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Thousands of unfixed transposable element (TE) insertions segregate in the
human population, but little is known about their impact on genome func-
tion. Recently, a few studies associated unfixed TE insertions to mRNA levels
of adjacent genes, but the biological significance of these associations, their
replicability across cell types and the mechanisms by which they may regu-
late genes remain largely unknown. Here, we performed a TE-expression
QTL analysis of 444 lymphoblastoid cell lines (LCL) and 289 induced
pluripotent stem cells using a newly developed set of genotypes for 2743
polymorphic TE insertions. We identified 211 and 176 TE-eQTL acting in
cis in each respective cell type. Approximately 18% were shared across cell
types with strongly correlated effects. Furthermore, analysis of chromatin
accessibility QTL in a subset of the LCL suggests that unfixed TEs often
modulate the activity of enhancers and other distal regulatory DNA
elements, which tend to lose accessibility when a TE inserts within them.
We also document a case of an unfixed TE likely influencing gene expression
at the post-transcriptional level. Our study points to broad and diverse cis-
regulatory effects of unfixed TEs in the human population and underscores
their plausible contribution to phenotypic variation.

This article is part of a discussion meeting issue ‘Crossroads between
transposons and gene regulation’.
1. Background
Transposable elements (TEs) are ubiquitous genetic entities that relocate and
multiply within genomes. TE sequences occupy a large fraction of the eukary-
otic nuclear DNA, including in humans, where they account for more than half
of the genetic material [1]. New TE insertions represent an important source
of structural genomic variation that can affect both coding and regulatory
components of the genome [2–4]. Notably, many TEs deposit cis-regulatory
sequences that can modulate flanking gene expression, and sometimes be
repurposed for beneficial cellular function [5–7].

While the human genome hosts hundreds of different TE families from
various classes, only three retrotransposon families, LINE1 (L1), Alu and
SVA, are known to be active and produce de novo insertions, including approxi-
mately 100 disease-causing cases thus far documented [8–10]. These three
families represent the primary source of unfixed TEs in humans [11,12]. To
date, whole-genome sequencing studies have discovered more than 19 000 TE
loci segregating in the human population [11–15]. Despite their potential role
in shaping human phenotypic variation, including disease susceptibility
[16,17], very little is known about the impact of these polymorphic insertions
on genome function. Only a handful of recent studies have started to unravel
their contribution to gene expression variation [16–19].

The regulation of gene expression is central to cellular function and
differentiation in development and physiology, and changes in gene expression
are important drivers of phenotypic variation [20]. Steady-state mRNA levels
partially govern gene expression in response to inputs integrated by various
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regulatory sequences acting in cis or in trans [20,21].
Expression quantitative trait loci (eQTL) studies offer a sys-
tematic approach to identify such cis-regulatory elements by
correlating the genotypes of genomic variants segregating
in individuals with mRNA levels of specific genes, which
can be measured on a large scale by RNA-sequencing
(RNA-seq) [22,23]. Previous eQTL studies have established
that virtually every gene in the human genome has its
expression affected by at least one genomic variant (typically
a single nucleotide polymorphism, SNP) located in cis
(usually defined as within a maximum distance of 1 Mb)
and generally in non-coding regions [21,24–26]. A recent
analysis of 44 different tissues by the GTEx Consortium indi-
cates that such cis-eQTL fall into two broad categories: those
shared across most tissues and those apparently acting in a
single or a restricted number of similar tissues [21]. Impor-
tantly, most eQTL studies thus far have focused on SNPs,
yet other types of genomic variants, such as unfixed TE inser-
tions, are common in the human population and likely to
have more drastic effects on gene expression [27–30].

In a pioneering study, Wang et al. [18] mapped TE-eQTL
in a reference set of 445 EBV (Epstein–Barr virus)-
transformed lymphoblasts (lymphoblastoid cell lines, LCL)
for which TE insertion genotypes [12] and RNA-seq data
[24] had been previously generated as part of the 1000 Gen-
omes Project and GEUVADIS Consortium, respectively. In
this dataset, they identified 83 cis-TE-eQTL where the geno-
type of TE insertions correlated with mRNA levels of
adjacent genes [18]. These data, as well as a follow-up study
building on these results [17], suggest that unfixed TEs rep-
resent a class of structural variants that plays an important
role in driving population- and tissue-specific regulatory vari-
ation. However, many questions remain unexplored, in
particular (i) the size, direction and strength of the discovered
associations, (ii) their tissue- or cell type-specificity and (iii) a
better understanding of the molecular mechanisms by which
unfixed TEs may modulate gene expression.

To begin filling these gaps, we use a newly assembled set
of TE genotypes [31], including more than 800 TE insertions
not considered in previous studies [17,18,32], in conjunction
with reprocessed RNA-seq quantifications to map TE-eQTL
in the aforementioned LCL from 444 individuals. We
examined the cell type-specificity of these associations by
performing another TE-eQTL mapping using 289 induced
human pluripotent stem cells (iPSC) from 188 donors avail-
able through the HipSci Consortium [24, www.hipsci.org].
To investigate cis-regulatory mechanisms by which unfixed
TEs may affect adjacent gene expression, we explored their
association with chromatin accessibility QTL (caQTL)
mapped for a subset of the LCL. Lastly, we document
a case of an unfixed TE insertion likely affecting the
expression of a gene involved in lipid metabolism through
a post-transcriptional mechanism.
2. Results
(a) Mapping cis-TE-eQTL in LCL and iPSC
After sample filtering based on their expression profiles (see
Material and methods), we conducted a search for TE-eQTL
in 444 individual LCL and 289 human-induced pluripotent
stem cells (iPSC) from 188 donors using the genotypes of
unfixed TE insertions. In LCL, the genomic coordinates for
these loci (13 986 Alu; 3104 L1 and 844 SVA) were obtained
from the previous analysis of 2504 human samples from the
1000 Genomes Project [12]. To improve genotyping quality,
we re-analysed all LCL samples available with TypeTE [31].
These recalls enabled us to use 860 TE insertions present
in the reference genome (hg19) which have not been
interrogated in previous studies [17,18,32], likely owing to
the uncertainty of their original genotypes [31]. TypeTE
improves the genotype quality for TE by mapping reads
against reconstructed ‘presence’ and ‘absence’ alleles of
each insertion (see Material and methods). Genotypes pre-
dicted by TypeTE are greater than 90% concordant with
those obtained by PCR for a large panel of Alu insertions
[31]. To call TE genotypes in iPSC, we initially used the geno-
mic alignments generated by the HipSci Consortium (www.
hipsci.org) for 326 healthy fibroblast-derived iPSC, predomi-
nantly sourced from subjects of British ancestry [33]. TE
detection and genotyping in this iPSC dataset were achieved
using MELT2 [15] and TypeTE (see Material and methods).
We identified 8477 TEs (6931 Alu; 1068 L1 and 478 SVA)
with a ‘PASS’ flag following MELT2 analysis. These numbers
are in line with those expected based on the results of the 1000
Genome Project [12,15]. After sample filtering (see below), we
identified a total of 2743 unfixed TEs segregating at a minimum
allele frequency of 5% among 188 and 444 individual donors
of iPSC and LCL, respectively (electronic supplementary
material, figure S1).

In order to identify TE-expression QTL (TE-eQTL), we
first quantified the steady-state RNA levels of LCL by
applying the program kallisto (v. 0.46.0 [34]) against RefSeq
(GRCh37.75) using RNA-seq reads originally generated
by Lappalainen et al. [24]. This allowed us to match the
RNA-seq quantification data generated for the iPSC by the
HipSci Consortium (H. Kilpinen 2019, personal communi-
cation; see also Material and methods). We then analysed
independently LCL and iPSC datasets to search for corre-
lations between TE genotypes and normalized mRNA
levels using QTLtools (v. 1.1 [35]). In LCL, samples of African
and European ancestry were kept together to maximize
power, as the population was not the main factor structuring
gene expression (electronic supplementary material, figure
S2; less than 6.4% of the variance). cis-TE-eQTL were
searched within a 1 Mb window of associated genes
(eGenes). Statistical significance was assessed by performing
10 000 permutations of the gene expression matrix and apply-
ing a 5% false discovery rate for multiple testing correction
(see Material and methods) [35]. The results showed
that two chromosomal regions produced an exceptionally
high density of predicted TE-eQTL: one corresponds to
the human leucocyte antigen (HLA) locus at 6p21 (chr6:
28 477 797–33 448 354 (hg19), electronic supplementary
material, figure S3) and the other corresponds to the
17q21.31 inversion (chr17: 38 100 001–50 200 000 (hg19) elec-
tronic supplementary material, figure S3). We suspect both
regions to be prone to yield a high rate of false positives in
eQTL analyses owing to their complex, highly repetitive
nature which makes short read mapping unreliable and hin-
ders both TE insertion mapping/genotyping and RNA-seq
quantification [36,37]. Thus, conservatively, we excluded 49
(LCL) and 42 (iPSC) TE-eQTL falling within these two regions
from subsequent analysis. After this filtering, we obtained a
total of 211 and 176 TE-eQTL in LCL and iPSC, respectively
(figure 1 and table 1 and electronic supplementary material,
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Figure 1. Manhattan plots of TE-eQTL p-value significance [−log10( p-value)] in LCL (up) and iPSC (down). p-values are represented according to chromosomal
position of TE-eQTL mapped in LCL (up) and in iPSC (down) TE-eQTL. The grey dashed lines represent the 5% false discovery rate (FDR) cut-off values (LCL: 1.21 ×
10−3; iPSC: 2.18 × 10−3). Each p-value is coloured according to the TE family. n.s., not significant. (Online version in colour.)

Table 1. TE-QTL in LCL and iPSCs. ‘genes 50%’: number of genes expressed in at least 50% of the samples and considered in the analysis. ATAC, assay for
transposase-accessible chromatin using sequencing; caTEs, chromatin accessible TE insertions; ca peak, chromatin accessibility peak.

cell
type

TE-eQTL TE-caQTL

sample
size

genes
50% eGenes

eTEs (Alu/
L1/SVA)

sample
size

ATAC
peaks ca peaks

caTEs (Alu/
L1/SVA)

LCL 444 14 320 211 157/9/4 86 277 128 656 394/28/9

iPSC 188 16 245 176 129 /14/5 — — — —
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figure S4). Repeating the analysis with increasingly larger,
randomly selected subsamples revealed no evidence of satur-
ation regarding the total number of TE-eQTL discovered
(electronic supplementary material, figure S5).

We compared our results with the TE-eQTL analysis
performed by Wang et al. [17] on the same set (+1 sample)
of LCL (electronic supplementary material, figure S6).
Excluding TE-eQTL mapping in the HLA and 17q21.31
regions, we found that only 20 out of 211 (approx. 10%)
TE-eQTL discovered in our study with LCL were previously
identified by Wang et al. Conversely, there were 33 TE-eQTL
identified by Wang et al. (39%) that were not detected by our
LCL analysis (31 if compared with both LCL and iPSC).
There are at least four important methodological differences
that could account for the discrepancies between the two
studies. First and foremost, our analysis considered 860 refer-
ence TEs never analysed before, presumably because their
genotypes could not be confidently predicted [31]. Second,
we used improved genotypes recalled by TypeTE [31],
while Wang et al. used the genotypes as originally called by
Sudmant et al. [12]. We show in electronic supplementary
material, figure S7 that re-processing of the genotypes by
TypeTE allows the discovery of new TE-eQTL associations
that would have been missed by using the genotypes pre-
dicted by Sudmant et al. [12]. Third, we required that the
minimum allele frequency of a given TE insertion reach 5%
in both LCL and iPSC, so we could compare the results
across the two datasets. Wang et al. used the same frequency
cut-off but only analysed the LCL dataset. Consequently,
some insertions present at greater than 5% frequency in
LCL but not in iPSC could not be considered in our analysis,
even if they could be identified as TE-eQTL in the LCL
dataset alone. For example, an SVA insertion in the
B4GALT1 gene previously identified as strong TE-eQTL by
Wang et al. [17], which we were able to replicate in a separate
analysis of the LCL data (data not shown), could not have
been identified in the iPSC data because none of the individ-
uals in this dataset possesses the SVA insertion. Fourth and
finally, we reprocessed the RNA-seq data for the LCL dataset
with more recent methods matching those applied to the
iPSC dataset (see Material and methods). This includes differ-
ences in the quantification, normalization and gene sorting
which could all have contributed to yielding different
results from those of Wang et al. [17].
(b) TE-eQTL are enriched near and within genes
For both cell types, the vast majority of the TE-eQTL (92.4%
in LCL and 83% in iPSC) have the implicated TE (eTE)
located within 250 kb of the gene body (from transcription
start site (TSS) to the end of the 30-UTR, figure 2a,b). To
further examine whether the distribution of eTEs relative to
eGenes departs from that of all unfixed TEs found within
1 Mb of a quantified gene (figure 2c, ‘TE/gene < 1 Mb’), we
compared the location of the two TE categories (eTEs and
all TEs within 1 Mb) with randomly sampled genomic pos-
itions (see Material and methods). The results (figure 2c)
indicate that eTEs are enriched within introns (1000 permu-
tations of the eTE position, mean enrichment ±1 (s.d.)) and
within a 10 kb window upstream and downstream of
eGenes, but depleted in intergenic regions, coding exons
and UTRs. By contrast, when all TEs present in the same
1Mb window are considered, we observe that they are gener-
ally depleted in exons, UTRs and within 10 kb upstream and
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downstream regions of genes, but their densities in introns
and intergenic regions do not depart from random expec-
tations (figure 2c). We conclude that eTEs are more closely
associated with eGenes than other TEs, but remain generally
excluded from exons and UTRs, presumably because inser-
tions in these compartments tend to be strongly deleterious
and rapidly removed from the population.
(c) Effect size and TE-eQTL significance
Next, we focused on the effect size and p-value distributions
of TE-eQTL as a first step to assess their potential biological
relevance. The effect size captures the magnitude of changes
in gene expression between the three possible TE genotypes
(0/0: no TE, 0/1: heterozygous TE insertion, 1/1: homozy-
gous TE insertion) as the slope of the linear regression. The
p-value associated with each TE-eQTL reflects the strength
of this correlation [38].

We found little to no correlation between the distance of
eTEs to eGenes and the effect size of the TE-eQTL (electronic
supplementary material, figure S8, Spearman correlation
test, r =−0.02, p > 0.05 for LCL; r =−0.20, p < 0.01 for iPSC).
Similarly, there was no strong correlation between the
distance of eTEs to eGenes and the strength ( p-value) of
the eQTL (electronic supplementary material, figure S9,
Spearman correlation test, LCL: r =−0.11, p > 0.05; iPSC:
r =−0.16, p = 0.039). However, as expected, effect sizes and
significance (−log10( p-values)) were positively correlated
(electronic supplementary material, figure S10, Spearman
correlation test, LCL: r = 0.80, p < 0.01; iPSC: r = 0.73, p <
0.01), which means that there is generally stronger statistical
support for TE-eQTL candidates associated with the largest
change in gene expression between genotypes.

To assess the contribution of eTEs to eQTLs—relative to
linked SNPs—we performed regional conditional eQTL
analysis using SNPs directly located within 1 Mb of each
detected eGene (see Material and methods). Thirty-eight
TE-eQTL in LCL (18%) and 76 (43%) in iPSC had the eTE
ranked as the ‘top-variant’ following the procedure
implemented in QTLtools (electronic supplementary
material, data S1). While the high level of linkage disequili-
brium in humans generally obscures the identification of
causal variants in QTL and association studies [39], these
results strengthen a substantial amount of TE-eQTL
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candidates as being causal variants. Still, this analysis
suggests caution must be used when interpreting the biologi-
cal impact of TE-eQTL relative to other linked variants.

(d) TE-eQTL contribution of different TE families
We then examined the relative contribution of different TE
families (Alu, L1, SVA) to TE-eQTL. Alu-eTEs—which consti-
tute the bulk of all TEs examined here (89% of the TEs
analysed, 92 and 89% of the eTEs, respectively, in LCL and
iPSC)—appear equally distributed between positive and
negative correlations with eGene expression regardless of
the genomic compartments or cell type examined (figure 3).
This suggests that Alu-eTEs by themselves are not a predictor
of the TE-eQTL direction and may equally contribute to
the up- or downregulation of adjacent genes. While the
limited numbers of L1 and SVA eTEs do not allow us to
infer robust patterns, we note interesting trends in the direc-
tion of their effects on gene expression in the two cell types
(figure 3). Notably, all SVA eTEs identified in LCL (n = 4)
were involved in positive correlations (i.e. the insertion is
associated with increased gene transcript levels) and intronic
L1 were generally involved in negative correlation in LCL
(3/4) but in positive correlation in iPSC (7/8) (figure 3).
While larger samples are needed to more rigorously test
such patterns, they might reflect cell type-specific mechan-
isms by which these TE families influence adjacent gene
expression (see Discussion).

(e) Conservation of TE-eQTL across cell types
Fifty-seven (18%) of the total number of TE-eQTL were
detected in both LCL and iPSC. When applying a Bonferroni
correction to the initial p-values (threshold = initial p-value
threshold at 5% false discovery rate (FDR)/2), 48 of these
shared TE-eQTL remain significant, accounting for 22.7 and
27.2% of the TE-eQTL identified in LCL and iPSC,
respectively (figure 4a). Conversely, cell type-specific TE-
eQTL accounted for more than half of the TE-eQTL identified
in each cell type: 52.1% (110/211) in LCL and 56.8% (100/
176) in iPSC, after applying Bonferroni correction. The
effect size of the 48 shared TE-eQTL were strongly correlated
across the two cell types (figure 4b, inverse hyperbolic sine
transformation, r = 0.87, p < 0.01). Nearly all (46/48, 95.8%)
of the shared TE-eQTL also shared the direction of their
effect on gene expression (figure 4b). We observed that aver-
age transcript levels of shared eGenes were also highly
correlated across the two cell types (figure 4c, Pearson pro-
duct-moment correlation, r = 0.87, p< 0.01). More generally,
the fold change expression of cell type-specific and shared
eGenes is not significantly different (LCL-specific vs shared
or iPSC-specific vs shared: Tukey HSD, p > 0.05) (figure 4d,
ANOVA: F = 0.168; p = 0.682 (cell type-specific versus shared),
F = 0.005, p = 0.942 (interaction ‘cell type’×‘specific versus
shared’)). However, the statistical significance (p-value) of
shared TE-eQTL was stronger than that of cell type-specific
TE-eQTL (figure 4e, ANOVA, F = 4.563, p = 0.0334). In other
words, TE-eQTL shared between cell types appear statistically
more robust than cell type-specific TE-eQTL, and this
distinction cannot be merely explained by differences in basal
eGene expression levels.

Next, we examined whether the genes associated with
TE-eQTL (eGenes) were enriched for particular biological
functions, states or processes. We performed an over-
representation analysis using iPSC-specific, LCL-specific
and shared eGenes, restricting each gene set to genes actually
expressed in the relevant cell type or, for shared eGenes, to
genes expressed in both cell types (table 1 and see Material
and methods). We compared the candidate eGenes with
the gene ontology (GO) ‘Biological Process’ gene sets, as
well as KEGG, PANTHER and REACTOME pathways. No
enrichment for any gene sets was detected among the
LCL-specific, iPSC-specific or shared eGenes.
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In summary, we found that more than 20% of TE-eQTL in
one cell type overlap those identified in the other and the
statistical significance of shared TE-eQTL is stronger than
that of cell type-specific TE-eQTL. Additionally, we found
no obvious association of cell type-specific TE-eQTL with
genes involved in specific pathways or ontologies.
( f ) Chromatin accessibility TE-QTL
To shed light on the mechanisms by which unfixed TEs may
regulate gene expression, we leveraged ATAC-seq data avail-
able for a subset of 86 LCL from the GBR (Great Britain)
population [40] to perform a caQTL analysis. Using the TE
genotypes predicted for these cell lines, the analysis yielded
a total of 656 significant TE-caQTL (FDR 5%, with 10 000 per-
mutations of the ATAC peaks quantification values),
involving 431 distinct TE insertions (caTEs) (figure 5a).
Nearly 90% (585/656) of the predicted associations between
a caTE and an ATAC peak occur within 250 kb (figure 5b),
a distance compatible with a direct effect of the TEs on the
accessibility of the regulatory DNA through chromatin loop-
ing or spreading [41,42]. We also observe that the distance
between caTEs and their associated ATAC peaks follows a
distribution that is slightly broader (F-test, F = 0.85623, p =
0.0472) than the one obtained with a matching number of
SNP-caQTL, but is indistinguishable from the distance distri-
bution between eGenes and eTEs mapped in the LCL (F-test,
F = 0.91358, p = 0.4061).

Interestingly, 78 caTE-QTL (18%) were also detected as
involved in at least one eTE-QTL in the LCL (figure 5a), a
much greater overlap than expected by chance if the
two were independent (χ-squared test, χ-squared = 131.61,
p < 2.2 × 10−16). Such overlap raises the possibility that some
of these eTEs affect gene expression by modulating chromatin
accessibility at nearby cis-regulatory elements. Consistent
with this model, the 78 TEs involved in both caQTL and
eQTL display a significant correlation of their effects on
each type of QTL (figure 5d, Pearson’s product-moment cor-
relation test, r = 0.47, p < 0.01). In other words, TE insertions
associated with decreased chromatin accessibility tend to be
associated with decreased gene expression, while those associ-
ated with increased accessibility are generally associated with
increased gene expression.

A particularly interesting subset of TE-caQTL are 27
instances where the position of the TE overlaps with its
associated ATAC peak (dark blue, figure 5a), which suggests
that the TE is directly responsible for the modulation of
chromatin accessibility at its insertion site. Strikingly, 25 out
of 27 such caTEs were associated with reduced ATAC peak
size (i.e. negative effect size, figure 5c,d ). While the sample
size is small, this trend suggests that the insertion of a TE
within a cis-regulatory element generally lowers its accessibil-
ity, which in turn could lead to a repressive effect on adjacent
gene transcription. Indeed, out of the five caTEs within peaks
that were also associated with eQTL, four were associated
with reduced eGene expression (figure 5d ). Together these
data support a model whereby the insertion of TEs within
cis-regulatory elements reduces their chromatin accessibility,
which could lead to the downregulation of their target genes.

An evocative example is an AluYb8 element inserted
within the third intron of the MAP3K13 gene (figure 6). The
presence of the TE correlates with reduced chromatin accessi-
bility at three ATAC peaks surrounding the gene, including
one predicted as a transcribed enhancer in LCL directly over-
lapping with the TE. The same TE insertion was also
associated with reduced MAP3K13 expression in our TE-
eQTL analysis (figure 6). Because MAP3K13 is known to be
a positive regulator of the proto-oncogenic transcription
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factor c-Myc [43], it is tempting to speculate that the AluYb8-
containing allele might confer an anti-tumourigenic effect by
attenuating MAP3K13 expression (see Discussion).
(g) Post-transcriptional effects
To identify plausible cases of post-transcriptional effects of
unfixed TEs on gene expression, we focused on nine TEs
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included in our original dataset located within the 30-UTR of
genes. We found that only one was a significant TE-eQTL: an
AluYa5 element (ALU-NREF_1825) inserted within the
30-UTR of the major transcript for HSD17B12. This transcript
encodes a hydroxysteroid 17-beta dehydrogenase involved in
long-chain fatty-acid elongation and its expression level has
been associated with cancer prognosis in humans and fertility
in mice [44–46] (figure 7). This was one of the strongest TE-
eQTL mapped in both LCL and iPSC (electronic supplemen-
tary material, data S1). In both cell types, mRNA levels of
HSD17B12 were negatively correlated with the presence of
the Alu insertion (figure 7a). Regional eQTL analysis includ-
ing TEs, SNPs and indels (see Material and methods)
revealed a strong linkage block, with markers reaching the
highest p-values within the 30-UTR of HSD17B12 (figure 7b).
Conditional analysis of these significant markers (including
SNPs, indels and TEs) ranked ALU-NREF_1825, 1/107 (top
variant) and 74/346 in iPSC and LCL, respectively. Together,
these data strongly implicate this Alu insertion in modulating
the expression of HSD17B12.

To investigate whether the Alu insertion within the
30-UTR could affect protein expression and whether this
effect is determined by the Alu sequence, we used a reporter
assay designed to compare the effects of three different
30-UTRs cloned downstream of the luciferase coding
sequence (figure 8): (i) a 30-UTR sequence derived from an
allele lacking the insertion (from individual NA11830); (ii) a
30-UTR sequence derived from an allele containing the
AluYa5 insertion (from individual NA12760); (iii) a 30-UTR
sequence derived from the same Alu-containing allele but
with a randomly scrambled sequence of the Alu (see elec-
tronic supplementary material, data S2 and Material and
methods). Reporter plasmids were transfected by electropora-
tion into the LCL GM12831 (NA12831) in order to perform
the assays in a cellular environment comparable to that of
the eQTL analysis. The results show that attaching any of
the three 30-UTRs to the luciferase coding sequence led to a
significant decrease in protein expression compared with a
construct without any 30-UTR, but downregulation
was significantly greater for the two Alu-containing con-
structs, regardless of whether the Alu sequence was
scrambled or not (figure 8). These results recapitulate the
eQTL data and suggest that the presence of the AluYa5
insertion downregulates gene expression most likely at
the post-transcriptional level, but this effect is apparently
independent of the Alu sequence.
3. Discussion
Unfixed TE insertions represent an important class of struc-
tural variants between human genomes, but their impact on
gene regulation remains poorly characterized [16–19]. To
our knowledge, this study is the first to consider the effects
of unfixed TEs on gene expression across multiple cell
types. We also present the first TE-chromatin accessibility
QTL (TE-caQTL) analysis to our knowledge, which sheds
light on the impact of recent TE insertions on chromatin
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state at or near the insertion sites and enables a more direct
evaluation of their contribution to cis-regulatory variation.

By leveraging newly predicted genotypes for 2743 TE
insertions, we were able to identify 211 cis-TE-eQTL across
LCL from 444 individuals and 176 cis-TE-eQTL in iPSC
from 188 individuals. A previous analysis of the same LCL
dataset using a similar analytical framework reported 53
cis-TE-eQTL (outside the HLA and 17q21.31 loci) [18],
including 20 loci that our analyses in LCL also identified.
The difference in the results of the two studies, and notably
the considerably larger set of TE-eQTL captured by our
approach, can be attributed to several important methodo-
logical differences. First, we used an improved genotyping
pipeline, TypeTE [31], allowing us to consider 860 unfixed
TEs present in the reference genome assembly (GRCh37/
hg19) [12] that were not included in the dataset used in pre-
vious studies [17,18,32] likely due to the unreliability of the
original genotypes provided by the 1000 Genome Project
[12,31]. Indeed, the genotypes of TEs present in the reference
genome were less accurate than that of the non-reference [31],
an issue resolved by using TypeTE [31]. We also reprocessed
the raw RNA-seq reads originally produced by Lappalainen
et al. [24] to match the more recent quantification procedures
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adopted by the HipSci Consortium (H. Kilpinen 2019, per-
sonal communication, www.hipsci.org). Additionally, we
employed a recently developed QTL mapping toolkit,
QTLtools, which relies on a more robust statistical framework
than previous approaches [35]. These improvements likely
increased the power of our analysis and enhanced our ability
to map TE-eQTL with these datasets.

Consequently, we were able to explore in fine detail the
regulatory potential of unfixed TEs across two different
human cell types. In both LCL and iPSC, we found that
most predicted cis-regulatory interactions take place within
250 kb of the gene boundaries, a value consistent with
eQTL previously mapped with SNPs [21,33], as well as our
own eQTL analysis using SNPs (figure 2a,b). We also noted
a trend for p-values to weaken as the distance between eTE
and eGene increases (electronic supplementary material,
figure S8). These observations are consistent with the current
understanding of how distal cis-regulatory elements interact
with genes in the human genome [47,48], within topologi-
cally associated domains of median length approximately
185 kb [42]. Repeating the analyses with increasing sub-
samples (electronic supplementary material, figure S5)
suggests that many more TE-eQTL remain to be discovered
in the human population. This finding is consistent with
previous large-scale SNP-eQTL studies [21,25].

Our study provides a first assessment of whether a
TE-eQTL discovered in a given cell type may be detected in
another. We found that 22.7% of the TE-eQTL identified in
LCL were replicated in iPSC, representing nearly 27.2% of
the significant TE–gene associations in the latter cell type.
The level of statistical significance, as well as the size and
direction of the effect on gene expression, were highly
correlated across the two cell types, suggesting that their
functional impact may be broadly conserved. These findings
suggest that a subset of TEs could influence gene expression
across multiple cell types and potentially a variety of tis-
sues [21,49]. Indeed, SNP-eQTL analyses across 44 human
tissues by the GTEx Consortium suggest that SNPs with
cis-regulatory effects fall within one of two broad categories:
those with shared effects across tissues and those specific to a
single or a few similar tissues [21]. Our results suggest that
this dichotomy may also apply to TE insertions, which
implies that the phenotypic effect of a TE insertion in a
given tissue could be anticipated from data obtained from
another tissue.

The diversity of TEs involved in TE-eQTL matches closely
that of the starting set of unfixed TEs, which is dominated by
Alu insertions (89%). Indeed, 92 and 89% of the eTEs in LCL
and iPSC, respectively, were Alu elements, with a variety of
effects and positions on their associated genes (figure 3). We
observed more biases in the cis-regulatory effects associated
with SVA and L1 with regard to the direction of their effects
or the cell type (figure 3b), but the relatively small number
of SVA and L1 insertions considered does not allow us to
draw firm conclusions. Nonetheless, it stands to reason that
L1 and SVA might have different regulatory effects in different
cell types. Indeed, while SVA is mobilized by the L1 machin-
ery, their expression patterns are only partially overlapping
and each family appears to exhibit unique cell type-specific
regulatory activities [50–53]. Overall, our findings indicate
that the cis-regulatory effects of unfixed TEs may often mani-
fest in multiple cell types, but further efforts are needed to
characterize possible cell type-specific interactions.
One of the novelties of our study is to incorporate
functional genomics data to investigate further the regulatory
potential of unfixed TEs. To our knowledge, we report the
first TE-caQTL analysis. We used ATAC-seq data generated
previously for 86 of the LCL [40] to map 431 caTEs associated
with variation at 656 ATAC peaks. Strikingly, 45.9% of the
TEs involved in eQTL were also mapped as caQTL (figure 5a),
which brings support to the hypothesis that almost half
of TE insertions modulating adjacent gene expression may
have an effect through distal chromatin effects, as previously
proposed for SNP-eQTL in LCL [54] and iPSC [49].
Furthermore, we found that TEs associated with chromatin
accessibility peaks were approximately four times more
enriched within regions annotated as enhancers than TE-
eQTL, which is consistent with the idea that some of the TE
insertions detected in the TE-caQTL analysis could directly
modify or act as cis-regulatory elements [55,56]. As a support
for this hypothesis, we found that 27 of the caTEs were
directly located within their associated ATAC peak and all
but two of these insertions correlated with reduced chromatin
accessibility. The results of our TE-caQTL analysis indicate
that TE insertions within cis-regulatory elements, such as
promoters or enhancers, tend to have a disruptive effect on
the function of these elements.

It is well documented that TEs can affect post-
transcriptional gene regulation through many mechanisms,
including effects on mRNA splicing, stability or translation
[2,4,19,57,58]. While there are many known examples of
fixed human TEs with such effects, cases involving unfixed
elements have been scarcely described apart from disease-
causing insertions [8,9,59]. We confirmed experimentally
that the inclusion of an Alu in the 30-UTR of the gene
HSD17B12 (previously reported by Wang et al. [18]) reduces
the protein level of a luciferase reporter in LCL. However, this
effect appears to be sequence-independent, since a reduction
in luciferase expression was observed even when the Alu
sequence was scrambled. These results seem to rule out
some of the known mechanisms by which (fixed) Alu located
in 30-UTRs affects transcript stability, such as miRNA binding
[57] or Staufen-mediated decay [4]. It is possible that the
effect merely reflects the elongation of the 30-UTR caused
by the insertion. Indeed, it is known that the RNA helicase
Upf1 can sense 30-UTR size and promote nonsense-mediated
decay of abnormally long 30-UTRs [60]. Also, because we
cloned the ‘presence’ and ‘absence’ of 30-UTR haplotypes
from two different LCLs, we cannot rule out that another
polymorphism, ‘hitchhiking’ with the Alu insertion, is
causing the effect. At the very least, our results indicate that
the Alu insertion can act as a reliable marker of HSD17B12
expression. Because the level of HSD17B12 enzyme has been
positively correlated to the severity of epithelial ovarian
cancer in humans [44], this is a case worth further investigation.

Throughout our analysis, we chose to exclude multiple
eQTL mapping within the HLA and the 17q21.31 inversion
because there are good reasons to believe these regions of
the human genome are prone to yield false positives when
it comes to eQTL mapping. While it has been previously
shown that relevant QTL can be mapped to the HLA
region [3–6], the HLA genes are known for their high level
of copy number variation [22], which can be confounding
during the quantification of transcript levels with RNA-seq.
Indeed, these genes are often discarded from association
studies [3,9,10]. It has been shown that the 17q21.31 inversion

http://www.hipsci.org
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influences variation in gene expression in a cell type-specific
fashion [23]. Moreover, structural variation in this region rela-
tive to the reference genome is common in the general
population [23], which is likely to hamper TE mapping
and/or distort TE genotyping. We found that removing
eQTL mapping to these regions, in particular, the HLA
locus, removes the enrichment of eGenes for immune-related
functions, as previously reported by Wang et al. [18]. When
excluding these regions, we found no enrichment for
particular gene ontology (GO) terms or pathways among
eGenes in either LCL or iPSC.

The example of HSD17B12 and the newly reported case of
MAP3K13 (where an Alu insertion could be mapped as both
expression and caQTL in LCL), as well as the many other TE-
QTL identified in this study, underscore a plausible contri-
bution of TE insertions commonly segregating in the
population in human trait variation, including disease sus-
ceptibility [9,16,19]. These findings confirm the potential of
unfixed TEs to make a non-trivial contribution to human
gene expression [5–7]. Our study provides evidence for the
persistence of their (putative) cis-regulatory effects across
cell types but suggests that some elements have the potential
to regulate tissue-specific functions. Moreover, we present the
first map of unfixed TEs that correlate with changes in chro-
matin accessibility in cis, uncovering the importance of this
mechanism while its fine details remain to be investigated.
A logical extension of this study would be to leverage data
produced for a broader range of human tissues, such as
those represented in the GTEx initiative [21], to analyse
more comprehensively the tissue-specificity of the TE-eQTL
identified herein. Complementary genomic assays, such
as those measuring DNA methylation levels or nascent
RNA transcription, could provide further insight into the
mechanisms by which polymorphic TE insertions shape
gene expression. Ultimately, the causality of TE insertion
variants would need to be tested experimentally through
CRISPR-Cas and other manipulative genomic technologies [5].
The data presented here offer a valuable foundation for future
studies aimed at illuminating the contribution of TEs to
human phenotypic variation.
4. Material and methods
Unless otherwise stated, all statistical analyses were performed
using R v. 3.5.1 (R Development Core Team 2018, https://
www.r-project.org/).

(a) TE genotypes
The genomic locations of unfixed Alu, LINE1 (L1) and SVA
elements were extracted from publicly available datasets. TE
insertions in LCL were gathered from the previous analysis of
445 cell lines derived from healthy donors of five populations
(CEU, FIN, TSI, GBR and YRI) by the 1000 Genome Project
[12]. TE insertions were originally discovered and genotyped in
this dataset using MELT v.1 (non-reference insertions) and a
collection of structural variant tools [12]. In some cases, these
calls were re-genotyped using TypeTE [31] in order to improve
their accuracy. TypeTE was used for L1 and SVA insertions pres-
ent in the reference genome, as well as for both reference and
non-reference Alu insertions. In addition, unfixed TE insertions
were searched and genotyped de novo in 326 induced human
pluripotent stem cells (iPSC), derived from 205 healthy donors
as follows. First, whole-genome sequencing data for each cell
line was recovered in bam format from the HipSci website
(HipSci.org) and unfixed TE insertions were called using MELT
v. 2.1.4 [15] using split- and discordant paired-end read infor-
mation. Since genotype accuracy has substantially improved for
non-reference Alu between MELT1 and MELT2 [31], we only
re-genotyped L1 and SVA, as well as reference Alu insertions.
To analyse the iPSC dataset at the individual level, one genotype
file (VCF) per cell line was kept. To match insertions found
in both datasets, we intersected the breakpoint positions of the
polymorphic insertions discovered in LCL and iPSC using
BEDTools (v. 2.28.0 [61]). Two insertions of the same TE type
(Alu, L1 or SVA) separated by up to 30 bp were considered iden-
tical by descent. After genotyping and individual selection based
on RNA-seq (see below), only the loci shared at a minimum
insertion frequency of 5% between LCL and iPSC were kept for
eQTL mapping.

(b) RNA-seq data processing
Steady-state RNA levels for LCL and iPSC were recovered and
normalized as follows. We collected reads from the RNA-seq
experiment carried out by Lappalainen et al. [24] in 445 LCL
from the Geuvadis repository (https://www.ebi.ac.uk/Tools/
geuvadis-das/). Raw reads were quality checked and trimmed
using UrQt (v. 1.0.18, [62]); we used a –t quality threshold of
10 and kept the other default parameters. Transcript levels
were then quantified with kallisto (v. 0.46.0, [34]) using the
reference transcriptome (cDNA) GRCh37.75 from Ensembl.
This reference transcriptome and quantification method were
used to match the data of 326 iPSC (H. Kilpinen 2019, personal
communication, www.hipsci.org). Sample quantifications in
transcripts per million (TPM) were then grouped by cell type
and normalized. TMM (trimmed mean of M-values) normaliza-
tion was performed to make transcript level comparable across
samples using the script abundance_estimates_to_matrix.pl
available with the Trinity distribution v. 2.8.4 [63]. Transcript
quantifications were summed for a gene in each cell type and
additionally averaged per individual in iPSC. Genes expressed
in fewer than 50% of the samples were then discarded (143 436
transcripts discarded in LCL, 141 529 in iPSC). Then, principal
component analysis (PCA) using normalized TPM was carried
out to identify outlier samples. Individuals with values exceed-
ing three times the standard deviation on each of the first two
principal components were removed. After filtering, 444 and
188 samples were kept, respectively, in LCL and iPSC.

(c) TE-eQTL mapping
TE-eQTL were mapped independently in LCL and iPSC datasets
using QTLtools v.1.1 [35]. After ensuring that the transcript
expression was not primarily structured by population in the
LCL dataset, we used QTLtools to perform a new PCA on the
final expression matrices. For each cell type, the values of the
three first axes were added as covariates to the model, as well
as the sex and population of origin for LCL and sex, ethnicity
and age for iPSC. cis-eQTL were searched within a 1 Mb
window around each transcript using QTLtool cis. Significance
was evaluated by running 10 000 permutations of the gene
expression matrices and multiple testing was addressed by
applying 5% FDR correction, as recommended in the QTLtools
manual. The top eTEs (most significant TE insertion significantly
associated with a gene expression level) reported by QTLtools
were kept for further analysis. Our ability to detect TE-eQTL
was evaluated by resampling an increasing number of individ-
uals selected at random (10, 25, 50, 100 and 150) in the TE
genotype matrices and re-running the QTLtools cis procedure.
Enrichments of TEs in specific gene regions (intergenic, 10 kb
upstream, 10 kb downstream, intron, exon, 50-UTR or 30-UTR)
were calculated for all TEs within the 1 Mb window around a
given gene and eTEs reported by QTLtools. Enrichments were
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calculated by sampling a matching number of 1 bp random
genomic intervals (TE breakpoints) in the reference genome
using BEDTools 1000 times. The ratio of observed TEs/random
breakpoints in a given region was then calculated for each repli-
cate to calculate the fold enrichment.

(d) TE-eQTL sharing between cell types
Sharing of TE-eQTL between cell types was considered signifi-
cant if two identical gene–TE associations had a p-value below
or equal to half the initial FDR threshold (Bonferroni correction).
Sharing was also quantified in re-sampled eQTL analyses
(increasing sample numbers) using the same criteria.

(e) Conditional analysis of TE- and SNP-eQTL
The regulatory potential of polymorphic TEs was compared with
that of SNPs by performing conditional eQTL analysis [35]. The
SNP dataset used for this analysis was recovered from the 1000
Genome Project Phase 3 release for LCL [64], while for iPSC,
we used individual VCF files available from the HipSci Consor-
tium (these include imputed 1000 Genomes genotypes). To
relieve the computational burden of mapping eQTL for all
SNPs, we extracted only markers present in the 1Mb windows
where a TE-eQTL had been previously detected. Combining TE
and SNP genotypes, eQTL were searched in each cell type
using QTLtools cis. A first pass was performed using 10 000 per-
mutations with a FDR threshold of 5%, then, a conditional
analysis for each gene was performed in order to rank and
assess the independence of the e-variants (variant, either TE
or SNP, associated with a gene expression level), using the
‘——mapping’ option of QTLtools cis.

( f ) TE-caQTL mapping
To investigate potential cis-effects of TE insertions on chromatin
accessibility, we collected ATAC-seq data for 85 GBR individuals
included in our LCL dataset [40]. Normalized ATAC peak levels
were used as a response variable to search for TE-caQTL with
QTLtools, using the genotypes of unfixed TEs for these LCL. As
for eQTL mapping, we used population and sex of each cell line
as covariates and report the best significant TE per normalized
ATAC peak as provided by QTLtools in a cis-window of 1 Mb.
The resulting caTEs (significant TE in caQTL) were then searched
for enrichment in regulatory regions by intersecting their genomic
coordinates with the Segway/ChromHMM combined regulatory
track from ENCODE generated for the LCL GM12878.

(g) Luciferase reporter assays
(i) UTR amplification
We evaluated the regulatory potential of a candidate AluYa5
insertion within the 30-UTR of the gene HSD17B12 using dual-
luciferase reporter assay. First, three LCL corresponding to one
homozygote for the insertion (GM12760), one homozygote for
the absence (GM11830) and one heterozygote (GM12831) were
cultured in RMPI (Gibco) supplemented with 15% FBS (Gibco)
at 37°C and 5% CO2. Cells were passaged and refreshed with
new medium every 3 to 4 days, before reaching approximately
1 million cells per millilitre of culture. 30-UTR sequences with
and without Alu insertion were amplified from homozygote
individuals by PCR as follows. DNA was extracted using the
Qiagen© DNeasy Blood and Tissue kit following the manufac-
turer’s instructions. For PCR amplification, no more than 1 µg
of DNA template was used per sample in a total volume of
25 µl. Five microlitres of Q5 High Fidelity Master Mix (2×) was
added with 0.3 µl of each primer (F: 50-AAACGAGCTCGC-
TAGTCAAACCTGCCTTCTTGGA-30 and R: 50-CGACTCTAG-
ACTCGACTGTCCAGGTCATTGTGGTG-30). The primers have
15 bp homology with the reporter plasmid (in bold type), as
needed for inFusion-HD cloning (Takara Bio). The mixture was
amplified after 30 s initial denaturation for 25 cycles (10 s dena-
turation at 98°C, 30 s annealing at 60°C and 20 s elongation at
72°C) followed by 2 min of final elongation. Additionally, a con-
struct similar in nucleotide composition to the UTR amplified
from GM12760 was generated with a scrambled Alu sequence
instead of the original TE (electronic supplementary material,
data S2). These three sequences were, respectively, named ‘WT
UTR’ (GM12830, no Alu in UTR), ‘Alu UTR’ (GM12760, Alu in
UTR) and ‘Alu UTR scrambled’ (UTR identical to GM12760
but Alu sequence scrambled). In order to assess successful ampli-
fication of the UTRs, the band corresponding to the expected
PCR product (1551 bp for ‘WT UTR’ and 1825 bp for ‘Alu’)
was subject to Sanger sequencing using the F- and R-m13
primers flanking the insert, as well as two internal primers
(H3Pint1-F: 50-CAGACACACTGCAATTTACAAAGA-30 and
H3Pint1-R: 50-ACGGCCTTAATTTCAATCACCA-50) to fill the
gap. PCR products with the expected sequences were then kept
for In-Fusion cloning into the reporter plasmid.

(ii) In-Fusion cloning into reporter plasmid
The artificially generated ‘scrambled’ sequence was also ampli-
fied using the same PCR conditions as the natural UTRs to add
the 15 bp flanking sequences matching the cloning site of the
receiving vector. PCR products were then cloned into a pmirGlo
dual-luciferase miRNA target expression vector (Promega). This
plasmid contains a multiple cloning site downstream of the
luciferase gene, terminated by a polyadenylation signal. As a
transfection control, the plasmid also contained a Renilla reporter
gene whose expression should not be affected by the sequence
cloned downstream from the luciferase. Cloning was done
using the In-Fusion HD Cloning kit (Takara Bio) following the
provider’s documentation. Plasmids were transformed into com-
petent alpha-5 Escherichia coli (New England Biolabs) and
cultured on LB-agar plates with 1% ampicillin overnight at 37°
C. Next, 10 clones per condition were extracted using a Miniprep
kit (Qiagen) and successful insertion of the constructs was
assessed by performing double digestion of the plasmid by
BamHI and EcoRI. Clones with the expected product size (‘WT
UTR’: 5681 and 3188 bp; ‘UTR Alu’ and ‘UTR Alu scrambled’:
5955 and 3188 bp) were then selected for the luciferase reporter
assay and amplified by MaxiPrep (Qiagen) upon transfection.

(iii) Luciferase assay
‘WT UTR’, ‘UTR Alu’ and ‘UTR Alu scrambled’ were transfected
into the LCL GM11831 for reporter assay, as well as a pGFP
reporter plasmid to evaluate transfection efficiency. For each con-
dition and each replicate, 50 million cells were transfected with
125 µg µl−1 of plasmid by electroporation using the Neon Trans-
fection System (Life Technologies). Reaction took place in 100 µl
tips, applying three pulses of 1200 V for 20 ms each. Transfection
efficiency was approximately 30%, and luciferase signal was
above background (pGFP cells) by two orders of magnitude
for the conditions tested. Reporter assay was performed using
the Dual-Glo Luciferase assay system (Promega) following the
manufacturer’s instructions. For each experiment, the average
blank (pGFP) value was subtracted from each luminescence
signal. Additionally, the luciferase signal was normalized for
each replicate by the Renilla luminescence, and the ratio of luci-
ferase/Renilla was finally normalized by the average ratio of
the ‘WT UTR’ construct.
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