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Abstract
Scaffold-free techniques in the developmental tissue engineering area are
designed to mimic in vivo embryonic processes with the aim of biofabricating, in
vitro, tissues with more authentic properties. Cell clusters called spheroids are the
basis for scaffold-free tissue engineering. In this review, we explore the use of
spheroids from adult mesenchymal stem/stromal cells as a model in the
developmental engineering area in order to mimic the developmental stages of
cartilage and bone tissues. Spheroids from adult mesenchymal stromal/stem cells
lineages recapitulate crucial events in bone and cartilage formation during
embryogenesis, and are capable of spontaneously fusing to other spheroids,
making them ideal building blocks for bone and cartilage tissue engineering.
Here, we discuss data from ours and other labs on the use of adipose
stromal/stem cell spheroids in chondrogenesis and osteogenesis in vitro. Overall,
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recent studies support the notion that spheroids are ideal "building blocks" for
tissue engineering by “bottom-up” approaches, which are based on tissue
assembly by advanced techniques such as three-dimensional bioprinting. Further
studies on the cellular and molecular mechanisms that orchestrate spheroid
fusion are now crucial to support continued development of bottom-up tissue
engineering approaches such as three-dimensional bioprinting.

Key words: Adipose stromal/stem cells; Spheroids; Building-blocks; Bottom-up;
Developmental tissue engineering; Cartilage and bone

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Classic approaches to tissue engineering rely on scaffold-based strategies,
which have limited ability to recapitulate organogenesis in vitro and are not capable of
generating hierarchical engineered tissues. Scaffold-free strategies, in particular those
using spheroids, are appealing, mainly due to the capacity of spheroids to recapitulate
three main embryonic processes: (1) Cell-to-cell and cell-to-extracellular matrix
interactions; (2) Cell differentiation; and (3) Fusion. The use of spheroids to recapitulate
embryonic tissue formation in vitro represents a potent strategy in developmental tissue
engineering. In particular, the fusion capacity of spheroids allows their use as building-
blocks in bottom-up tissue engineering through three-dimensional bioprinting
techniques.
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blocks. World J Stem Cells 2020; 12(2): 110-122
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INTRODUCTION
Classic approaches to tissue engineering rely on scaffold-based strategies, which have
limited ability to recapitulate organogenesis in vitro[1,2]. In scaffold-based approaches,
limitations  are  related  to  the  replication  of  morphological,  biomechanical  and
biochemical  signs  that  occur  in  vivo,  mainly  because  of  the  prevalence  of  cell
interactions with scaffolds instead of cell-cell and cell-extracellular matrix interactions
found in the natural tissues microenvironment[1]. Other disadvantages of scaffold-
based approaches are (1) The homogeneous distribution of cells to fill the entire area
of the scaffold; (2) The final density of the cells reached in the scaffold area; (3) The
diffusion of nutrients; and (4) The cost and time to produce a proper design of the
desired scaffold to support the desired regeneration in vivo[3-5]. The emerging approach
of scaffold-free tissue engineering often relies on the cultivation of cells as spherical
clusters known as “spheroids”, which mimic the physiological conditions of tissues in
vitro[6]. During spheroid formation, cells aggregate by cadherins-based interactions in
the absence of a fixation medium, in a process known as self-assembly[7]. Spheroids
can  be  used  in  developmental  tissue  engineering  due  to  their  capacity  to  form
hierarchical tissue structures by recapitulating embryonic processes in vitro.

As a result of their three-dimensional (3D) architecture, spheroids have improved
cell biological properties such as increased cell viability and proliferative capacity,
more stable morphology and polarization, and improved metabolic functions (as
compared to 2D cultures)[2]. Consequently, adult stem cell spheroids show distinct
properties suitable for regenerative medicine approaches,  such as high adhesion
capacity and the secretion of a variety of growth factors[8]. Spheroids can be formed
from different cell types, including mature cells[9-11]; however, for tissue engineering
approaches,  spheroids  formed  of  mesenchymal  stromal/stem  cells  (MSCs)  are
particularly appealing, due to the regenerative and multipotential properties of these
adult stem cells[6].

The subcutaneous adipose tissue is an abundant source of MSCs, recently termed
adipose derived stem/stromal cells (ASCs)[12].  Various studies have reported that
ASCs have osteogenic[13-17] as well as chondrogenic[18-20] potential for use in scaffold-
based approaches of tissue engineering. In agreement with these studies, ASCs were
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used successfully in pre-clinical and clinical trials for bone and cartilage repair[21-30].
Despite the osteogenic and chondrogenic potential of ASCs, the use of spheroids of

ASCs (or other MSCs) in bone tissue engineering is still in its infancy[31]. Saburina et
al[32] reported that ASC spheroids express osteoblast markers such as osteocalcin and
osteopontin, and have angiogenic potential and calcium deposits. In addition, the use
of scaffold-free 3D culture, including spheroids, in chondrogenesis studies led to the
identification of important molecular markers of cartilage formation[33-35]. Spheroids
have the capacity to express crucial extracellular matrix molecules such as collagen
type  II,  tenascin-C,  collagen  type  IX  and  aggrecan[36],  recapitulating  cartilage
formation.  Spheroids  also  secrete  COMP  (cartilage  oligomeric  matrix),  a
thrombospondin  family  protein  (TSP-5) [37 ,38]  recognized  as  a  biomarker  for
chondrogenesis[39].

Our  research  group  recently  reported  the  production  of  a  stably  engineered
cartilage using ASC spheroids under chondrogenic and hypoxic conditions[35].  In
addition,  we  have  recently  established  a  hypertrophic  engineered  cartilage
(manuscript submitted) for future use in bone engineering[31]. Although hypertrophic
cartilage has been used as a template for osteogenesis  in  vivo  based on different
strategies[40-42], hypertrophic cartilage made from spheroids has not been tested in this
context.

Finally, spheroids have already been used as building blocks for the biofabrication
of different tissues (such as nervous and cardiac tissues) and recent data support their
potential use in 3D bioprinting approaches[43,44].

USE OF SPHEROIDS FOR CARTILAGE AND BONE
ENGINEERING
Cultures of MSCs as 2D monolayers are widely used and suitable for cell expansion.
However, 2D cultures have numerous limitations; in particular, these cultures have
limited  cell  differentiation  potential[45,46].  In  vivo,  stem  cells  dwell  in  specific
compartments of tissue microenvironments known as “niches”, which regulate cell
physiology[47]. In 3D cultures - particularly in scaffold-free strategies such as spheroids
(Figure 1) - niche conditions can be recreated[48].

The use of 3D scaffold-free cultures, including spheroids, as an in vitro cartilage
model  has  been widely explored in  the past  few years[49,50],  because the hypoxia
gradient found inside spheroids mimics the microenvironment of native cartilage,
favoring the differentiation of MSCs and ASCs down the chondrogenic pathway[51].

Yoon  et  al[52]  showed  that  ASCs  in  3D  cultures  have  improved  chondrogenic
potential when compared with monolayers. More recently, Occhetta et al[53] showed
that the downregulation of bone morphogenetic protein (BMP) signaling in bone
marrow MSCs guides embryonic progenitors towards articular cartilage formation,
and is responsible for stable chondrogenesis, protecting against vessel invasion and,
consequently, bone formation. In a co-culture approach, spheroids composed of a
mixture of  chondrocytes and ASCs had upregulated expression of  chondrogenic
markers[54]. Importantly, Dikina et al[55] successfully used a modular system based on
MSC spheroids  to  engineer  cartilaginous  scaffold-free  tissue  for  tracheal  tissue
replacement. MSC differentiation was optimized by delivering TGF-β entrapped in
gelatin microspheres, and MSC spheroids were guided to form a cartilaginous tube
structure with mechanical properties similar to those of native trachea.

Our research group isolated and characterized human cartilage progenitor cells
(CPCs) capable of spontaneous chondrogenesis in vitro[56] in the absence of exogenous
stimuli of chondrogenic growth factors, when using a 3D scaffold and serum-free
culture[57]. Recently, we modified our 3D culture system to a scalable methodology
using micro-molded,  non-adhesive  hydrogel[58].  This  methodology prevents  cell
attachment,  and  encourages  cell-cell  interactions,  improving  chondrogenic
differentiation[59]. The micro-molded hydrogel strategy showed promising results not
only for chondrogenesis, but also for the formation of spheroids of homogeneous size
and shape, and with high cell viability[58].

ASC spheroids made using micro-molded hydrogel are also homogeneous in size,
shape  and  have  increased  cell  viability[35].  Induced  ASC  spheroids  showed  a
chondrogenic potential similar to that of CPC spheroids, as validated by proteomic
analysis of spheroid culture supernatants, known as “secretomes”[35]. When in vivo,
these spheroids might be able to secrete cartilage specific extracellular molecular
proteins and bioactive molecules, in order to promote the formation of cartilage tissue
(Figure 2). Interestingly, our secretome data on differentiated ASC spheroids revealed
the  absence  of  collagen type  X,  a  classic  marker  of  chondrocyte  hypertrophy[60].
Furthermore, comparative secretome analysis revealed that induced ASC spheroids
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Figure 1

Figure 1  Three-dimensional cell culture techniques to fabricate spheroids in vitro. A: Microfluidics; B: Hanging drop; C: Automatic platforms; D: Non-adherent
agarose micromolded hydrogel produced from a silicone mold (3D Petri dish®, Microtissues); E: Non adhesive surfaces; F: Pellet culture.

secreted higher levels of the chondrogenesis biomarkers collagen type II and COMP
than CPC spheroids. Induced ASC spheroids also had increased secretion of a new
biomarker of chondrogenesis - TSP-1[35] - an anti-angiogenic protein recently described
as anti-hypertrophic[61].

While several studies have reported successful chondrogenic differentiation using
spheroids, only a few studies have reported the use MSC or ASC spheroids in bone
engineering[31]. Osteogenic differentiation is commonly reached by the addition of
inducers to the culture medium. Hildebrandt et al[62]  showed that MSC spheroids
induced  using  dexamethasone,  ascorbic  acid  and  β-glycerophosphate  had  a
widespread  distribution  of  collagen  type  I,  the  main  collagen  found  in  bone
extracellular matrix. In addition, Shen et al[63] reported that ASC spheroids induced
into  the  osteogenic  pathway  using  a  cocktail  of  vitamin  D3,  ascorbic  acid,
dexamethasone and β-glycerophosphate developed calcium deposits (stained with
Alizarin red); these deposits were associated preferentially with the inner spheroid
cells.  In agreement with these data,  Gurumurthy et al[64]  observed that growth as
spheroids improved the synthesis of calcium deposits by ASCs. In that study, ASC
spheroids and monolayers were maintained in medium containing ascorbic acid,
dexamethasone, β-glycerophosphate and 10% fetal bovine serum. Recently, Rumiński
et al[65], compared the osteogenic potential of ASCs by culturing them as monolayer,
spheroids or seeded in a scaffold. The results showed that ASCs spheroids presented
an up-regulation of osteogenic markers. In addition, after the induction of cells to later
osteogenic differentiation events, cells dissociated from spheroids produced mineral
and osteocalcin. In this study, ASCs spheroids were kept in a medium containing the
inducing factors 10 nmol dexamethasone, 50 μg/mL ascorbic acid 2-phosphate and 3
mmol NaH2PO4. During the induction of later differentiation events, the medium was
supplemented with 10 nmol 1α,25-dihydroxyvitamin D3.

BMP-7 stimulates bone metabolism, as well as modulating the proliferation and
differentiation of MSCs into bone tissue cells[66]. According to our preliminary results,
ASC spheroids induced using BMP-7 had calcium deposits, they were negative for
typical bone extracellular matrix components, showing a restricted area of positivity
for osteocalcin.  Nevertheless,  even in the absence of  BMP-7,  ASC spheroids had
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Figure 2

Figure 2  Spheroids in cartilage and bone tissue microenvironments. Adipose stem/stromal cells (ASCs) spheroids delivered to defect area in vivo can secrete
bioactive molecules and synthetize typical extracellular matrix proteins of cartilage, promoting regeneration. Our group have detected collagen type II and COMP in
the secretome of in vitro ASCs spheroids, as the production of typical extracellular matrix proteins of cartilage in situ[35]. ASCs spheroids delivered to critical-size bone
defects can stimulate angiogenesis by secretion of vascular endothelial growth factor (VEGF) and synthesize bone typical extracellular matrix proteins, promoting
regeneration. Our group have detected higher levels of VEGF secreted in ASCs spheroids induced to form a hypertrophic cartilage in vitro, as the production of typical
extracellular matrix proteins of bone in situ (manuscript submitted).

strong in situ  staining for collagen type X, a classic early marker of hypertrophic
chondrocytes[60,67], the precursors of endochondral ossification.

In  agreement  with  the  intrinsic  capacity  of  ASC/MSC  spheroids  to  form
hypertrophic chondrocytes suggested by our preliminary results, Muraglia et al[68]

reported a transition from chondrogenesis to osteogenesis in human MSC spheroids
produced using the pellet technique. Initially, a chondrogenic induction medium was
used, composed of human TGF-β1 and dexamethasone. At the end of four weeks, the
medium was replaced with osteogenesis inducing factors (β-glycerophosphate and
dexamethasone) for an additional three weeks. The authors found crystallization
inside the spheroids, together with remodeling from a typical cartilage extracellular
matrix to bone. Table 1 summarizes in vitro and in vivo studies with ASCs spheroids
for cartilage and bone engineering.

USE OF SPHEROIDS FOR THE DEVELOPMENTAL
ENGINEERING OF CARTILAGE AND BONE
Developmental engineering for bone tissue formation in vitro aims to recapitulate the
stages of bone development that occur in vivo[76,77]. Chondrogenesis is the primordial
stage of skeletal development, involving the migration and recruitment of MSCs, the
condensation  of  progenitor  cells,  and  the  differentiation  and  maturation  of
chondrocytes,  which  culminate  in  the  formation  of  cartilage  and  bone,  during
endochondral  ossification[78,79].  Fell[80]  first  described  one  of  the  early  events  in
chondrogenesis:  The  aggregation of  chondroprogenitor  MSCs that  leads  to  pre-
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Table 1 In vitro and in vivo studies with adipose derived stem/stromal cells spheroids for cartilage and bone engineering

Tissue Spheroid production
method Defect/Animal model Main outcomes Ref.

Cartilage Spontaneous formation in 48-
well plate

In vitro Further optimization of
chondrogenic induction will
be required

[69]

Cartilage Scaffold Subchondral bone in Rabbit The structure and function of
regenerated tissue was
similar to hyaline cartilage

[70]

Cartilage Spinner flask Transplanted subcutaneously
in Mice

Spheroid culture is a viable
method for chondrogenic
differentiation and in vivo
cartilage formation

[52]

Cartilage Porous scaffold Femur trochlea on the
femoropatellar groove in
Rabbit

Formation of mature cartilage
in vivo

[71]

Cartilage Micro-molded non-adhesive
hydrogel

In vitro The study confirms that
spheroids mimic a stable
cartilage tissue

[35]

Bone Hanging droplet Muscle pouch in femur in a
Rat

Spheroids presented up-
regulation of osteogenic
markers, extracellular matrix
mineralization and, when
implanted in vivo, greater
bone volume

[63]

Bone Overlay In vitro Spheroids presented calcium
deposits and cells were
positive for CD31 (classic
endothelial marker)

[72]

Bone Pellet culture Osteochondral (femoral
trochlear groove) in
microminipigs

Spheroids may induce
regeneration of cartilage and
subchondral bone

[73]

Bone Agarose chip Dorsal in Mice Formation of ectopic bone
[74]

Bone Elastin-like Polypeptide
(ELP) and Polyethyleneimine
(PEI) surface

In vitro Spheroids showed superior
osteogenic differentiation
than monolayer culture.
Spheroids produced bone
extracellular matrix and
presented greater
mineralization

[64]

Bone Centrifugation In vitro Composite spheroids
enhanced expression of
osteogenic genes and
mineralization after fusion
process

[75]

Bone Non-adhesive surfaces In vitro Spheroids up-regulated
osteogenic markers, showed
low mineral production and
produced osteocalcin protein

[65]

cartilage condensation. This process depends on cell-cell and cell-matrix interactions,
and is associated with intense changes in cytoskeletal architecture[81].

Bone engineering studies rely on mimicking endochondral ossification, the main
mechanism of bone regeneration/repair after injury or fractures[82].  Endochondral
ossification is tightly coordinated by cellular and molecular mechanisms[77]. MSCs
initially condense and differentiate into chondrocytes, forming a hyaline cartilaginous
matrix template that is subsequently replaced by vascularized bone tissue[83].

All  hypertrophic  cartilage-associated  molecular  events  seem to  occur  in  ASC
spheroids,  suggesting  that  these  cells  can  be  used  to  faithfully  recapitulate
endochondral ossification in vivo[73]. According to our preliminary results, these main
events  can also  be  recapitulated in  vitro  from ASC spheroids  induced down the
chondrogenic and osteogenic pathways (manuscript submitted). The stage of pre-
cartilage condensation is closely linked to an increase in hyaluronidase activity and to
the  appearance  of  cell  adhesion  molecules,  mainly  cadherins[36,84].  In  spheroid
formation, N-cadherin expression is directly correlated with successful chondrogenic
differentiation,  because  it  mimics  the  mesenchymal  condensation that  occurs  in
embryos[85]  by  a  process  of  self-assembly[86].  Decorin  and  extracellular  matrix
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molecules  such  as  tenascin,  TSP-1  and  COMP  then  interact  with  cell  adhesion
molecules to activate intracellular signaling pathways and trigger the maturation of
chondroprogenitor  cells  into  chondrocytes [ 8 4 ].  Furthermore,  induced  ASC
differentiation upregulates a trio of  SOX genes (SOX9,  SOX5,  SOX6),  and this is
followed by the downregulation of RUNX2, the master inducer of osteogenesis[87], and
ALP,  a  gene  involved in  mineralization[88,89].  Although spheroids  are  capable  of
recapitulating chondrogenesis steps, in our model spheroid-based chondrogenesis
does not progress to bone differentiation as seen in endochondral ossification in
vivo[35].

During endochondral  ossification,  mature  hypertrophic  chondrocytes  express
classic osteogenic markers, such as RUNX-2, osterix, collagen type I, osteocalcin and
osteopontin[82,83,90]. Calcification starts in the cartilage template, when hypertrophic
chondrocytes  secrete  vascular  endothelial  growth  factor,  leading  to  cartilage
vascularization  and  enabling  osteoblasts  to  replace  the  calcified  cartilage  by
mineralized mature bone[91].  Various studies have attempted to harvest  the high
angiogenic  potential  of  hypertrophic  chondrocytes  to  improve  bone  repair,  by
mimicking the events of hypertrophy in vitro to engineer optimized bone-like tissue or
to improve angiogenesis and bone repair in vivo[31]. Most studies were performed with
cells surrounded by biomaterials, and obtained positive results[92-95]. Studies using
spheroids as a template for ossification showed that spheroids present an elevated
capacity to differentiate into bone in vitro[68], and to regenerate this tissue in vivo[73,96],
which may be linked to their ability to form hypertrophic chondrocytes (Figure 2).

In conclusion, ASC spheroids can be used as a model to mimic the differentiation
events  of  stable  or  hypertrophic  cartilage,  depending  on  inducers  and  oxygen
conditions. Spheroid cells differentiate into chondrocytes mainly due to hypoxia, and
are  capable  of  maintaining  a  stable  chondrocyte  phenotype.  Subsequent
differentiation  into  bone  tissue  appears  to  rely  on  an  intermediate  state  of
chondrocyte hypertrophy, which recapitulates endochondral ossification.

SPHEROIDS AS BUILDING-BLOCKS
In the last decade, the major challenge in the field of tissue engineering has been the in
vitro manufacture of tissues compatible in size to injury sites and with a high density
of cells, similar to that observed in native tissues and organs[97]. These requirements
were the driving force for the development of “bottom-up” tissue engineering[98],
where tissues are created by assembling “building blocks” into higher ordered 3D
structures.  The building blocks are  represented by engineered,  scaffold-free,  3D
constructs such as spheroids, which are assembled into higher order structures using
different technologies, of which the most common is 3D bioprinting[98-100].

The success of “bottom-up” tissue engineering relies on the inherent capacity of
building blocks to fuse to each other, resulting in larger tissue constructs[5]. Given the
ability of spheroids to recapitulate the main morphogenetic events in tissue formation,
including fusion, they represent an ideal choice for building blocks in bottom-up
tissue engineering[2].  Improving our understanding of the cellular and molecular
mechanisms  that  underlie  spheroid  fusion  is  essential  for  the  biofabrication  of
complex tissues using spheroids[101].

SPHEROID FUSION
Tissue fusion is a spontaneous process in embryonic development and occurs by cell-
to-cell and cell-to-extracellular matrix interactions, involving complex molecular and
biophysical processes[102]. When spheroids are used to mimic tissue fusion, the process
is  controlled  by  surface  tension  forces  culminating  into  a  single  cohesive
structure [102 ,103].  One  advantage  of  spheroid  fusion  is  that  the  kinetics  and
morphological changes can be easily quantified using high-throughput technology,
mainly by time-lapse brightfield images and fluorescence microscopy[104]. Then, the
images obtained can be analyzed with a customized image analysis script[104] running
on the free NIH image analysis software ImageJ.

Different studies have investigated the fusion process of spheroids in vitro. Fleming
et  al[105]  fused  uniluminal  vascular  spheroids  in  vitro,  in  a  process  that  closely
resembles the formation of the descending aorta during embryonic development, in
vivo.  Lehmann  et  al [106]  produced  3D  cartilage-like  single  spheroids  using
dedifferentiated chondrocytes, and generated larger microtissues consisting of several
spheroids  fused  together,  as  a  scaffold-free  strategy  for  reliable  treatment  of
osteoarthritis and cartilage defects due to trauma. These authors observed that fused
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spheroids showed increased production of extracellular matrix and higher levels of
collagen  II  compared  with  single  spheroids.  Susienka  et  al[104]  designed  a  high-
throughput platform to quantify spheroid fusogenicity using two different assays:
Initially, a “tack” assay is used to measure the minimum time taken by two spheroids
to form a stable microtissue “doublet”, while a fusion assay tracks the morphological
parameters of fusion. This method is useful to explore the mechanisms involved in
spheroid fusion and can be applied to different cell types, to identify differences in
fusion processes.

Our preliminary results using the fusogenicity assay described above showed that
ASC spheroids, when placed in pairs, start fusing at 24 h, while the whole fusion
process is finished by day 7. The cellular and molecular mechanisms that control
spheroid fusion remain poorly described. According to our preliminary results, at day
4 of culture, a population of spheroid cells migrates from the spheroid periphery to
the region of fusion,  at  the center of  the spheroid.  In agreement with these data,
Fleming et al[105] showed that the fusion of uniluminal vascular spheroids is mediated
by the ability of  spheroid cells  to reposition themselves,  maximizing their  inter-
adhesive interactions and minimizing the free energy of the system as a whole.

In  ASC spheroids,  we  also  observed a  resistance  to  fusion  directly  related  to
osteogenic  differentiation (manuscript  in  preparation).  Similarly,  Ahmad et  al[75]

showed that, when subjected to a protocol for mineralization in vitro, ASCs spheroids
only fused after seven days in culture; in this period, the cells remained viable and
stained for Alizarin red O, indicating the presence of calcium deposits.

With regard to cartilage engineering, a study by Lehmann et al[106]  showed that
chondrogenesis increases when spheroids undergo fusion. Fused spheroids presented
some similarities to native hyaline cartilage and were highly positive for collagen type
II and proteoglycans, which are typical of cartilage extracellular matrix. Our group
has  shown  that  fusion  is  not  impaired  in  ASC  spheroids  induced  to  undergo
chondrogenesis[35].  Furthermore,  in  a  different  spheroid  model,  using  CPCs,  we
observed that spheroids undergo fusion at day 7[58]; however, the contact area in fused
CPC spheroids is reduced compared with that observed in ASC spheroids induced to
undergo chondrogenesis.

In conclusion, spheroid fusion is the event that allows bottom-up tissue engineering
to form larger tissue constructs. Ours and other research groups have shown that
spheroid fusion is a fast, efficient and scalable process. However, further molecular
and cellular studies are necessary to understand the mechanisms involved in fusion,
in order to produce stable tissue constructs that recapitulate tissue morphogenesis
and exhibit the desired functionality.

SPHEROID BIOPRINTING
The 3D bioprinting of tissue constructs is considered one of the latest technologies in
tissue engineering and regenerative medicine, promising to facilitate the development
of complex tissues and organ constructs[107].  Bioprinting evolved from 3D scaffold
printing, a technique developed by Hull[108] in the 80s, and initially applied to improve
scaffold properties[109,110].

Currently, 3D bioprinting techniques are an attractive strategy for bottom-up tissue
engineering due to the possibility of engineering with precision larger and complex
tissue  constructs  with  suitable  mechanical  properties  and  desirable  biological
functions.  In  3D  bioprinting,  biomaterials  containing  bioactive  molecules  and
encapsulated cells,  referred to as  the “bioink,” are added layer-by-layer to form
previously designed patterns[109]. The state-of-the-art is to distribute cells or spheroids
and  bioactive  agents  with  precision  to  form  a  3D  structure,  via  the  controlled
extrusion activity of a bioprinter[111].

Visconti et al[103] discussed the importance of spheroid fusion to form an intra-organ
vascular tree by 3D bioprinting. Vascular spheroid fusion resulted in a functional and
physiologically  relevant  3D  structure  similar  to  a  blood  vessel,  showing  both
vasodilatory and contractile responses[112]. Importantly, the fabrication of a vascular
structure is an essential initial step to successfully engineer large tissue constructs due
to the need for vascularization in native organs. The biofabrication of larger constructs
requires spheroids to be homogeneous in the desired size and shape[113],  and our
research  group has  shown that  this  homogeneity  can  be  obtained by  the  use  of
molded non-adherent hydrogel[35].

One interesting strategy, developed by Yu et al[114] used a scalable bioink referred to
as “tissue strands” in scaffold-free bioprinting, to facilitate the accurate biofabrication
of biomimetically developed tissues. The model was based on chondrocyte spheroid
fusion to produce the tissue strands, which were then bioprinted into a more complex
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cartilage construct without the use of hydrogels. The authors successfully produced
bovine articular cartilage tissues with morphological, biochemical and mechanical
properties close to those of native cartilage.

In a recent outstanding study, Daly et al[115] used inkjet bioprinting to deposit a cell
suspension of MSCs and chondrocytes into 3D printed microchambers, to form highly
organized arrays of spheroids. The morphological composition and the biomechanical
properties of the bioprinted cartilage-like tissue construct were similar to those of
native cartilage found in vivo.

Despite different efforts and advances in spheroid 3D bioprinting, many challenges
must  still  be  overcome to  allow this  technique  to  reach  its  full  potential.  These
challenges  include the  incorporation of  blood vessels  and nerve  fibers  in  tissue
constructs[116], and the production of large and uniform constructs suitable for future
clinical applications[117].

CONCLUSION AND PERSPECTIVES
Recent advances in the developmental engineering area, which aims to recapitulate
the cell and molecular stages of embryonic development to form a desired tissue[76,77],
have allowed the establishment of spheroid-based in vitro models that mimic more
closely embryonic processes, including endochondral ossification and mesenchymal
condensation, which represent stages of bone and cartilage formation, respectively.
Spheroids are ideal building blocks for bottom-up tissue engineering mainly due to
their high fusion capacity. Further studies on the spheroid fusion process and the
refinement of in vitro tissue biofabrication technologies such as 3D bioprinting are
now essential for the production of higher order tissues in vitro. In conclusion, 3D
bioprinting using ASC spheroids as cartilage and bone building blocks is a promising
technology for future development of tissue constructs for clinical use, by bottom-up
tissue engineering.
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