TABLE 6. Performance of Two Class Problems Using Different Settings of Various Classifiers Except the Binary SVM Classifier.
Methods | KNN classifier, with Cityblock Distance | Ensemble of learners classifier with Discriminant Learner and ‘RUSBoost’ method | ANN classifier with N= 40 and training function ’trainscg’ | ||||||
---|---|---|---|---|---|---|---|---|---|
Problem | Sen. (%) | Spe. (%) | Acc. (%) | Sen. (%) | Spe. (%) | Acc. (%) | Sen. (%) | Spe. (%) | Acc. (%) |
Bleeding versus Normal | 94.93 | 97.00 | 96.29 | 94.43 | 95.17 | 94.81 | 91.51 | 96.68 | 95.67 |
Ulcer versus Normal | 85.23 | 95.33 | 93.14 | 84.99 | 92.43 | 90.24 | 72.81 | 96.76 | 93.24 |
Tumor versus Normal | 71.11 | 94.21 | 91.74 | 71.27 | 91.01 | 89.17 | 79.15 | 97.04 | 92.31 |
Bleeding versus Ulcer | 96.12 | 94.41 | 95.53 | 91.73 | 91.80 | 91.67 | 95.73 | 91.80 | 91.23 |
Bleeding versus Tumor | 97.15 | 95.99 | 97.31 | 95.13 | 91.05 | 94.34 | 97.05 | 92.29 | 95.23 |
Ulcer versus Tumor | 94.14 | 90.23 | 92.58 | 86.11 | 78.58 | 82.12 | 90.14 | 87.94 | 88.91 |
Disease versus Normal | 90.15 | 90.21 | 90.19 | 85.16 | 88.23 | 88.09 | 80.43 | 91.79 | 86.98 |
Bleeding versus Other | 91.23 | 97.12 | 91.16 | 90.13 | 94.14 | 93.12 | 86.81 | 97.07 | 94.17 |
Ulcer versus Other | 85.01 | 96.12 | 95.12 | 83.25 | 91.22 | 90.01 | 72.52 | 97.01 | 93.54 |
Tumor versus Other | 71.11 | 96.64 | 94.59 | 72.13 | 86.82 | 86.13 | 75.13 | 98.11 | 93.51 |