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Upon activation with pathogen-associated molecular pat-
terns, metabolism of macrophages and dendritic cells is shifted
from oxidative phosphorylation to aerobic glycolysis, which is
considered important for proinflammatory cytokine produc-
tion. Fragments of bacterial peptidoglycan (muramyl peptides)
activate innate immune cells through nucleotide-binding oligo-
merization domain (NOD) 1 and/or NOD2 receptors. Here, we
show that NOD1 and NOD2 agonists induce early glycolytic
reprogramming of human monocyte-derived macrophages
(MDM), which is similar to that induced by the Toll-like recep-
tor 4 (TLR4) agonist lipopolysaccharide. This glycolytic repro-
gramming depends on Akt kinases, independent of mTOR com-
plex 1 and is efficiently inhibited by 2-deoxy-D-glucose (2-DG)
or by glucose starvation. 2-DG inhibits proinflammatory cyto-
kine production by MDM and monocyte-derived dendritic cells
activated by NOD1 or TLR4 agonists, except for tumor necrosis
factor production by MDM, which is inhibited initially, but aug-
mented 4 h after addition of agonists and later. However, 2-DG
exerts these effects by inducing unfolded protein response
rather than by inhibiting glycolysis. By contrast, glucose starva-
tion does not cause unfolded protein response and, in normoxic
conditions, only marginally affects proinflammatory cytokine
production triggered through NOD1 or TLR4. In hypoxia mim-
icked by treating MDM with oligomycin (a mitochondrial ATP
synthase inhibitor), both 2-DG and glucose starvation strongly
suppress tumor necrosis factor and interleukin-6 production
and compromise cell viability. In summary, the requirement of
glycolytic reprogramming for proinflammatory cytokine pro-
duction in normoxia is not obvious, and effects of 2-DG on cyto-
kine responses should be interpreted cautiously. In hypoxia,

however, glycolysis becomes critical for cytokine production
and cell survival.

Metabolism of innate immune cells is profoundly repro-
grammed upon their activation, so as to meet demands from
diverse processes ongoing in activated cells, such as synthesis of
cytokines and effector molecules, phagocytosis, and migration
(1, 2). Specific characteristics of metabolic reprogramming
depend on the activating stimulus. For example, resting macro-
phages use oxidative phosphorylation (OXPHOS)2 as their
main energy source. Pro-inflammatory stimuli such as lipopo-
lysaccharide (LPS) and interferon-�, which trigger M1-type
macrophage activation, induce a number of metabolic altera-
tions including the switch to aerobic glycolysis, disruption of
the Krebs cycle, and suppression of OXPHOS (1, 3, 4). Similar
changes are observed in dendritic cells activated by LPS (5–7).
M2-type macrophage activation induced by interleukin (IL)-4
is characterized by a transient increase in glycolysis (8) as well as
augmentation of glutaminolysis and fatty acid oxidation (3, 9).
It is proposed that the type of metabolism not only supports
functional demands of innate immune cells, but also deter-
mines specific characteristics of their activation and differenti-
ation (1, 3, 10). It follows that immune responses could be
manipulated by targeting metabolism of innate immune cells,
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which would aid in treatment of acute and chronic inflamma-
tory diseases (11, 12).

Aerobic glycolysis, also known as Warburg effect, is a type of
metabolism whereby glycolysis serves as the main source of
ATP, despite favorable conditions for OXPHOS (sufficient oxy-
gen supply) (13). Increased glycolytic flux generates metabo-
lites that serve as starting points for protein, nucleic acid, and
lipid biosynthesis (13, 14). Glycolytic reprogramming of innate
immune cells probably involves multiple mechanisms. One of
them is more rapid and relies on the translocation of pre-exist-
ing hexokinase II (HK-II) onto the outer mitochondrial mem-
brane (5). Another, slower mechanism is based on transcrip-
tional up-regulation of glycolytic enzymes, mediated by a
signaling pathway involving Akt kinase, mTOR complex 1
(mTORC1), and hypoxia-inducible factor (HIF)-1� (15). Aero-
bic glycolysis is viewed as a metabolic basis of inflammation (1).

Mechanisms of pro-inflammatory metabolic reprogram-
ming have mostly been studied using LPS treatment in vitro or
in vivo (3, 5, 6, 16, 17). However, LPS is a very strong stimulus
that might not be representative of all the multitude of patho-
gen-associated molecular patterns recognized by diverse pat-
tern recognition receptors (PRRs). In particular, little is known
about metabolic reprogramming induced by muramyl pep-
tides, i.e. fragments of bacterial peptidoglycan recognized by
two closely related cytosolic receptors, nucleotide-binding olig-
omerization domain (NOD) 1 and NOD2 (18, 19). Importantly,
NOD1 and NOD2 agonists are promising immunostimulants
and adjuvants, some of which are used in the clinics (20).

Here, we have analyzed metabolic reprogramming induced
by NOD1 and NOD2 agonists in human monocyte-derived
macrophages (MDM) and monocyte-derived dendritic cells
(MDDC) in vitro and in mouse peritoneal macrophages (PM) in
vivo. We used N-acetylmuramyl-L-alanyl-D-isoglutamyl-meso-
diaminopimelic acid (M-triDAP), which is an NOD1 agonist

with a minor activity toward NOD2 (21, 22); two specific NOD2
agonists (N-acetylmuramyl-L-alanyl-D-isoglutamine, also known
as muramyl dipeptide (MDP) and N-acetylglucosaminyl-N-
acetylmuramyl-L-alanyl-D-isoglutamine, also known as gluco-
saminyl muramyl dipeptide (GMDP)) (21, 23); and LPS as a con-
trol. We show that NOD1/NOD2 and TLR4 agonists induce early
glycolytic reprogramming of MDM. We also show that glycolytic
reprogramming is not required for pro-inflammatory cytokine
production by MDM and MDDC, at least within the time frame of
our experiments (24 h).

Results

Expression of TNF, IL6, and IL1B by human MDM stimulated by
M-triDAP, MDP, or LPS

We generated MDM by culturing human donor mono-
cytes with granulocyte-macrophage colony-stimulating factor
(GM-CSF), and characterized cytokine responses of MDM to
agonists of NOD1 (M-triDAP), NOD2 (MDP), and TLR4 (LPS).
All three agonists induced tumor necrosis factor (TNF) secre-
tion (Fig. 1A), with MDP being somewhat less potent than
M-triDAP and LPS. All three agonists induced TNF, IL6, and
IL1B mRNA expression (Fig. 1, B–D).

NOD and TLR4 agonists trigger rapid glycolytic
reprogramming of human MDM but differentially induce
ACOD-1 expression

To assess glycolysis, we measured extracellular medium
acidification rate (ECAR) before and after addition of
M-triDAP, MDP, or LPS to MDM cultures. Within 1 h, all ago-
nists induced elevation of ECAR (LPS � M-triDAP � MDP)
(Fig. 2, A and B). The response peaked at 2–2.5 h and gradually
declined thereafter (Fig. 2A). To estimate glycolytic reserve, we
treated MDM with oligomycin, a mitochondrial ATP synthase
inhibitor. Oligomycin induced a more rapid elevation of ECAR,

Figure 1. Pro-inflammatory cytokine expression by human MDM. A, levels of TNF in MDM supernatants after 3 and 24 h of culture with medium alone (0),
M-triDAP (10 �g/ml), MDP (1 �g/ml), or LPS (100 ng/ml). There were 18 donors, except for MDP (10 donors). Horizontal bars within each group are mean values;
dashed line, lower limit of detection by ELISA. **, p � 0.01; ***, p � 0.001 by paired t test. B–D, kinetics of TNF, IL6, and IL1B mRNA expression by MDM stimulated
as in A. Mean � S.D. of log-transformed data, 9 donors.
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reaching a plateau at 30 – 40 min (Fig. 2A). Notably, at the peak
of M-triDAP– or LPS-induced responses, MDM deployed most
of their glycolytic reserve (Fig. 2A). At 20 h after addition of
agonists, no differences in ECAR between unstimulated and
stimulated MDM were found (Fig. 2C). Similar changes of
ECAR upon M-triDAP or LPS treatment were observed in
MDM generated with macrophage colony-stimulating factor
(M-CSF) instead of GM-CSF (Fig. S1A).

Additionally, M-triDAP and LPS treatment caused, on aver-
age, a 30 – 40% increase of glucose consumption by MDM (Fig.
2D; Fig. S1B). Interestingly, despite similar effects of M-triDAP
and LPS on glucose consumption and ECAR, M-triDAP
induced somewhat lower release of lactate as compared with
LPS (Fig. 2E; Fig. S1C). Presumably, lactate released early on
M-triDAP treatment (as evidenced by kinetics of ECAR) is
partly re-utilized by MDM for further metabolism (24, 25).

Oxygen consumption rate (OCR) slowly decreased during
first hours of stimulation with M-triDAP or LPS but not MDP,
whereas after addition of oligomycin, OCR dropped abruptly by
about two thirds (Fig. 2, F and G). When oligomycin was added
3 h after addition of agonists, differences in OCR between
unstimulated and stimulated cells were abolished, indicating
that the small decrease of OCR induced by M-triDAP or LPS
was because of decrease of OXPHOS (Fig. S1D). Additionally,
mitochondrial stress test indicated that MDM, irrespectively of
preceding NOD1 or TLR4 agonist treatment, possess almost no
spare respiratory capacity and use most of the oxygen con-
sumed to sustain mitochondrial respiration (Fig. S1D).

After 20-hour stimulation, OCR in M-triDAP–treated but
not LPS-treated MDM was slightly increased compared with
untreated cells (Fig. 2H). Mitochondrial stress test did not
reveal clear-cut differences in oxygen usage between stimulated
and unstimulated cells (Fig. S1E).

A hallmark of metabolic reprogramming triggered by LPS is
the induction of aconitate decarboxylase 1 (ACOD1) expres-
sion (3, 26). ACOD1 diverts carbon atom flow away from the
Krebs cycle by metabolizing cis-aconitate, a Krebs cycle inter-
mediate, into itaconate, an antimicrobial and immunomodula-
tory agent (17, 26–28). In unstimulated MDM, ACOD1 protein
was undetectable (Fig. 2I). LPS strongly induced ACOD1
mRNA and protein expression, whereas M-triDAP induced
much lower levels of ACOD1 mRNA and only trace amounts of
ACOD1 protein (Fig. 2, I and J). In summary, both TLR4 and
NOD receptor agonists induce rapid up-regulation of glycolysis
in MDM, whereas ACOD1 is differentially induced and oxygen
consumption is marginally affected.

A NOD2 agonist up-regulates glycolysis in mouse PM

To analyze metabolic reprogramming induced by a NOD
receptor agonist in vivo, we injected C57BL/6 mice with 100 �g
GMDP (a NOD2 agonist) (23), isolated PM 2 h after injection,
and measured cytokine production and parameters of glycoly-
sis ex vivo. GMDP increased both glucose consumption and
lactate release (Fig. 2, K and L), which was paralleled by elevated
TNF and IL-6 production (Fig. 2, M and N). Interestingly, there
was a small but significant elevation of Ly6G�F4/80�CD11b�

cells (the phenotype of granulocytes) in GMDP-injected group
compared with PBS-injected group (4.9 � 4.4% versus 0.1 �
0.1% of adherent cells; p � 0.001). However, no correlations
were observed between percentages of Ly6G� cells and param-
eters of PM metabolism and cytokine production. Thus, a NOD
agonist injected in vivo enhances glucose metabolism in PM in
a fashion similar to that observed in human MDM in vitro.

The role of Akt, mTORC1, and PFKFB3 in glycolytic
reprogramming of MDM

To verify that the elevation of ECAR induced by PRR agonists
in human MDM is because of elevated glycolysis, we used either
2-DG, a competitive inhibitor of glycolysis, or glucose-free
medium. As expected, 2-DG reduced basal ECAR (Fig. 3A),
suppressed M-triDAP– or LPS-induced elevation of ECAR
(Fig. 3, A and C), and strongly reduced lactate release (Fig. 3D).
Glucose starvation had the same effect on glycolysis as 2-DG
(Fig. 3, B–D).

As suggested by ECAR measurements, the elevation of gly-
colysis in MDM after addition of PRR agonists is rather fast and,
therefore, might occur without de novo gene expression. In
LPS-activated mouse DCs, a similarly fast elevation of ECAR
was explained by redistribution of HK-II from cytosol to the
outer mitochondrial membrane (5), where HK-II becomes fully
active (29). To bind mitochondrial membrane, HK-II needs to
be phosphorylated on threonine-473, which is accomplished by
Akt kinase (5, 30). We observed a transient elevation of acti-
vated Akt (phosphorylated on threonine-308 and serine-473) at
30 – 60 min after addition of M-triDAP or LPS (Fig. 3E), i.e. near
the time points when ECAR began to rise (see above). A specific
Akt inhibitor (Akt-I-1/2) (31) suppressed basal parameters of
glycolysis and cancelled their elevation upon M-triDAP or LPS
treatment (Fig. 3, F–I); notably, effects of Akt-I-1/2 on glycoly-
sis were very similar to those of 2-DG. Another Akt inhibitor,
triciribine, also diminished the M-triDAP– or LPS-induced rise
of ECAR (Fig. 3G; Fig. S2A). Inhibitors of kinases upstream of
Akt, such as PI-3K (wortmannin) and mTORC2 (Ku 0063794),
reduced Akt phosphorylation at Thr-308 and/or Ser-473 (Fig.

Figure 2. Metabolic reprogramming of macrophages activated by NOD1, NOD2 and TLR4 receptor agonists. A and F, kinetics of ECAR (A) and OCR (F) in
human MDM after injection (arrow) of medium, M-triDAP (10 �g/ml), MDP (1 �g/ml), LPS (100 ng/ml), or oligomycin (2 �M). 1 representative experiment out
of 12; mean � S.D. values of quadruplicates. B and G, AUC for ECAR (B) and OCR (G) responses shown in A and F, respectively. Twelve donors, except for MDP
(4 donors), each shown by a unique symbol. C and H, ECAR (C) and OCR (H) after a 20-h culture of MDM with medium alone, M-triDAP, or LPS (n � 10). D and E,
24-h glucose consumption (D) and lactate release (E) by MDM treated with medium, M-triDAP, or LPS (10 –16 donors per data point; lines connect measure-
ments from individual experiments). In B–E, G, and H, horizontal lines denote group means; #, p � 0.07; *, p � 0.05; **, p � 0.01; ***, p � 0.001 by paired t test.
I, expression of ACOD1 protein by MDM stimulated with M-triDAP or LPS (Western blotting), 1 representative experiment out of 3. J, kinetics of ACOD1 mRNA
expression upon treatment with M-triDAP or LPS (mean � S.D., 6 donors). **, p � 0.01 for comparisons between M-triDAP- and LPS-induced expression at given
time points. K–N, glucose metabolism and cytokine production by PM from C57BL/6 mice that had received PBS or GMDP (100 �g) subcutaneously. PM were
sampled 2 h after injection and cultured for 24 h to assess glucose consumption (K), lactate (L), TNF (M), and IL-6 (N) release per �g cellular protein; horizontal
lines denote group means; *, p � 0.05; ***, p � 0.001 by t test.
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S2B) and down-modulated parameters of glycolysis in basal and
stimulated conditions (Fig. 3, G and H), although to a lesser
extent than Akt-I-1/2. All these inhibitors also reduced phos-
phorylation of PRAS40 (Fig. S2, B and C), an inhibitory compo-
nent of mTORC1 complex and a direct target of Akt (32).

A slower mechanism of glycolytic reprogramming, which
also involves Akt, is based on up-regulation of glycolytic
enzyme expression through activation of the Akt–mTORC1–
HIF-1� signaling pathway (15). Both M-triDAP and LPS trig-
gered mTORC1 activation in MDM, as indicated by increased
phosphorylation of p70 kinase (S6 kinase), a target of mTORC1
(Fig. 3E). However, this pathway was probably not involved in
up-regulation of glycolysis in MDM in our experiments. First,
kinetics of p70 phosphorylation was much slower than that of
Akt phosphorylation or ECAR. Second, Akt-I-1/2 did not inter-
fere with phosphorylation of p70, unlike the mTORC1/2 inhib-
itor Ku 0063794 (Fig. S2B) or the specific mTORC1 inhibitor
rapamycin (data not shown), suggesting Akt-independent
mTORC1 activation (33–35). Interestingly, wortmannin abro-
gated p70 phosphorylation in unstimulated MDM, probably
because of the existence of the PI-3K–PDK1–p70 pathway that
bypasses Akt and mTORC1 (36 –38); however, this effect of
wortmannin was much weaker in M-triDAP– or LPS-stimu-
lated MDM (Fig. S2B), indicating that kinases other than PDK1
or Akt, possibly MAP kinases or protein kinase C (34, 35, 39),
were responsible for p70 phosphorylation in stimulated MDM.
Third, rapamycin only marginally affected parameters of gly-
colysis (Fig. 3, G–I). Fourth, although HIF1A mRNA was
induced at 4 h in M-triDAP– and LPS-stimulated MDM (Fig.
S2B), this was not accompanied by accumulation of HIF-1�
protein (Fig. S3A) because experiments were carried out in nor-
moxic conditions that prevent HIF-1� stabilization. Notably,
addition of CoCl2 to mimic hypoxia caused a substantial eleva-
tion of HIF-1� protein, which now corresponded with the rise
of HIF1A mRNA expression at 4 h (Fig. S3B).

In agreement with these findings, we did not observe any
significant changes of expression of genes encoding glucose
transporters, glycolytic enzymes, and LDH in M-triDAP– or
LPS-stimulated MDM, except for a minor elevation of GLUT1
mRNA at 9 h of LPS treatment (data not shown) and elevation
of PFKFB3 mRNA at 1 h of M-triDAP treatment and at 1 and
9 h of LPS treatment (Fig. S3C).

PFKFB3 (the inducible 6-phosphofructo-2-kinase/fructose-
2,6-bisphosphatase) has been shown to play a role in glycolytic
reprogramming of human and murine macrophages (40, 41),
but not of murine DCs (5). The product of this enzyme, fruc-
tose-2,6-bisphosphate, enhances glycolysis through allosteric
activation of phosphofructokinase-1. The rapid up-regulation

of PFKFB3 (Fig. S3C) was consistent with the activation of the
faster p38 –MAPKAPK-2–SRF signaling pathway (42) rather
than the slower mTORC1–HIF-1� pathway, and was inhibited
by a p38 inhibitor (VX-745; Fig. S3D). However, neither
VX-745 nor two highly specific PFKFB3 inhibitors (AZ PFKFB3
67 and PFK-15 at concentrations up to 100 times higher than
IC50) (43, 44) affected basal and stimulated ECAR (Fig. S3E).
Furthermore, AZ PFKFB3 67 did not affect 24-h glucose con-
sumption by MDM, whereas VX-745 and PFK-15 actually
increased both glucose consumption and lactate release (Fig.
S3, F and G).

Collectively, these data point at a key role of Akt in the gly-
colytic reprogramming of MDM but do not support a signifi-
cant role for mTORC1, HIF-1� or PFKFB3.

The influence of 2-DG, Akt-I-1/2, and glucose starvation on
pro-inflammatory cytokine expression by MDM

We then analyzed how inhibition of glycolysis by 2-DG, Akt-
I-1/2, or glucose starvation affects cytokine responses induced
by NOD1 and TLR4 agonists in MDM. 2-DG is widely used as
an inhibitor of glycolysis, and several studies have suggested
that 2-DG down-regulates LPS-induced pro-inflammatory
cytokine expression and production (5, 45, 46). Unexpectedly,
2-DG had a dual effect on TNF production. At an early time
point (3 h), 2-DG dose-dependently reduced levels of TNF in
supernatants of M-triDAP– or LPS-stimulated MDM (Fig. 4, A
and B). However, upon 24-h stimulation, levels of TNF were
dose-dependently increased by 2-DG (Fig. 4, A and B), suggest-
ing that 2-DG enhanced TNF synthesis between 3 and 24 h after
PRR stimulation. 2-DG also inhibited production of IL-6 at
either early or late time points (Fig. S4A) as well as production
of pro-IL-1� (Fig. S4, C and D). Strikingly, the alterations of
cytokine production were largely absent when glycolysis was
inhibited by glucose starvation instead of 2-DG (Fig. 4C; Fig. S4,
B–D), even though both approaches inhibited glycolysis with
similar efficiency (Fig. 3, A–D). Finally, Akt-I-1/2 and tricirib-
ine suppressed M-triDAP–induced TNF production at both
early and late time points, but did not affect LPS-induced TNF
production (Fig. 4D; Fig. S4E).

These alterations of cytokine expression were reproduced at
the level of mRNA expression (Fig. 4E). Thus, 2-DG down-
regulated TNF mRNA in MDM at an early time point (1 h), but
up-regulated it at later time points (4 and 9 h) of stimulation
with M-triDAP or LPS (Fig. 4E, upper left graph). 2-DG had a
similar dual effect on M-triDAP–induced IL-6 mRNA expres-
sion, whereas LPS-induced IL-6 mRNA was suppressed by
2-DG at 1 h and not enhanced at later time points (Fig. 4E,
upper middle graph). 2-DG down-modulated M-triDAP– or

Figure 3. Mechanisms of glycolytic reprogramming induced by M-triDAP or LPS in MDM. A, ECAR responses induced by M-triDAP (10 �g/ml) or LPS
(100 ng/ml) in ordinary glucose-replete medium without or with pre-injection of 2-DG (50 mM). 1 representative experiment out of 5. B, comparison of
ECAR responses induced by M-triDAP in ordinary medium without or with 2-DG or in glucose-free medium (1 experiment out of 3). C, AUC for ECAR
curves shown in A and C (mean � S.D. of 5 donors for 2-DG and 3 donors for glucose-free medium). D, 24-hour lactate release in the presence of 2-DG
or in glucose-free medium (8 and 6 donors, respectively). E, kinetics of Akt and p70 phosphorylation in MDM upon M-triDAP or LPS treatment (1
representative experiment out of 3). Arrowheads indicate specific bands for Akt/p-Akt (60 kDa) and p-p70 (70 kDa). F, kinetics of ECAR after injection of
Akt-I-1/2 (10 �M) and subsequent injection of M-triDAP or LPS (1 experiment out of 4). G–I, effects of inhibitors of Akt and upstream and downstream
kinases on AUCECAR (G), 24-h glucose consumption (H), and 24-h lactate release (I) by MDM. MDM were pre-treated with Akt-I-1/2 (10 �M), triciribine (20
�M), wortmannin (100 nM), Ku 0063794 (1 �M), or rapamycin (10 nM), after which stimulated with medium alone, M-triDAP (10 �g/ml), or LPS (100 ng/ml).
Mean � S.D., 4 to 8 experiments per data point. In plots C, D, G–I, asterisks denote comparisons to cells treated with the same PRR agonist in the absence
of inhibitors (*, p � 0.05; **, p � 0.01; ***, p � 0.001 by paired t test).
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LPS-induced IL1B mRNA at 1 h but not at later time points (Fig.
4E, upper right).

Lack of glucose in the medium did not affect TNF, IL6, or
IL1B mRNA expression triggered by M-triDAP or LPS (Fig. 4E,
middle row). Finally, Akt-I-1/2 down-modulated M-triDAP–
induced TNF, IL6, and IL1B mRNA expression at 1 h of stimu-
lation, but not at later time points, and also did not affect LPS-
induced cytokine mRNA expression (Fig. 4E, lower row), which
indicated specific involvement of Akt in cytokine expression
downstream of NOD1.

2-DG modulates pro-inflammatory cytokine expression by
inducing endoplasmic reticulum stress

Akt kinases are involved in many aspects of macrophage acti-
vation and differentiation (47); therefore, effects of Akt inhibi-
tors on cytokine expression are difficult to relate specifically to
inhibition of glycolysis. However, the discrepancy between the
effects of 2-DG and glucose starvation required an explanation.
Chemically, 2-deoxy-D-glucose is identical to 2-deoxy-D-man-
nose and can therefore antagonize not only D-glucose but also
D-mannose (48). By the latter activity, 2-DG can interfere with

Figure 4. Effects of 2-DG, glucose-free medium, and Akt-I-1/2 on cytokine expression by M-triDAP- or LPS-stimulated MDM. A, MDM were pre-treated
for 30 min with the indicated concentrations of 2-DG in ordinary medium and stimulated for 3 or 24 h with M-triDAP or LPS, after which TNF levels in
supernatants were measured. Mean � S.D., n � 3. *, p � 0.05 compared with cells treated with the same agonist in the absence of 2-DG (paired t test). B–D, MDM
were pre-cultured for 30 min with 50 mM 2-DG in ordinary medium (B), in glucose-free medium (C), or with Akt-I-1/2 (10 �M), then stimulated with M-triDAP or
LPS; TNF levels in supernatants were measured at 3 and 24 h (5 to 16 donors per data point). *, p � 0.05; **, p � 0.01; ***, p � 0.001 by paired t test. n.s.,
nonsignificant. E, effects of 2-DG (50 mM; upper row), glucose-free medium (middle row), and Akt-I-1/2 (10 �M; lower row) on TNF, IL6, and IL1B mRNA expression
by MDM stimulated with M-triDAP or LPS. Mean � S.D. of 4 to 10 donors per data point. *, p � 0.05; **, p � 0.01; ***, p � 0.001 compared with MDM stimulated
with M-triDAP without an inhibitor; #, p � 0.05; ##, p � 0.01 compared with MDM stimulated with LPS without an inhibitor at the same time point.

NOD1, glycolytic reprogramming and cytokine production

J. Biol. Chem. (2020) 295(10) 3099 –3114 3105



N-linked protein glycosylation in the endoplasmic reticulum
(ER), which requires mannose. This, in turn, can disturb pro-
tein folding in ER, resulting in unfolded protein response (UPR)
(48). UPR is a complex set of cellular responses which, on the
one hand, aim to relieve overload of ER by incorrectly folded
proteins (this includes degradation of most mRNA species and
suppression of protein synthesis), and on the other hand, acti-
vate inflammatory pathways to inform the immune system
about the presence of stressed cells (49). A hallmark of UPR is
atypical splicing of XBP1 mRNA, i.e. the conversion of
unspliced XBP1 mRNA (XBP1U) to its translationally com-
petent spliced counterpart (XBP1S) (50). 2-DG alone and
especially in combination with PRR agonists caused a fast
(within 1 h) elevation of XBP1S mRNA, whereas PRR ago-
nists alone did not induce XBP1 splicing (Fig. 5A; Fig. S4F).
XBP1U mRNA as well as other genes involved in UPR, such
as HSPA5/BiP and EIF2AK3/PERK, were up-regulated by
2-DG � PRR agonists with a slower kinetics (Fig. S4F). When
MDM were activated in glucose-free medium instead of
2-DG, XBP1 splicing was not induced (Fig. 5B). XBP1 pro-
tein can function as a positive regulator of pro-inflammatory
cytokine expression (51). 2-DG also induced p38 MAPK phos-
phorylation and augmented M-triDAP–induced p38 phos-
phorylation, another pro-inflammatory aspect of UPR (Fig.
5, C and D). In glucose-free conditions, p38 phosphorylation
was not significantly increased as compared with glucose-
replete conditions (Fig. 5, C and D).

In cancer cells, the UPR induced by 2-DG is known to be
alleviated by D-mannose (48). Indeed, D-mannose dose-depen-
dently diminished the up-regulation of XBP1S mRNA (Fig. 5E)
and phosphorylation of p38 induced by 2-DG in MDM (Fig. 5F).
Interestingly, D-mannose at a high concentration by itself
induced a minor up-regulation of XBP1S (Fig. 5E). Importantly,
D-mannose cancelled or diminished most of the observed alter-
ations of cytokine expression caused by 2-DG, including early
down-regulation of TNF, IL6, and IL1B mRNA expression,
early down-regulation of TNF secretion and pro-IL-1� expres-
sion, as well as late up-regulation of TNF mRNA expression and
TNF secretion (Fig. 5, G–J; Fig. S5, A–G). However, it should be
noted that the early 2-DG–induced suppression of TNF, IL-6,
and IL-1� protein production was restored by D-mannose less
efficiently than corresponding mRNA expression. In addition,
the late augmenting effect of 2-DG on TNF expression was
cancelled by p38 inhibition (Fig. S5H).

The observed effects of D-mannose indicated that 2-DG
influenced cytokine expression through induction of UPR
rather than inhibition of glycolysis. To verify that D-mannose
did not cancel the effect of 2-DG on glycolysis, we measured
ECAR of M-triDAP–activated MDM in the presence of differ-
ent concentrations of D-mannose and/or 2-DG. D-mannose
supported glycolysis (albeit less efficiently than D-glucose), but
did not overcome the inhibitory effect of 2-DG on glycolysis
(Fig. S6A).

2-DG has also been suggested to activate inflammasome and
trigger the release of IL-1� (52), which could auto- or para-
crinely up-regulate TNF expression at late stages of activation
(3 h and later). However, we did not detect any significant IL-1�
release by MDM in the presence of 2-DG during the first 3 h of

stimulation (Fig. S6B), and IL-1RA did not interfere with the
enhancing effect of 2-DG on M-triDAP–induced production of
TNF (Fig. S6C).

Effects of glycolysis inhibitors on cytokine production by
MDDC

To analyze the links between glycolysis and cytokine produc-
tion in additional cell types, we studied glycolytic reprogram-
ming of human MDDC obtained from the same donors as
MDM. In basal conditions, MDDC showed lower level of gly-
colysis than MDM (Fig. 6, A–C), but comparable OXPHOS
(Fig. 6D). MDDC only slightly increased their ECAR upon
M-triDAP or LPS treatment, (Fig. 6, E and F) along with a very
modest increase of glucose consumption (Fig. 6G) and incon-
sistent elevation of lactate release (Fig. 6H). Oligomycin-in-
duced only a short spike of ECAR with a rapid return to the
baseline (Fig. 6E), indicating low glycolytic reserve in MDDC.

We demonstrated earlier that NOD1 and NOD2 agonists
induce very low cytokine production by MDDC, whereas LPS
triggers comparable secretion of TNF and IL-6 by MDDC and
MDM (53). This was confirmed in the present study (compare
Fig. 6I and Fig. 1A illustrating TNF production by MDDC and
MDM, respectively, generated from the same individuals).
Thus, MDDC and MDM are able to produce similar amounts of
TNF in response to LPS, despite profound differences in glycol-
ysis. As in MDM, glucose starvation did not significantly affect
LPS-induced production of TNF, IL-6, and IL-12 by MDDC
(Fig. 6J; Fig. S7, A and B). By contrast, 2-DG strongly suppressed
LPS-induced TNF, IL-6, and IL-12 production by MDDC as
well as compromised MDDC viability, and these effects of
2-DG were partially or fully reversed by D-mannose (Fig. 6, J–L;
Fig. S7, C–E ). 2-DG up-regulated UPR markers in MDDC to
the same extent as in MDM (Fig. S7F).

2-DG and glucose starvation have similar effects in hypoxic
MDM

The experiments described so far were performed in nor-
moxic conditions. They showed that lack of glycolysis per se has
relatively minor impact on cytokine production. However, gly-
colysis becomes a vital energy source in hypoxic conditions,
which exist in inflammatory lesions. To mimic hypoxia, we
treated MDM with oligomycin. Combinations of oligomycin
with 2-DG or with glucose starvation completely suppressed
M-triDAP– and LPS-induced TNF and IL-6 production by
MDM (Fig. S8, A and B). At 3 h, when cytokine production was
measured, most cells were still viable (Fig. S8C). At 24 h, oligo-
mycin, 2-DG, or glucose starvation each had relatively minor
impact on cell viability; however, combinations of oligomycin
with glycolysis inhibitors caused massive cell death (Fig. S8, C
and D).

Discussion

Metabolic reprogramming of innate immune cells is consid-
ered one of the driving forces of inflammation (1). Manipula-
tion of metabolic pathways or metabolism-controlling signal-
ing pathways is being experimentally tested as a means to treat
or prevent life-threatening inflammatory conditions such as
sepsis and lethal endotoxemia, with varying degrees of success
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(54 –60). Much of the mechanistic data about pro-inflamma-
tory metabolic reprogramming have been generated using LPS-
stimulated macrophages or dendritic cells (1, 3, 5, 6, 46, 61). We
have characterized, for the first time, metabolic reprogram-
ming induced by agonists of NOD1 and NOD2 receptors in
macrophages and dendritic cells.

We found that effects of a NOD1 agonist (M-triDAP) and a
TLR4 agonist (LPS) on glycolysis in human MDM are largely
similar. Both agonists trigger an early and robust augmentation
of glycolysis along with a minor reduction of oxygen consump-
tion. The effects of both agonists on glycolysis depend on Akt,
but are independent of mTORC1 or de novo expression of gly-

Figure 5. 2-DG modulates cytokine production by MDM by inducing UPR. A, levels of XBP1S mRNA in MDM stimulated with M-triDAP or LPS in ordinary
medium without or with 2-DG (50 mM). Mean � S.D., n � 8. ***, p � 0.001 compared with cells treated with M-triDAP alone; #, p � 0.05; ###, p � 0.001 compared
with cells treated with LPS alone at the same time point. B, levels of XBP1S mRNA upon M-triDAP or LPS stimulation in ordinary or glucose-free medium. Mean �
S.D., n � 4. C and D, cells were pre-treated with 2-DG (50 mM) or glucose-free medium for 30 min, then cultured with or without M-triDAP for 2 h, after which
p38 phosphorylation was assessed (C, a representative experiment, D, densitometry; mean � S.D. of 5 donors). E–J, MDM were pre-treated for 30 min with 2-DG
and D-mannose at indicated concentrations in ordinary medium, stimulated with M-triDAP for indicated time periods, after which levels of XPB1S mRNA (E),
phospho-p38 (F), TNF mRNA (G and H) and TNF in supernatant (I and J) were assessed. Three experiments per data point, p values by paired t test. In I and J,
results were normalized to cells treated with M-triDAP without 2-DG or mannose.
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Figure 6. Metabolic reprogramming and cytokine production by human MDDC activated with M-triDAP or LPS. A–D, comparisons of glucose and energy
metabolism in paired cultures of unstimulated MDDC and MDM: basal ECAR (A), 24-hour glucose consumption (B), 24-hour lactate release (C), basal OCR (D). 6
to 9 individual donors per data point. E, kinetics of ECAR in MDDC after injection of medium, M-triDAP (10 �g/ml), LPS (100 ng/ml), or oligomycin (2 �M). Same
donor as in Fig. 2A. F–H, areas under ECAR curves (F), 24-hour glucose consumption (G), and lactate release (H) by MDDC treated with medium alone, M-triDAP,
or LPS. MDDC were generated from the same donors as in Fig. 2, B, D, and E; 6 to 9 donors per data point. #, p � 0.07; *, p � 0.05; **, p � 0.01; ***, p � 0.001 by
paired t test. In F–H, asterisks relate to comparisons with medium-treated MDDC. I, levels of TNF in MDDC supernatants after 3 and 24 h of culture with medium
alone, M-triDAP (10 �g/ml), or LPS (100 ng/ml). 18 donors (same as in Fig. 1A). Horizontal bars within each group are mean values; dashed line, lower limit of
detection by ELISA. J, effects of 2-DG (50 mM) or glucose-free medium on LPS-induced TNF secretion by MDDC (3 to 10 donors per data point). K and L, MDDC
were pre-treated with indicated concentrations of 2-DG and D-mannose, then stimulated with LPS for 3 or 24 h. Levels of TNF in supernatants are expressed in
relation to levels in the absence of 2-DG and mannose.

NOD1, glycolytic reprogramming and cytokine production

3108 J. Biol. Chem. (2020) 295(10) 3099 –3114



colytic enzymes. It can be concluded from this and other stud-
ies (62) that early glycolytic reprogramming is probably a
stereotypic response of macrophages to PRR stimulation. A
striking metabolic difference between M-triDAP– and LPS-ac-
tivated MDM is the lack of ACOD1 protein up-regulation upon
M-triDAP treatment, which is in sharp contrast to the strong
ACOD1 induction by LPS (Refs. 3, 26; Fig. 2, I and J). ACOD1 is
the only enzyme capable of generating itaconate (27), a metab-
olite that potently inhibits growth of bacteria expressing citrate
lyase (26). It will be important to compare bactericidal activity
of M-triDAP– and LPS-activated macrophages against such
microbes, and also to analyze ACOD1 induction by a wider
range of microbial stimuli.

MDDC showed a markedly reduced glycolytic reserve com-
pared with MDM and virtually no elevation of ECAR upon
M-triDAP or LPS treatment. This is in some contrast to results
by Everts et al. (5), who observed a significant increase of ECAR
in LPS-stimulated mouse bone-marrow– derived DC (BMDC).
In fact, ECAR responses of BMDC in the work by Everts et al.
(5) resembled responses of MDM in our study. Therefore,
murine data might not be directly applicable to human cells.

The links between glycolysis and pro-inflammatory cytokine
production have been extensively investigated. Some glycolytic
enzymes have been shown to function as direct transcriptional
and posttranscriptional co-regulators of cytokine mRNA
expression. For example, activated dimeric PKM2 can translo-
cate to the nucleus and enhance LPS-induced IL1B and IL6
mRNA transcription (54, 63, 64), whereas GAPDH in its inac-
tive state (under low-glucose conditions) can bind TNF mRNA
and negatively regulate TNF translation (65). More generally,
glycolysis is thought to supply ATP and carbon backbone for
anabolic processes ongoing in activated immune cells, includ-
ing cytokine synthesis. Many studies have shown that blockade
of glycolysis is associated with down-regulated pro-inflamma-
tory cytokine production by macrophages and dendritic cells
(5, 15, 45, 46, 54, 66). However, most researchers inhibited gly-
colysis using 2-DG. Descriptions of the inhibitory effects of
2-DG on cytokine production are in fact contradictory. For
example, Na et al. (45) reported that in murine macrophages,
2-DG reduces LPS-triggered TNF, IL6, and IL1B mRNA
expression at early (1– 4 h) stages of activation. According to
Everts et al. (5), 2-DG does not influence pro-inflammatory
cytokine mRNA expression induced by a 3-h treatment of
murine BMDC with LPS, but does inhibit cytokine translation.
Also, although most studies report negative effects of 2-DG on
cytokine production (5, 45, 46, 54, 66), some studies show an
enhancing effect (67) or no effect of 2-DG at all (68). As shown
here, effects of 2-DG can actually depend on type of cell and
cytokine measured as well as on sampling time.

In the present study, we found that cells with very different
basal and induced levels of glycolysis (MDM and MDDC) are
able to produce roughly similar amounts of TNF upon LPS
treatment. Second, glycolysis in MDM was efficiently inhibited
by three different approaches (glucose-free medium, 2-DG, and
an Akt inhibitor), yet each of these conditions differently mod-
ulated TNF, IL6, and IL1B expression induced by PRR agonists,
indicating that these modulatory effects (if present) were not
because of inhibition of glycolysis. For example, Akt-I-1/2 sup-

pressed glycolytic reprogramming induced in MDM by either
M-triDAP or LPS; however, only M-triDAP–induced and not
LPS-induced cytokine responses were inhibited. (To our
knowledge, this is the first report about the role of Akt in cyto-
kine production downstream of NOD1.) Next, we found that
2-DG applied in normoxic conditions modulates pro-inflam-
matory cytokine production by inducing a UPR rather than by
inhibiting glycolysis. The ability of 2-DG to cause UPR through
interference with N-linked protein glycosylation is well-known
in molecular oncology and has been tested as a means to
enhance cytotoxicity of traditional anti-cancer agents (69). We
found that 2-DG augmented the expression of several UPR
markers in MDM and MDDC, whereas D-mannose, by antago-
nizing the ability of 2-DG to induce UPR, cancelled or alleviated
the effects of 2-DG on cytokine expression and production by
MDDC and MDM as well as on MDDC viability. When glycol-
ysis was inhibited by glucose starvation instead of 2-DG, no or
very mild up-regulation of UPR markers occurred, and no or
very mild changes of cytokine production by MDM and MDDC
were observed. It should be noted that glucose starvation can
also induce a mild ER stress, because glucose too is required for
N-linked protein glycosylation (48).

The bidirectional effects of 2-DG on the expression of pro-
inflammatory cytokines by MDM can be ascribed to different
aspects of UPR. Thus, a group of processes within UPR aims to
relieve the overload of ER by incorrectly folded proteins. This
includes degradation of many mRNA species by IRE-1� (an ER
stress sensor) and suppression of protein translation through
phosphorylation of translation initiation factor EIF-2� by
PERK (another ER stress sensor) (49, 70). These processes
probably underlie the early inhibitory effect of 2-DG on cyto-
kine mRNA expression and translation observed within the
first 1–3 h after addition of 2-DG and PRR agonists. The late
enhancing effect of 2-DG on TNF expression observed in MDM
at 4 h and later can be explained by the pro-inflammatory
aspects of UPR. Ongoing UPR is known to sensitize cells to PRR
agonists (71). In particular, XBP1 protein translated from the
spliced XBP1S mRNA can function as a positive regulator of
cytokine mRNA transcription (51, 72). Similarly, p38 MAPK
activated in 2-DG–treated cells may increase cytokine mRNA
stability and translation (73, 74). As a proof of this, a p38 inhib-
itor (VX-745) abrogated the late enhancing effect of 2-DG on
M-triDAP–induced TNF expression and secretion.

As already noted in “Results,” the early 2-DG–mediated sup-
pression of cytokine protein production was restored by
D-mannose less efficiently than corresponding mRNA expres-
sion (compare e.g. Fig. 5, G and I, for TNF mRNA and TNF
protein, respectively). This indicates that 2-DG might modu-
late cytokine translation through mechanisms independent of
competition with mannose. This effect on translation could not
be explained by 2-DG–mediated inhibition of mTOR, because
two specific mTOR inhibitors, rapamycin and Ku 0063794, did
not inhibit TNF production by M-triDAP– or LPS-stimulated
MDM3. 2-DG might affect cytokine translation, for example, by
promoting of GAPDH binding to cytokine mRNA, as already
described (65).

3 N. E. Murugina et al., unpublished observations.
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Taken together, these data indicate that effects of 2-DG on cyto-
kine production in normoxic conditions should be interpreted
with caution. At least within the time frame of our experiments (24
h), cells can obviously compensate for the lack of glycolysis, prob-
ably by deploying other metabolic pathways such as fatty acid oxi-
dation or glutaminolysis, which feed into Krebs cycle and
OXPHOS; and if no UPR is induced in parallel, cytokine produc-
tion triggered through PRRs such as NOD1 and TLR4 remains
largely unaffected. However, when OXPHOS is inhibited in
hypoxic or hypoxia-like conditions, glycolysis becomes vital both
for cytokine production and cell survival; hence 2-DG or glucose
starvation combined with OXPHOS inhibition have similarly del-
eterious effects on MDM functions.

Experimental procedures

Reagents

M-triDAP and MDP were purchased from Invivogen (San
Diego, CA) and reconstituted in endotoxin-free water supplied
by the manufacturer. GMDP was kindly provided by E. A.
Makarov (RAM Ltd., Moscow, Russia). LPS from Escherichia
coli O111:B4 was from Merck Millipore (Billerica, MA).
Recombinant human (rh) GM-CSF, M-CSF, and IL-4 were
from Miltenyi Biotec (Bergisch Gladbach, Germany), rhIL-1RA
from R&D Systems (Minneapolis, MN). D-mannose and cobalt
(II) chloride were from Sigma. Enzyme inhibitors used in the
study are listed in Table S1.

Culture and stimulation of MDDC and MDM

Studies utilizing human cells were approved by the local
Ethical Committee of the Institute of Immunology (protocol
No. 10/2017) and abided by the Declaration of Helsinki prin-
ciples. To generate human immature MDDC, blood mono-
cytes from anonymous donors were cultured in RPMI 1640
(Thermo Fisher Scientific) supplemented with 2 mM L-glu-
tamine (Thermo Fisher), 10% fetal calf serum (PAA, Pasch-
ing, Austria), 80 ng/ml rhGM-CSF and 50 ng/ml rhIL-4 for 6
days, as described previously (53, 75). MDM were generated
similarly, except that rhIL-4 was omitted (76). Whenever
MDDC were examined, an MDM culture was set up from the
same donor in parallel. When specifically noted, MDM were
generated by culturing monocytes with 50 ng/ml rhM-CSF
instead of rhGM-CSF). By flow cytometry, the phenotype
of MDM was CD11c�CD14�CD206�, the phenotype of
MDDC was CD11c�CD14�CD206�. The purity of cells with
regard to these phenotypes was �90%.

On day 6, cells were replated in 96-well or 24-well plates
without cytokines and stimulated with M-triDAP (10 �g/ml),
MDP (1 �g/ml), or LPS (0.1 �g/ml) or left without stimulation.
Working concentrations of the PRR agonists had been deter-
mined earlier (53). Enzyme inhibitors were added 30 min prior
to PRR agonists. Glucose-free culture medium was prepared
using glucose-free RPMI 1640 (Thermo Fisher), 10% fetal calf
serum, and 2 mM L-glutamine and exchanged for ordinary cul-
ture medium 30 min prior to PRR stimulation. Glucose concen-
tration in the glucose-free culture medium was �0.2 mM, as
compared with 10.78 � 0.41 mM in the ordinary medium.
Supernatants and cells were harvested at indicated time points
after addition of PRR agonists.

ELISA

Levels of human TNF in cell culture supernatants were deter-
mined by sandwich ELISA using reagent kits from Cytokine (St.
Petersburg, Russia). Levels of human IL-1�, IL6, and IL-12p70
as well as mouse TNF and IL-6 were determined by kits from
Thermo Fisher Scientific/eBioscience.

Determination of glucose and lactate

MDM and MDDC were seeded in 24-well plates at 250,000
cells per 500 �l (5*10�4 liter) complete culture medium without
cytokines, and cultured with or without agonists for 24 h, after
which supernatants were collected. Wells containing complete
culture medium without cells served as a reference. Levels of
glucose in the supernatants (mmol/liter) were measured using
Synchron CX5 Pro (Beckman Coulter, Brea, CA). Levels of lac-
tate were determined colorimetrically using a reagent kit from
BioVision (Milpitas, CA). Glucose consumption and lactate
release per cell were calculated as Cmedium � Csupernatant *
5*10�4/250,000.

Real-time measurements of cell metabolism

ECAR and OCR were measured using Seahorse XFe96 Ana-
lyzer (Agilent Technologies, Santa Clara, CA). ECAR and OCR
characterize glycolysis and mitochondrial respiration, respec-
tively. Cells were plated in complete culture medium in poly-D-
lysine– coated Seahorse XF96 microplates (Agilent) at 16,000
cells/well and cultured overnight. Next morning, medium was
exchanged to XF base medium supplemented with 2 mM L-glu-
tamine, 10% fetal calf serum, and 10 mM D-glucose (Sigma),
unless otherwise indicated. ECAR and OCR were measured
every 9 min. After 3 basal measurements, stimuli (M-triDAP,
LPS, oligomycin, or medium) were injected and a further 22
measurements were done. Enzyme inhibitors were injected
after the basal measurements, followed by three to six addi-
tional measurements before the injection of stimuli. In some
experiments, cells were pre-treated for 24 h with M-triDAP or
LPS, after which ECAR and OCR were measured. Results were
normalized by relative cellular protein content. Two types of
parameters were calculated: (i) basal ECAR and OCR (a mean of
the two measurements preceding addition of stimuli or inhibi-
tors) and (ii) areas under time-response curves (AUC) after
addition of stimuli, taking the last measurement preceding the
addition of stimuli as the baseline. Mitochondrial stress test was
performed as described (7) by measuring OCR upon sequential
injections of 1 �M oligomycin, 2 �M carbonyl cyanide-4-(trif-
luoromethoxy)-phenylhydrazone (FCCP, Sigma), and 500 nM

each of antimycin A and rotenone (both Sigma).

RT-PCR

MDM and MDDC were harvested after 1, 4, 9, or 24 h of
stimulation with M-triDAP or LPS. Total RNA was extracted
using TRI Reagent (Sigma). 0.5 �g total RNA was reverse tran-
scribed using RevertAid Reverse Transcription Kit (Fermentas,
Vilnius, Lithuania). Amplifications were done in a 7300 Real-
Time PCR System (Applied Biosystems, Foster City, CA) using
a reagent mix containing SYBR Green (Evrogen, Moscow, Rus-
sia). Primer pairs spanning at least one intron or an exon-intron
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junction were designed using Primer-BLAST (Table S2).
Cycling conditions were as follows: 95 °C (5 min), then 40 cycles
of 95 °C (15 s) and 60 °C (45 s, detection step). Melting curves
were analyzed after each amplification to confirm specificity of
signal. Relative mRNA expression was calculated by the 2�		Ct

method using unstimulated MDM from the given donor as the
reference sample and GAPDH expression for normalization.
GAPDH was chosen because its expression was least variable
across cell types and stimulation conditions (in six independent
kinetic experiments, each employing paired MDM/MDDC cul-
tures stimulated with M-triDAP and LPS and harvested at four
time points, intra-experimental coefficient of variation of
threshold cycle (Ct) for GAPDH was 2.18 � 0.65% (mean �
S.D.); for comparison, same parameter for ACTB equaled
3.67 � 0.6%). Relative mRNA expression of GAPDH itself was
calculated by the 2�	Ct formula without normalization. Differ-
ences in gene expression between groups or points were con-
sidered biologically significant if they met two criteria: (i) ratio
of group or point means �2 or �0.5 and (ii) statistical signifi-
cance with p � 0.05.

Western blotting

The procedure was as described in Ref. 53. Briefly, cells were
washed with PBS and lysed in an ice-cold buffer containing 150
mM NaCl, 50 mM Tris, pH 8.0, 1% Triton X-100, and a mixture
of protease and phosphatase inhibitors (MSSafe, Sigma). Pro-
teins were resolved by SDS-PAGE using TGX Any kDa ready-
made gels (Bio-Rad, Hercules, CA) and blotted onto polyvi-
nylidene difluoride membranes in Bjerrum Schafer-Nielsen
buffer. Membranes were blocked with 5% BSA or 5% nonfat dry
milk (as recommended for specific Abs) and probed with pri-
mary antibodies overnight at 4 °C. Rabbit polyclonal Abs
against human HIF-1�, ACOD1/IRG1, Akt, phospho-Akt
(pT308), phospho-Akt (pS473), phospho-p70-S6K (pT389),
phospho-PRAS40 (pT246), phospho-p38 (pT180/pY182) were
purchased from Cell Signaling Technology (Danvers, MA).
Goat polyclonal Ab against human IL-1� was from R&D Sys-
tems (Minneapolis, MN). �-Tubulin was detected with the
DM1A mouse mAb (Merck Millipore) and used as a loading
control. Primary Abs were detected by peroxidase-labeled sec-
ondary Abs (Jackson ImmunoResearch, West Grove, PA). The
staining was developed using Immobilon Western substrate
(Merck Millipore) and detected by an AI600 imager (Amer-
sham Biosciences). Densitometry was done using ImageJ free-
ware (RRID:SCR_003070).

Animal experiments

Experiments were approved by the local Ethical Committee
of the Institute of Immunology (protocol No. 1/18). C57BL/6
male mice weighing 18 –20 g were injected subcutaneously with
100 �g GMDP in 200 �l endotoxin-free PBS. Control mice
received an equal volume of PBS. 2 h later, samples of peritoneal
lavage fluid were obtained. PM were isolated as described (77),
with minor modifications. Peritoneal cells were washed with
RPMI, adjusted to 2*106/ml in RPMI supplemented with peni-
cillin-streptomycin, 2 mM L-glutamine, and 10% fetal calf
serum, seeded in 24-well plates at 106 cells/well, and allowed to
adhere for 2 h. Wells were washed three times with warm PBS

and filled with 500 �l of the above medium. By flow cytometry,
F4/80�CD11b� macrophages constituted �85% of adherent
cells. PM monolayers were incubated for 24 h, after which levels
of glucose, lactate, TNF, and IL-6 in the supernatants were mea-
sured as described above and expressed as the amount of ana-
lyte released or consumed per 1 �g cellular protein.

Statistics

Data were analyzed by GraphPad Instat (GraphPad Software,
San Diego, CA). Paired measurements were compared by
paired t test.
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