the use of
alternative means of travelling between the landmasses of
Königsberg. I agree that this is a perfectly legitimate expla-
nandum but it does not remove the need for conditions of
application of the explanatory model. After all, it is still an
assumption here that the bridges are such that they can be
crossed, etc. If they are not then the graph theoretic treatment
of the actual bridge system again fails to be apt for the ques-
tion at hand. To avoid any conditions of application we could
try to abstract even further and define the explanandum of
interest to be whether a system with the layout of Königs-
berg’s bridge system could be traversed in the suggested
way setting aside any actual physical obstacles to undertake
such a tour. However, this type of explanandum is best
understood as a question directly about what explains the
non-traversability (in a mathematical sense) of the graph typi-
cally associated with Königsberg’s bridge system rather than
a question about the possibility of making a certain journey
across the physical Königsberg.

Here, I have been focusing on explanations of physical facts
and strictly speaking intra-mathematical explanations (where
both the explanans and the explanandum are mathematical)
fall beyond the scope of what I have tried to address. There
are good reasons to treat them differently. To have a potential
intra-mathematical explanation, we would expect to look at
the details of the proofs for the two directions and whether
they are explanatory or not. This will be a completely different
explanation from the explanatorymodel thatmerelymakes use
of graph theory that we have discussed so far. However, it will
bring out further assumptions that were previously hidden by
our focus on a specific bridge system. In particular, the proofs
hold under the assumptions that we are dealing with con-
nected systems (the graph associated with Königsberg’s
bridge system is connected). Whether a graph has an Eulerian
cycle (in the case of an application to a specific bridge system,
whether it is round-tourable in the way specified earlier) is
sensitive to whether or not the graph is connected. However,
whether a graph has only even vertices is not sensitive to
whether the graph is connected or not.

The case that I have discussed so far is deliberately simple.
However, I hope to have shown how several difficult philoso-
phical issues about non-causal explanation arise even for
simple cases. In general, it is not simple to determine the
appropriate conditions of application of a model or a law and
whether the target is sensitive to violations of those conditions.
For example, the question of whether symmetries explain
conservation laws, conservation laws explain symmetries, or
neither explains the other, can be treated in a similar way but
here the assessment involves questions about dependence
that we do not have immediate access to.11 In the next section,
I will consider how conditions of application play a role in
determining directionality in a less straightforward, but
much discussed, case of explanation by network models.
5. Small-world network models
In this section, I would like to consider an objection to my
account similar to the one raised by Lange to the Königsberg’s
bridges case in the previous section. For some uses of network
model explanations, it might seem that there are no particular
conditions of application. Rather, the system under investi-
gation might be thought to simply instantiate the relevant
network properties.

Certain ways of talking fit well with such a view. For
example, it is common to find discussions that refer to the
small-world properties or architecture of physical systems.
For example, Watts & Strogatz [3, p. 442] conclude their
article by noting that ‘[a]lthough small-world architecture
has not received much attention, we suggest that it will prob-
ably turn out to be widespread in biological, social and man-
made systems …’. Of course, such ways of talking do not in
and of themselves commit authors to any specific view about
the relationship between the explanatory model and the
explanatory target.12 However, if we take the above ways of
talking at face value then it is tempting to take the explana-
tory target system to simply instantiate the relevant
network (or topological) properties. For example, I take this
view to be the one expressed by, for example, Huneman
[27, p. 119] when writing that ‘… in topological explanations,
the topological facts are explanatory, and not the various
processes that in nature instantiate variously these properties’.

In combination with a dependence view of explanation
the consequence of such a view is that we should expect to
find all the relevant explanatory counterfactuals simply by
paying attention to dependence of type 2 (the dependencies
internal to the model) because the explanatory target systems
simply instantiate the relevant network (or topological) prop-
erties. I have suggested that we need to pay attention to what
makes it apt to apply the relevant models in order to under-
stand the directionality of the explanations of physical facts
given using these models. This means that I think that we
have reason to resist taking the explanatory target systems
to simply instantiate the relevant network properties.

To see what this looks like in practice, let us consider an
example from Watts and Strogatz [3].13 Watts & Strogatz [3]
start with a regular ring lattice with a fixed number of vertices
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and a fixed number of edges per vertex. This ring lattice is
then rewired with a probability p (so that p=0 leaves the
perfectly regular ring lattice intact and p=1 results in a
random network). The characteristic features of the resulting
networks understood as a function of p is the clustering coeffi-
cient (informally the ‘cliquishness’ of the graph) and the
characteristic path length (capturing the average number of
edges that have to be traversed in order to reach any node in
the network). Small-world networks are characterized by low
characteristic path lengths and high clustering. Watts &
Strogatz [3] make use of these notions to understand how the
structure of networks influences the dynamics of disease
spread. In particular, they find that the infectiousness of the
disease (modelled as the probability that an infected indivi-
dual infects a given healthy neighbour) required in order
for the disease to infect half of the population decreases rapidly
for small p. Informally, as we move away from a perfectly
regular ring lattice, the infectiousness required in order for a
disease to end up affecting half the population goes down
rapidly. Finally, for diseases that are sufficiently contagious to
infect the entire network population, the time to complete
infection of the population closely follows the characteristic
path length. The conclusion drawn is that even intuitively
minor deviations from perfectly regular networks has a dra-
matic effect on the spread of infectious diseases. Moreover,
the dynamics is taken to be able to be understood via the
network structure.
Thus, infectious diseases are predicted to spreadmuchmore easily
and quickly in a small world; the alarming and less obvious point
is how few short cuts are needed to make the world small.
Our model differs in some significant ways from other network

models of disease spreading. All the models indicate that network
structure influences the speed and extent of disease transmission,
but our model illuminates the dynamics as an explicit function of
structure […], rather than for a few particular topologies, such as
random graphs, stars and chains. [3, 442]
On one way of understanding this discussion, it seems be an
assertion that in order to understand some aspects of disease
spread all we need is understanding of certain network prop-
erties. However, I think that this conclusion should be resisted.

Watts& Strogatz [3] are clear that their discussion is focused
on a certain highly idealized model of disease spread. In order
to take the dynamics of disease spread to depend on the highly
mathematical features of network structure we also need to, on
my account above, worry about how the dynamics of disease
spread depends on these idealizations. As in the case of Königs-
berg’s bridges, I think that these conditions of application
hold the solution to account for why we are inclined to, and
correct to, take the structure to possibly explain the dynamics
of disease spread in the cases where the model applies but
not vice versa. If we ignore the conditions of application, we
again face a situation where we can make inferences in see-
mingly non-explanatory directions. For example, we could
make the inference from the functional form for the time for
global infection to the functional form for the characteristic
path length. Yet, this inferences does not look explanatory.

Without invoking some special notion of mathematical,
abstract, metaphysical, etc., dependence we can now try to
identify the direction of explanation by asking questions
about the dependence of the explanatory target on the con-
ditions of application. For example, Watts & Strogatz’s [3,
p. 441] idealized model assumes that we introduce a single
sick individual into an otherwise healthy population and that
infected individuals are removed after one unit of time (by
death or immunity). Are properties of network structure, say
the functional form for the characteristic path length, sensitive
towhen these modelling assumptions hold or not? The answer
is that the relevant properties of network structure are comple-
tely insensitive to whether or not we are dealing with a
homogeneous population of healthy individuals (barring the
sole infected individual). This simply is not something that fea-
tures such as the characteristic path length capture. Is the
explanatory target, the dynamics of disease spread, sensitive
to changes in these assumptions? The answer is very plausibly
yes. For example, if we do not start from a homogeneous
healthy population (with the exception of the one infected indi-
vidual) then we can expect the dynamics of disease spread to
look different. For example, consider the effect on the spread
of a new strain of an infectious disease if the population has
previously been infected with an earlier strain of the disease
which provides immunity to the new mutation. As Leventhal
et al. [28, p. 7] note, ‘the initial strain modifies the residual net-
work of susceptibles’ and the spread of infectious disease
should be expected to be sensitive to this. Leventhal et al. [28]
argue that here heterogeneity in contact structure suppresses
the spread of a new strain.

If we take the explanation of the dynamics of disease
spread provided by Watts & Strogatz [3] to simply be one
where the dynamics is understood purely in terms of the net-
work structure then this looks like a potential challenge to
their conclusions. However, on my view this would be the
wrong conclusion to draw. Rather, the broader understanding
of the simplified model (including the conditions of appli-
cation) is what allows us to identify as explanatory certain
inferences that we can make when the model applies (taking
other inferences to be non-explanatory). Because the explana-
tory target of the dynamics of disease spread is sensitive to
violations of the conditions of application theWatts & Strogatz
[3] model can be regarded as explanatory by providing part of
the story about what infectious disease spread depends upon.

If my argument in this article is correct, understanding
the assumptions and limitations of network models is not
only important in order to avoid mistakenly applying the
models in cases where they fail to apply. To understand
how the target phenomena depend on the assumptions of
the network models is key to understanding why the infer-
ences drawn using network models sometimes count and
sometimes fail to count as explanatory at all.
6. Conclusion
I have argued that if network explanations are (sometimes)
examples of a broader class of non-causal explanations then
the challenge of addressing long-standing problems of dis-
tinguishing prediction from explanation that are otherwise
resolved in causal terms require new solutions in these
cases. Many philosophical suggestions postulate directed
metaphysical notions to address this problem. I have argued
that an account of scientific explanation that includes the con-
ditions of model aptness as part of the explanation can
address the problem of directionality without facing the same
difficulties as competing approaches.
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Endnotes
1For example, Woodward [4] and Strevens [5].
2As does Reutlinger [7] but Reutlinger leaves it open that non-causal
explanations might turn out to be symmetric.
3I am calling each step a dependence to emphasizes that the relationship
should provide information not only about the actual circumstance but
also aboutwhatwould happen under variations.On its own this allows
all dependencies to bemerely inferential. However, I am calling type 4 a
world to world dependence since this is where it would be open to
locate a worldly dependence (if there are any).
4I take explanation to be a success term so that an explanation has to
succeed in capturing (part of) the dependencies targeted. However,
this means that we can only ever have good reason to take a model
to be or fail to be explanatory. It is always possible that the world
has conspired in such a way that our reasonable inferences about
dependencies are mistaken.
5In Jansson & Saatsi [11], we consider some reasons against these views.
6Of course, non-metaphysical notions of causation also have
this advantage but they still need to be generalized to non-causal cases.
7See for example Shrapnel [13] for a philosophical discussion of this
case and Costa and Shrapnel [19] and Shrapnel [20] for a suggestion
for QCMs.
8For example, in the quantum causal models developed by Costa &
Shrapnel [19], the nodes of causal models are treated very differently
in the quantum case compared to the classical causal case (such as
that of Pearl [21]).
9I have developed this account in more detail for cases of nomological
explanations in Jansson [8].
10Kosti�c [23] takes the generality of the explananda to determine
whether a topological or mechanical explanation is appropriate.
Here, I think that the explanation is topological even when the expla-
nandum is non-general.
11For a discussion of these conditions see, for example, Brown &
Holland [25] and Smith [26].
12In his contribution to this issue Kosti�c presents what is at stake
as a question about how to understand the veridicality criterion
on counterfactual approaches to network (or topological)
explanations.
13I am focusing on this case because small-world network models are
widely regarded as a key example of network explanation by authors
with varied views about how to understand the veridicality criterion
discussed by Kosti�c in this issue (see, for example, Huneman [1] and
Kosti�c [2]).
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