Skip to main content
. 2020 Jan 17;8:3300111. doi: 10.1109/JTEHM.2020.2964666

TABLE 6. Performance of Two Class Problems Using Different Settings of Various Classifiers Except the Binary SVM Classifier.

Methods KNN classifier, with Cityblock Distance Ensemble of learners classifier with Discriminant Learner and ‘RUSBoost’ method ANN classifier with N= 40 and training function ’trainscg’
Problem Sen. (%) Spe. (%) Acc. (%) Sen. (%) Spe. (%) Acc. (%) Sen. (%) Spe. (%) Acc. (%)
Bleeding versus Normal 94.93 97.00 96.29 94.43 95.17 94.81 91.51 96.68 95.67
Ulcer versus Normal 85.23 95.33 93.14 84.99 92.43 90.24 72.81 96.76 93.24
Tumor versus Normal 71.11 94.21 91.74 71.27 91.01 89.17 79.15 97.04 92.31
Bleeding versus Ulcer 96.12 94.41 95.53 91.73 91.80 91.67 95.73 91.80 91.23
Bleeding versus Tumor 97.15 95.99 97.31 95.13 91.05 94.34 97.05 92.29 95.23
Ulcer versus Tumor 94.14 90.23 92.58 86.11 78.58 82.12 90.14 87.94 88.91
Disease versus Normal 90.15 90.21 90.19 85.16 88.23 88.09 80.43 91.79 86.98
Bleeding versus Other 91.23 97.12 91.16 90.13 94.14 93.12 86.81 97.07 94.17
Ulcer versus Other 85.01 96.12 95.12 83.25 91.22 90.01 72.52 97.01 93.54
Tumor versus Other 71.11 96.64 94.59 72.13 86.82 86.13 75.13 98.11 93.51