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SUMMARY Pyrazinamide (PZA) is a cornerstone antimicrobial drug used exclusively
for the treatment of tuberculosis (TB). Due to its ability to shorten drug therapy by
3 months and reduce disease relapse rates, PZA is considered an irreplaceable com-
ponent of standard first-line short-course therapy for drug-susceptible TB and
second-line treatment regimens for multidrug-resistant TB. Despite over 60 years of
research on PZA and its crucial role in current and future TB treatment regimens,
the mode of action of this unique drug remains unclear. Defining the mode of ac-
tion for PZA will open new avenues for rational design of novel therapeutic ap-
proaches for the treatment of TB. In this review, we discuss the four prevailing mod-
els for PZA action, recent developments in modulation of PZA susceptibility and
resistance, and outlooks for future research and drug development.
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INTRODUCTION

n a 1954 urgent call to scientific action (1), Floyd M. Feldmann, medical director at the

National Tuberculosis Association in New York, argued the case for accelerated
research into fundamental aspects of tuberculosis (TB) therapy. Feldmann described
knowledge gaps concerning the newly discovered sterilizing drug pyrazinamide (PZA).
In highlighting areas of need for rapid progress, he posed some basic questions such
as “Does [PZA] work in other animal species [besides mice]?” “What is the optimum
drug dosage?” and “How [does PZA] work?” More than 65 years later, we know that
Feldmann’s seemingly simple questions have rather complicated and currently incom-
plete answers.

Regarding mechanism of action, we know that PZA is a prodrug that is hydrolyzed
to pyrazinoic acid (POA) in the mycobacterial cytoplasm by the Mycobacterium tuber-
culosis pyrazinamidase/nicotinamidase (PZase) (2, 3). This amidase, encoded by pncA
(4), is involved in the salvage pathway for synthesis of the essential cofactor NAD. Since
the NAD salvage pathway is nonessential for virulence of M. tuberculosis (5, 6), pncA
loss-of-function mutations represent the most prevalent mechanism for PZA resistance
in clinical isolates (4, 7-13). Mutations within pncA, including single-nucleotide poly-
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morphisms (SNPs), multinucleotide polymorphisms, and indels, have been mapped
along the entire span of the 561-bp open reading frame in PZA-resistant clinical isolates
(14-20). Mutations in pncA have been shown to confer resistance largely through the
loss of PncA enzymatic activity and/or protein abundance (21, 22). While loss-of-
function mutations in pncA represent the major mechanism of PZA resistance in M.
tuberculosis clinical isolates, up to 30% of PZA-resistant isolates show PZase activity and
possess a wild-type pncA gene (15, 23, 24). The latter class of PZA-resistant strains
indicates the existence of additional resistance mechanisms that remain to be defined.

Regarding in vivo efficacy, it is now well known that PZA is a sterilizing drug that is
exquisitely selective against M. tuberculosis in multiple animal species, including mice
(25, 26), rabbits (27, 28), nonhuman primates (29), humans (30, 31), and guinea pigs
(32-34). Through extensive clinical trials, PZA has been found to shorten the required
duration of TB therapy by 3 months (35-37) and shows activity against both replicating
and slow-growing and nongrowing populations of M. tuberculosis bacilli (38-40).
Despite the important role of PZA in TB therapy, a significant proportion of those
receiving PZA treatment might not achieve the necessary concentrations required for
therapeutic benefit due to differences in drug metabolism between individuals (41-43).
Furthermore, patient adherence or early cessation of PZA treatment is influenced by its
large dosing regimen (25 mg/kg of body weight daily) and adverse side effects, such as
liver inflammation, gastrointestinal distress, and joint pain (44-46). Thus, development
of more tolerable or more potent PZA or POA analogs may be necessary to treat some
populations. Regardless of these unknowns, due to its unparalleled sterilizing activity in
the majority of individuals, PZA has become an irreplaceable component of the
first-line standard short-course therapy for drug-susceptible TB (47-50) and second-line
treatment regimens for multidrug-resistant TB (MDR-TB) (51-53). Further, PZA is antic-
ipated to be a component of future TB therapies (54, 55) involving novel drugs such as
bedaquiline (TMC207) (56), the bicyclic nitromidazole pretomanid (PA-824) (57), and
moxifloxacin (56).

Despite the indispensable role of PZA in modern TB drug therapy, the mechanistic
basis for its action remains unresolved. Feldmann’s question “How [does PZA] work?”
both fascinates and torments geneticists, microbiologists, and biochemists alike. Ad-
vances in mycobacterial genetics, transcriptomics, metabolomics, antibiotic resistance
surveillance, and whole-genome sequencing have enabled researchers to identify
multiple PZA-linked metabolic pathways that potentially converge on a single cellular
process (58). We discuss the merits and drawbacks of four proposed models for the
mechanism of PZA action, recent developments in modulation of PZA susceptibility
and resistance, and outlooks for future research and drug development.

MODEL 1: PYRAZINOIC ACID FUNCTIONS AS A PROTONOPHORE

The discovery and implementation of PZA as a TB drug are a fascinating story and
are covered in depth by Zhang and Mitchison (59) and Murray (60). In brief, PZA was
discovered in a screen for antitubercular structural analogs of nicotinamide (vitamin B;)
(61) following the unexpected observation that this vitamin had antitubercular activity
in mice (62) and in humans (63, 64). Early experimental studies of the antitubercular
action of PZA were largely restricted to mice infected with M. tuberculosis (25, 26, 61,
65) because PZA showed no inhibitory activity against the bacilli in standard myco-
bacterial culture medium (66). Reductionist bacterial culture-based approaches involv-
ing PZA were not possible until it was found that exposure of M. tuberculosis to mildly
acidic conditions could induce PZA susceptibility (67). Dependence on an acidic
environment to promote susceptibility to PZA was proposed as the major discrepancy
between in vitro and in vivo environmental conditions. Consistent with this prediction,
during initial infection, M. tuberculosis is engulfed by alveolar macrophages, in which
the bacilli replicate within immature phagosomes with a pH of ~6.2 (68-70). Upon
interferon gamma-mediated activation, phagosomal acidification ensues (pH 4.5 to 5.0)
(70, 71), rendering this niche well within the pH requirements for induction of PZA
susceptibility of M. tuberculosis. Consistent with acidic pH as a driver for PZA suscep-
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FIG 1 Proposed modes of antitubercular action of pyrazinamide. Pyrazinamide enters the cell by diffusion and is
activated by the cytoplasmic pyrazinamidase/nicotinamidase PncA. Pyrazinoic acid has been proposed to act as a
protonophore leading to the acidification of the bacterial cytoplasm (A), an inhibitor of fatty acid synthase | (B), an
inhibitor of trans-translation (C), and/or an inhibitor of coenzyme A biosynthesis (D).

tibility of M. tuberculosis in vivo, mice that produce tubercle lesions with alkaline pH
respond poorly to treatment with PZA (72, 73).

Acidic pH-driven susceptibility was the initial inspiration for the first mechanistic
model for PZA action proposed by Zhang and colleagues (74-76) and has been
extensively reviewed (77-79) (Fig. 1A). Under this model, PZA enters M. tuberculosis by
passive diffusion across the cellular envelope to the cytoplasm (pH 7.2), where it is
converted to the weak acid POA (pK, of 2.9) by PZase (76). POA anion is then exported
from the bacillus through an unidentified weak efflux mechanism. In an acidic envi-
ronment (e.g., activated phagosome or acidified culture medium), a small fraction of
POA becomes protonated to form HPOA, which can permeate back across the bacterial
envelope into the cytoplasm. By the Henderson-Hasselbalch equation {pH = pK, +
log,, ([A~1/[HA])}, the theoretical amounts of protonated POA would be 0.1% at pH 5.8
and 0.008% at pH 7.0 (74). Once in the cytoplasm, HPOA dissociates to H* and POA, and
this cycle continues, resulting in cytoplasmic accumulation of protons, collapse of the
cellular membrane potential, and acidification of the cytoplasm.

Consistent with this model for POA as a protonophore, it has been shown that PZA
treatment is associated with disruption of intrabacterial pH (pH,) from 7.2 to below 6.5
within 48 h of treatment at pH 4.5 (80). Further, compounds that interfere with
oxidative phosphorylation, such as the membrane potential uncoupling ionophore
carbonyl cyanide 3-chlorophenylhydrazone (CCCP; pK,, 4.8) and the F_F,-type ATP
synthase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD), have been reported to be
synergistic with PZA when used in combination against M. tuberculosis in culture (74).
Moreover, treatment of Mycobacterium bovis BCG with POA resulted in a progressive
depletion in bacterial levels of ATP (81). While the protonophore model is widely cited
within the literature, the studies described above did not directly address whether
these physiologically relevant effects were the direct result of the proposed proton
shuttling mechanism or a downstream effect of a yet-to-be-defined activity of POA.
Consistent with the latter, collective evidence demonstrates that acidic pH is not strictly
required for PZA action. Indeed, under near neutral culture conditions, PZA suscepti-

June 2020 Volume 84 Issue 2 e00070-19

Microbiology and Molecular Biology Reviews

mmbr.asm.org 3


https://mmbr.asm.org

Lamont et al.

bility can be promoted by overexpression of pncA (82, 83), inhibition of efflux pumps
to prevent POA export from the bacilli (74, 84, 85), exposure of bacilli to conditions such
as alkaline pH (67), nutrient limitation (83, 86), decreased temperature (87), and hypoxia
(88-90), and replacement of PZA with POA (29). The nonessentiality of acidic pH for PZA
and POA susceptibility of M. tuberculosis challenges the protonophore model as the
principal basis for action of this drug.

Peterson et al. (83) recently compared the activity of bona fide ionophores with
those of PZA and POA for the ability to disrupt membrane potential and pH,z under
conditions that mediate susceptibility. pH,z homeostasis was assessed in an M. tuber-
culosis strain harboring a plasmid encoding a pH-sensitive ratiometric green fluorescent
protein (pH-GFP) (91). This strain was treated with PZA, POA, CCCP (80, 92, 93), or
monensin (93-95) under standard conditions used for PZA susceptibility testing (pH
5.8). While both CCCP and monensin led to rapid and dose-dependent intrabacterial
acidification, there was no significant change in pH associated with POA and PZA
treatment within the first 3 h (83). Since POA has a low pK, relative to those of CCCP
(pK,, 4.8) and monensin (pK,, 6.6), it is not surprising that POA does not have robust
protonophore activity under the experimental conditions that were used. Furthermore,
PZA treatment of M. tuberculosis overexpressing pncA at neutral pH did not lead to a
measurable decrease in pH g despite full inhibition of bacterial growth (83). Membrane
potential was also measured using a membrane-permeable fluorescent dye (DiOC,) in
M. tuberculosis cells treated with CCCP or with POA at concentrations up to 10-fold over
the MIC (83). As expected, CCCP treatment resulted in a dramatic loss of membrane
potential. However, even at concentrations 10-fold above the MIC, POA failed to alter
the membrane potential of M. tuberculosis in medium at pH 5.8 over the period that
was evaluated (83).

The dispensability of acidic pH for PZA and POA action, lack of cytoplasmic acidi-
fication following exposure to inhibitory concentrations of PZA and POA, and lack of
impact on membrane potential in treated and control cultures significantly undermine
the protonophore model as the principal basis for POA action. It is likely that acidic
conditions within the phagosomal compartment of activated macrophages provide the
initial salvo for host-mediated potentiation of PZA action, but POA-dependent disrup-
tion of membrane potential and pH,z seem unlikely to be the driving forces behind the
sterilizing activity of this drug.

MODEL 2: PYRAZINOIC ACID INHIBITS MYCOBACTERIAL FATTY ACID
SYNTHASE |

In a second model for the mechanism of PZA action, it was proposed that POA
selectively inhibits mycobacterial fatty acid synthase | (FAS-I) (96), a large multifunc-
tional enzyme required for synthesis of C,4 to C,¢ fatty acids (97-99) (Fig. 1B). Like its
eukaryotic homolog, this enzyme contains all domains necessary for synthesis of fatty
acids using acetyl coenzyme A (acetyl-CoA) as the primer unit and malonyl-CoA as
two-carbon extender units (100, 101). In each round of extension, two molecules of
NADPH are oxidized via the enoyl and beta-ketoacyl reductase activities of FAS-I (102).
In mycobacterial species, FAS-I products can either be utilized for synthesis of cyto-
plasmic membrane lipids or be transferred to the fatty acid synthase Il complex for
synthesis of a diverse array of mycolic acids (101).

The FAS-I inhibition model for PZA action emerged from a study in which genomic
DNA libraries from M. bovis BCG and Mycobacterium avium were expressed from
multicopy cosmids in Mycobacterium smegmatis to screen for loci that conferred
resistance to a structural analog of PZA, 5-chloropyrazinamide (5-CI-PZA) (96). Subclon-
ing analysis demonstrated that 5-CI-PZA resistance was associated with fas-I overex-
pression (96). Likewise, overexpression of the M. tuberculosis fas-I gene in M. smegmatis
also conferred resistance to 5-CI-PZA (96). Since M. smegmatis is intrinsically resistant to
PZA and POA, and overexpression of FAS-l was found to be toxic for M. tuberculosis, it
was not possible to determine whether FAS-I overexpression could confer resistance to
PZA or POA in mycobacteria (96). Through the use of ['#Clacetate labeling studies, it
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was found that susceptible mycobacteria treated with PZA (82, 96, 103), 5-CI-PZA (82,
96, 99, 103), and other PZA derivatives (103) showed a significant reduction in C;4 to C,¢
fatty acid biosynthesis. Despite these findings, a direct association between PZA action
and FAS-I inhibition was questioned by Boshoff et al. (104). Although 5-CI-PZA was
confirmed as a potent and irreversible FAS-I inhibitor, POA did not inhibit purified
mycobacterial FAS-I at physiologically relevant concentrations (104). In a subsequent
study, inhibition of recombinant M. tuberculosis FAS-I was confirmed, yet more than
9mM POA was required to achieve 50% inhibition, in contrast to just 15 uM for
5-CI-PZA (105). Since an intrabacterial concentration of 0.5 mM POA is sufficient for M.
tuberculosis growth arrest (74), it seems unlikely that direct inhibition of FAS-I via POA
is sufficient to explain mode of action. Enzymology and ligand interaction studies
involving saturation transfer difference nuclear magnetic resonance (NMR) showed that
PZA, 5-CI-PZA, and other PZA analogs are competitive inhibitors of NADPH binding to
purified mycobacterial FAS-I (105-107). In contrast, while POA was found to interact
with FAS-I, it did not compete with NADPH for binding (107), indicating that association
of 5-CI-PZA and POA with FAS-I is mechanistically distinct. Together, these observations
suggest that POA does not directly inhibit FAS-I, and inhibition of fatty acid synthesis
by POA may be due to a linked metabolic disruption or inhibition of FAS-I by an
as-yet-unidentified mycobacterial metabolite of POA.

MODEL 3: PYRAZINOIC ACID BINDS TO RpsA AND INHIBITS TRANS-TRANSLATION
In a third model for the mechanism of PZA action, it was suggested that POA selectively
disrupts the process of trans-translation (108) (Fig. 1C). trans-Translation, discovered by
Keiler et al. (109), is a ribosome salvage pathway used by nearly all bacterial species to
free ribosomes that cannot disengage from the 3’ end of an mRNA lacking an in-frame
stop codon (non-stop mMRNA) (110). Without ribosome rescue, ribosomes can become
sequestered by non-stop mRNAs, ultimately resulting in cell death due to arrest of
protein synthesis (110). In the trans-translation pathway, SmpB and elongation factor Tu
recruit tmRNA, a specialized RNA that has both tRNA and mRNA properties, to stalled
ribosomes that lack an mRNA codon at the A site (111-113). Once recruited, alanine-
charged tmRNA acts as a codon-independent tRNA and becomes linked to the nascent
peptide through transpeptidation (109). Cotranslational switching then results in re-
lease of the non-stop mMRNA with replacement by a loop of the tmRNA which encodes
a degradation tag (109, 113). Following translation of this tag, the nascent peptide is
released and targeted for proteolysis, and the ribosome disengages from tmRNA and
is free to initiate translation of other available mRNA (109). This pathway is essential for
viability of M. tuberculosis and many other bacterial pathogens and represents an
outstanding novel target for drug discovery (114-117). Indeed, structurally related
families of oxadiazole and tetrazole-based compounds have recently been identified
that inhibit trans-translation in a large number of bacterial species, including Gram-
negative, Gram-positive, and mycobacterial species (114-117).

The model for inhibition of trans-translation by POA emerged from a study focused
on a presumed interaction between POA and the M. tuberculosis 30S ribosomal subunit
protein S1 (108). In an attempt to identify interaction partners and putative targets of
POA, Shi et al. (108) performed affinity chromatography studies in which the POA
derivative 5-hydroxyl-2-pyrazinecarboxylic acid was covalently linked to a Sepharose
column and used as a binding matrix for proteins from a whole-cell lysate of M.
tuberculosis strain H37Ra. Nonspecific stripping of all proteins that had bound to the
column using 25% ethylene glycol resulted in isolation of multiple proteins, of which
RpsA (30S ribosomal protein subunit S1), Rv2783, Rv2731, and Rv3169 were identified
by mass spectrometry (108). Consistent with a role for RpsA in PZA action, the authors
stated that overexpression of rpsA conferred 5-fold resistance to PZA (108). In addition,
the clinical isolate M. tuberculosis strain DHMH444, which shows 2-fold resistance to
PZA and carries a wild-type pncA allele (12, 118), was found to harbor deletion of an
alanine codon at position 438 (AA438) within the C-terminal region of the rpsA product
(108). Isothermal titration calorimetry (ITC), an approach that can be used to determine
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ligand binding affinities through monitoring changes in free energy, was employed to
evaluate a possible interaction between POA and purified recombinant RpsA (108).
Titration of a saturated solution of POA (~70 mM) into a solution of 10 uM wild-type M.
tuberculosis RpsA showed a robust exothermic signal (108). When 100 uM POA was
titrated into solutions of 10 uM M. smegmatis RpsA and M. tuberculosis RpsAAA438, no
signal was observed (108). While use of starkly different concentrations of POA in these
assays makes it impossible to interpret these findings, it was concluded that POA
bound wild-type M. tuberculosis RpsA with high affinity and failed to interact with M.
smegmatis RpsA and M. tuberculosis RpsAAA438 (108).

To evaluate whether POA could disrupt trans-translation, cell-free in vitro translation
assays were conducted in reaction mixtures containing ribosomes isolated from M.
tuberculosis, M. smegmatis, or Escherichia coli and supplemented with a charged tRNA
mixture, M. tuberculosis SmpB, and unprocessed pre-tmRNA (108). Translation was
assessed by detecting incorporation of [3*S]methionine into dihydrofolate reductase
(DHFR) expressed from an mRNA containing an in-frame stop codon (wild-type DHFR),
or a similar message with the DHFR coding sequence followed by 8 rare AGG codons,
18 additional downstream codons, and an in-frame stop codon (DHFR 8XAGG) de-
signed to induce translational stalling (108, 119). It is important to note that for rare
codon-mediated translational stalling to trigger trans-translation, the culprit mRNA
must be cleaved by an RNase in order to permit interaction between the ribosome and
aminoacyl-tmRNA/SmpB complex (111, 119). In the assays reported by Shi et al. (108),
if trans-translation were to ensue from stalling on the DHFR 8XAGG message, the
resulting peptide would be extended by 13 amino acids corresponding to the tmRNA
degradation tag. Since DHFR 8XAGG produced by standard translation would be
extended by 26 amino acids, it would be critical to characterize the C-terminal residues
of the resulting peptide. As expected, POA treatment had no impact on translation of
wild-type DHFR by M. tuberculosis ribosomes or of DHFR 8 X AGG with ribosomes from
M. smegmatis and E. coli (108). In contrast, translation of DHFR 8 XAGG by M. tubercu-
losis ribosomes was fully inhibited by the addition of POA at concentrations of 200 uM
and greater (108). Unfortunately, the authors did not determine whether the shifted
DHFR contained the tmRNA degradation tag or simply the 26 additional amino acids
introduced by standard translation of DHFR 8 XAGG (108). It is curious that these data
differ from those in an earlier version of the manuscript that was deposited in the NCBI
database (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502614/), where signal for
translation of DHFR 8XAGG is visible in the presence of as much as 800 uM POA.
Regardless, it is of fundamental importance that since translation precedes trans-
translation, inhibition of trans-translation would have resulted in synthesis of a
nontagged DHFR. Thus, the reported results showing full inhibition of signal for protein
synthesis are consistent with inhibition of translation, not inhibition of trans-translation.

Inspired by the findings of Shi et al. (108), several groups evaluated whether
targeted sequencing of rpsA could be used to predict PZA resistance in M. tuberculosis
clinical isolates bearing a wild-type pncA locus. Mutations within rpsA were identified in
a limited number of strains, although no clear association with PZA resistance has been
established (23, 108, 120-126). Alexander et al. (120) speculated that the RpsA
C-terminal region is tolerant to amino acid substitutions and may be innocuous with
respect to PZA action. In response to a comment posted by Simons and colleagues
(121), Alexander et al. (127) cautioned that research attempting to attribute drug
resistance to novel mutations must be tempered with experiments demonstrating
linkage between phenotype and genotype. Indeed, two independent groups recon-
structed the rpsA AA438 allele in M. tuberculosis, and both showed a <2-fold change in
PZA susceptibility (128). Importantly, mutations in rpsA, including A438, have been
identified in PZA-susceptible clinical isolates of M. tuberculosis (129, 130). Moreover,
10-fold overexpression of rpsA had no measurable impact on PZA susceptibility (128).
Lack of an association between rpsA and PZA resistance is consistent with previous
reports by Spiers et al. and Klemens et al., which demonstrated that M. tuberculosis
strain DHMH444 is fully susceptible to POA in vitro (118) and to PZA in a murine model
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of infection (131), respectively. Collectively, these observations demonstrate that rpsA
is not associated with PZA or POA susceptibility, and the low-level PZA resistance of M.
tuberculosis strain DHMH444 is most likely due to its documented reduced level of PncA
activity (118).

To reevaluate the possible interaction between POA and M. tuberculosis RpsA, Dillon
et al. (128) repeated ITC ligand interaction studies described by Shi et al. (108). Studies
with E. coli (132) and Pseudomonas (133) have shown that RpsA binds to single-
stranded RNA and is important for translation initiation. When RpsA was titrated with
poly(C) RNA, a robust bimodal interaction signal was observed, indicative of two
high-affinity single-stranded RNA binding sites of RpsA. However, when 100 uM RpsA
(pH 7.4) was titrated with a saturated solution of POA (pH 7.4), no change in free energy
was detected, indicating that these solutes do not show a measurable interaction. In
contrast, when the pH of the saturated solution of POA (pH 2.3) was not adjusted to
match the diluent buffer and was titrated into near neutral (pH 7.4) phosphate buffer,
a robust exothermic signal was observed (128), similar to that reported by Shi et al.
(108). This signal was abolished when the pH of the saturated POA solution was
adjusted to that of the diluent buffer (128). Thus, it is most probable that the signal
reported by Shi et al. was a result of pH-dependent proton dissociation and not
reflective of interaction between RpsA and POA.

Despite the ability of RpsA to interact with tmRNA (134), RpsA has been shown to
be entirely dispensable for trans-translation in species in which its role has been
evaluated, such as E. coli (135) and Thermus thermophilus (136, 137). To further examine
the connection between POA action and mycobacterial trans-translation, Dillon et al.
conducted cell-free in vitro trans-translation assays in reaction mixtures containing M.
tuberculosis ribosomes supplemented with a charged tRNA mixture, appropriately
processed and charged tmRNA, and M. tuberculosis SmpB (128). Rather than relying on
translational stalling and mRNA cleavage to trigger trans-translation, a non-stop DHFR
transcript was used (128). In these assays, trans-translational tagging of the non-stop
DHFR was confirmed and tagging could be inhibited by an antisense oligonucleotide
directed against tmRNA (115). Importantly, no inhibitory effect on trans-translation was
observed with as much as 1 mM POA (128). Thus, the antitubercular activity of PZA is
independent of trans-translation and RpsA.

MODEL 4: PYRAZINOIC ACID BLOCKS COENZYME A SYNTHESIS THROUGH
INHIBITION OF .-ASPARTATE DECARBOXYLASE

In order to discover novel mechanisms for PZA resistance in M. tuberculosis, Zhang
et al. isolated and characterized a large number of spontaneous PZA-resistant isolates
(138). Of 174 strains that were analyzed, 169 had mutations in pncA, while 5 carried
wild-type pncA and were subjected to full-genome resequencing. These pncA wild-type
strains were found to harbor missense mutations within the panD (Rv3601c) gene,
which encodes L-aspartate decarboxylase (138), a rate-limiting step in the CoA biosyn-
thetic pathway (139, 140). In this pathway, B-alanine and L-pantoate are ligated by PanC
(141) to form pantothenate, which is processed in five additional steps to afford CoA
(Fig. 1D) (142). Further work revealed that PZA resistance phenotypes could be reca-
pitulated in H37Ra overexpression of wild-type or mutant panD as well as panD from
E. coli and M. smegmatis (143). Consistent with a role for POA in disruption of CoA
biosynthesis, multiple recent studies have demonstrated that supplementation of culture
medium with pathway intermediates, such as B-alanine, pantothenate, and pantetheine,
can potently antagonize PZA- and POA-mediated growth inhibition of M. tuberculosis
(143-145). In addition, Dillon et al. (144) demonstrated that other B-alanine-containing
metabolites as well as the B-alanine structural analogs 3-aminopropanol and propanoic
acid could antagonize PZA action. However, the B-alanine precursor, aspartate, and cosub-
strate in pantothenate synthesis, pantoate, were not sufficient to induce an antagonistic
effect (144). These data suggest that POA interacts in some way with the CoA biosynthetic
pathway.

As CoA is an essential acyl carrier for hundreds of reactions in central metabolism
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(142), CoA depletion would provide an enticing explanation for the action of POA that
unifies previous observations, such as the previously discussed impairments of energy
metabolism and fatty acid synthesis. Notably, several groups have shown stress con-
ditions that decrease cellular CoA pools, such as nutrient starvation and hypoxia,
augment PZA susceptibility in M. tuberculosis (88-90). In fact, PZA treatment in anaer-
obic cultures of M. tuberculosis resulted in a 2-log reduction of bacterial CFU after 5 days
(88). Recent work by Gopal et al. (145) has shown that wild-type M. bovis BCG displayed
a significant decrease of cellular CoA after 12 and 24 h of POA treatment. Importantly,
mutations in panD abrogated POA-mediated CoA depletion, resulting in CoA levels that
were comparable to those of the no-drug control (145). Further, this study demon-
strated that CoA depletion is specific for POA, as structural analogs, nicotinic acid and
benzoic acid, did not significantly alter cellular CoA levels. In a separate study, Gopal et
al. (146) conducted a metabolomic analysis on M. bovis BCG treated with POA to assess
the effect of POA on intermediates of the CoA biosynthetic pathway. POA treatment
resulted in a >10-fold reduction in B-alanine levels and depletion of numerous
downstream intermediates in this pathway within 4 h. Additionally, depletion of CoA by
POA resulted in the concomitant increase in the concentrations of medium-chain,
dicarboxylate, and long-chain fatty acids within 24 h of treatment. Accumulation of
fatty acids may contribute to bacterial cell death through impairment of oxidative
phosphorylation and eventual collapse of membrane potential (147). Consistent with
these findings, Rosen et al. showed that loss-of-function mutations in fadD2, an
acyl-CoA ligase responsible for the detoxification of fatty acids, leads to hypersuscep-
tibility of POA (148).

Based on genetic analysis of panD and the ability of POA to broadly disrupt CoA
homeostasis, it is possible that POA interferes with activity of M. tuberculosis L-aspartate
decarboxylase (Fig. 1D). In M. tuberculosis, PanD functions as a tetramer and shares
sequence and structural similarity with other members of the PanD family (139). Yet M.
tuberculosis PanD has a 13-amino-acid C-terminal extension which serves as the central
contact point for tetramer formation (139). It is interesting that the majority of spon-
taneous panD mutations identified by Zhang et al. occurred within the portion corre-
sponding to the last 13 amino acids of the C terminus (138). Similar panD missense
mutations corresponding to the C terminus were subsequently described by Gopal et
al. (145). In support of L-aspartate decarboxylase as a molecular target of POA, Gopal et
al. (146) demonstrated interaction between PanD and POA (K, [equilibrium dissociation
constant] = 6.1 uM = 0.88 uM). Mutations within the N terminus and C terminus of
PanD abrogated this interaction, which suggests that PanD-related PZA resistance is
likely due to a loss of binding. Collectively, these studies support a model in which POA
binds to PanD and inhibits synthesis of B-alanine, which ultimately leads to CoA
insufficiency and broadly impaired central metabolism. However, it is important to note
that an M. tuberculosis pantothenate auxotrophic strain (mc27000) containing a panD
deletion remained susceptible to PZA when cultured in medium containing a sub-
antagonistic concentration of panthetheine (144). Similar to the case with the parental
strain, PZA susceptibility of M. tuberculosis mc27000 could be antagonized by exoge-
nous pantothenate. However, unlike for the parental strain, PZA susceptibility of strain
mc27000 was not antagonized by supplementation with B-alanine. These data dem-
onstrate that if PanD is indeed a target of POA, additional targets likely exist within the
CoA biosynthetic pathway. Future studies are necessary to further clarify the mecha-
nism behind disruption of CoA biosynthesis and PZA activity.

Despite the isolation of POA-resistant panD missense mutants using laboratory
strains of M. tuberculosis, analogous mutations have yet to be described for clinical
isolates (123, 149). However, it is worth noting that the naturally PZA-resistant Myco-
bacterium canetti harbors a PanD M117T amino acid substitution (138). Importantly,
recent work described by Gopal and colleagues (150) showed enrichment of POA-
resistant M. tuberculosis strains from infected BALB/c mice that had been treated for 8
weeks with POA. Approximately 80% of M. tuberculosis POA-resistant isolates derived
from infected mice contained mutations in panD, with the majority of these mutations
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corresponding to the C terminus. These recovered panD mutant strains were not
reevaluated for PZA resistance in vivo. Yet infectivity of a previously characterized M.
tuberculosis POA-resistant panD mutant (POAR 1) (145) was assessed using a low-dose
aerosol infection in BALB/c mice. After 6 weeks of infection, this strain was found to
have in vivo growth comparable to that of a matched wild-type control, suggesting that
panD mutant strains remain infective (150). Furthermore, a recent study conducted by
Ramirez-Busby et al. (125) analyzed 224 extensively drug-resistant (XDR) M. tuberculosis
clinical isolates that showed PZA resistance, of which one pncA wild-type isolate
contained a heterogeneous mutation (-G291) in panD. While the collective data dem-
onstrate an incontrovertible association between POA action and CoA metabolism, the
clinical relevance of panD to PZA resistance demands further analysis.

OTHER GENES ASSOCIATED WITH PZA RESISTANCE

Several other genes associated with PZA and POA resistance have recently been
reported. Two independent laboratories have demonstrated a connection between
mutations in c/pC7 and POA resistance (150-153). ClpC1 (154, 155) is a class Il AAA+
ATPase that provides chaperone activity for the essential cytoplasmic Clp protease
(156-158). It is unclear whether clpCi-related POA resistance is due to a direct or
indirect mechanism and how this relates to previous findings involving the CoA
biosynthetic pathway.

Other research groups have expanded the list of potential M. tuberculosis targets
responsible for PZA resistance. Njire et al. (159) have associated an Asp67Asn substi-
tution in Rv2783 with PZA resistance. Rv2783 is a bifunctional enzyme that catalyzes the
metabolism of RNA, single-stranded DNA, and ppGpp and was identified in a POA
affinity chromatography assay by Shi et al. (108). Additional studies have associated
PZA and POA resistance with mutations in numerous genes of unknown function (153).
The roles of the corresponding functions of these various genes in resistance to PZA
have yet to be elucidated but indicate that susceptibility and resistance of M. tubercu-
losis to PZA are quite complex.

FUTURE DIRECTIONS

Despite the identification of M. tuberculosis POA-resistant isolates in vitro, the in vivo
relevance of the corresponding mutations to PZA resistance remains unclear. Correla-
tion between in vitro findings and clinical efficacy are not yet straightforward and will
require additional studies to resolve. As a first step, resistant strains identified in vitro
should undergo extensive confirmation in animal models of TB infection in order to
bridge the gap between in vitro and in vivo findings. Further, studies involving animals
with defined impairments in cell-mediated immunity can help to elucidate the rele-
vance of specific host responses that are critical for PZA efficacy. These animal exper-
iments should utilize PZA and POA concentrations similar to those used in TB patients
in order to represent standard treatment.

In addition to detailed characterization of novel PZA resistance mechanisms, future
research should focus on other compounds that synergize with PZA. Niu and col-
leagues (160) screened a clinical drug library containing 1,524 substances for com-
pounds that showed synergy with PZA. One hundred thirty hits were found to enhance
PZA activity against stationary-phase cultures of M. tuberculosis strain H37Ra. Eighty-
three of these hits were compounds that have FDA approval for other medical
indications and should be evaluated for their potential in repurposing for enhancing
PZA action. The identification and study of synergistic compounds will provide insight
on the mode of action of PZA and could lead to shorter, more effective treatment
regimens.

Recent elegant studies of PZA pharmacokinetics in TB patients (161) and animal
models (28, 29, 162-164) have highlighted the importance of drug distribution and
penetration into various lesion types as well as the reliance of the intracellular envi-
ronment for PZA activity. In addition to measuring pH and tissue penetration, future
studies should seek to characterize PZA metabolites in the caseum throughout the TB
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disease spectrum. Recently, Marakalala and colleagues have characterized the host
proteomes of multiple lesion types and regions (caseous granuloma, caseous granu-
loma caseum, cavitary granuloma, cavitary granuloma caseum, and solid granuloma)
(165). Interestingly, this study showed that greater differences occurred within regions
of the same granuloma than among different lesion types. The centers of the granu-
loma were found to contain multiple proinflammatory signals, antimicrobial peptides,
reactive oxygen species, and proinflammatory eicosanoids. In contrast, the tissue
surrounding the caseum displayed an anti-inflammatory profile. Mapping of various
granuloma landscapes should be expanded to include the characterization of resident
M. tuberculosis subpopulations by single-cell analysis. Proteomic evaluation of heterol-
ogous granulomas and specific regions and M. tuberculosis subpopulations paired with
targeted PZA pharmacokinetic data will provide researchers with a robust model of
drug efficacy, potentiation by the host, and responsive or nonsusceptible bacterial cells.
This model may be utilized to design antibiotic adjuvants and adjunctive therapeutics

to enhance the host response and circumvent PZA resistance (166).

CONCLUDING REMARKS

While questions regarding PZA action that were posed by Feldman over 60 years

ago have not been fully resolved, significant steps have been undertaken to understand
this crucial drug. Recent advances have cleared some of the prevailing dogma that has
surrounded PZA and indicated a correlation between metabolic activity and the drug’s
activity. Future studies will expand upon these findings through examining the activity
of PZA in the context of its associated host microenvironment. We are fortunate to be
in a period of scientific research with unprecedented productivity bolstered by ad-
vances in genomics, high-throughput drug screens, and pharmacokinetics, all of which
will be crucial to finally solve Feldmann’s 1954 questions concerning the basis for PZA
activity against M. tuberculosis.
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