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Abstract

Purpose of review: Parental brain research primarily employs general-linear-model-based 

(GLM-based) analyses to assess blood-oxygenation-level-dependent responses to infant auditory 

and visual cues, reporting common responses in shared cortical and subcortical structures. 

However, this approach does not reveal intermixed neural substrates related to different sensory 

modalities. We consider this notion in studying the parental brain.
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Recent findings: Spatial independent component analysis (sICA) has been used to separate 

mixed source signals from overlapping functional networks. We explore relative differences 

between GLM-based analysis and sICA as applied to an fMRI dataset acquired from women while 

they listened to infant cries or viewed infant sad faces.

Summary: There is growing appreciation for the value of moving beyond GLM-based analyses 

to consider brain functional organization as continuous, distributive, and overlapping gradients of 

neural substrates related to different sensory modalities. Preliminary findings suggest sICA can be 

applied to the study of the parental brain.

Keywords

neuroimaging; balanced excitation/inhibition; independent component analysis; parent brain; 
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Introduction

The Parental Brain

Neural reorganization across the course of pregnancy and the postpartum period may 

facilitate neurobiological preparedness required for sensitive and adaptive caregiving 

postpartum (1**). Accumulating research in humans has begun to document the “parental 

brain,” with a particular focus on mothers’ neural response to infant affective cues (facial 

expressions and vocalizations) during the first year postpartum. The term “parental brain” 

has been used to describe the central neural circuits supporting caregiving, which are 

considered critical for healthy infant development (2,3*,4).

To understand the parental brain, functional magnetic resonance imaging (fMRI) studies 

have used general-linear-model-based (GLM-based) analyses to assess blood-oxygenation-

level-dependent (BOLD) responses to infant auditory (e.g., cry) and visual (e.g., face) 

emotional cues (2, 3*, 5–7). These studies have found that either cries or faces separately 

activate auditory or visual sensory cortex, respectively, but these stimuli activate common 

structures as well, including the association cortex (e.g., frontoparietal cortex) and 

subcortical structures (e.g., amygdala, striatum, and thalamus) (8–12), consistent with 

theories that the association cortex and subcortical structures are functionally heterogeneous 

and emotional cues are multimodal (13–15).

Although fMRI studies have proven valuable in advancing our understanding of the neural 

circuitry of parenting, meta-analytic research suggests there may be a more limited set of 

brain regions implicated in maternal responsiveness to infant cues (16*). Concurrently, 

limited convergence of parental brain circuity could reflect limitations in the employment of 

GLM-based analyses to probe the parental brain where processing of infant affective cues 

may not precisely follow traditional neural processing pathways of visual or auditory input. 

Indeed, while functional specialization is a principle of fMRI modeling, and is a rationale 

for employing GLM-based analyses to interrogate BOLD time series (17–19), GLM-based 

findings do not fully reflect the intermixed relationship between neural substrates of the 

different sensory modalities (20–25).
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Gradient Theory of Brain Activation

Gradient theories propose that neural substrates related to a sensory modality are 

concentrated within a specific region, gradually distribute over extensive regions and overlap 

with functional gradients related to other modalities (25–30). This theory is supported by 

multiple findings, including variability in cognitive deficits across different sensory 

modalities after brain injuries (26–28), balanced systems of neuronal excitation and 

inhibition (E/I) (31–34**), and functional heterogeneity in the brain (35–39).

BOLD signal changes measured with fMRI may reflect an E/I balance at the local level (40–

50). That is, a single fMRI voxel often comprises intermixed neurons with concurrent but 

opposing changes in activity, which may lead to non-representative or even unobservable 

BOLD signal changes in GLM-based analyses (40, 44, 51–54). Spatial independent 

component analysis (sICA) may be used to separate mixed source signals from overlapping 

functional networks (FNs).

ICA was developed for extracting hidden, unknown source signals from observed signal 

mixtures (55–59). sICA treats BOLD signal from each voxel as a mixture of different source 

signals and separates it into spatially independent components (ICs), which represent 

temporally coherent FNs (55, 58). sICA has demonstrated: 1) FNs often extensively overlap; 

and, 2) overlapping FNs may show concurrent but opposite task-related modulation (i.e., 

simultaneous activation and deactivation) (60–66). Given this knowledge, we propose that to 

more accurately probe the parental brain to account for the potential overlap and interaction 

of neural circuitry implicated in processing infant auditory and visual cues, it would be 

valuable to incorporate both GLM-based analysis and sICA to fMRI data.

Preliminary Application of sICA to in Understanding Responses to Infant Cues

Recently, we started to consider whether GLM-based analyses and sICA would yield 

differential and complementary findings in studying infant cues. In beginning to lay the 

foundation for studying parental brain function, we explored neural responses to infant cries 

and sad infant faces in a sample of 35 women. Specifically, we applied GLM-based analyses 

and sICA to infant cries of low distress and infants faces with sad expressions (Figure 1; see 

supplemental materials for methodology). GLM-based analyses revealed expected patterns 

of primary sensory and associative cortex activity in response to infant cry and face stimuli. 

Relative to unmodeled baseline activity, cry stimuli were associated with increased BOLD 

response in the temporal cortex, including the primary auditory cortex (A1), while face 

stimuli were associated with an increased BOLD response in the fusiform gyrus and 

occipital cortex, including the primary visual cortex (V1). Both cry and face stimuli were 

associated with increased BOLD signal in the lateral and medial prefrontal cortex (PFC), 

anterior cingulate (ACC), insula, parietal cortex, striatum, amygdala, and hippocampus.

sICA identified 14 distinct FNs that were significantly engaged in processing negative infant 

stimuli and were differentially engaged by cry and face stimuli (Table 1). These FNs 

comprised a mixture of positive and negative signal integration and exhibited a high degree 

of spatial overlap. FNs generated by sICA overlapped extensively throughout most brain 

volumes including subcortical structures and the sensory and association cortices. Some 
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overlapping FNs exhibited double dissociations in responses to cries and faces; i.e., they 

were oppositely modulated by the two cues. Importantly, bimodal and unimodal FNs 

integrated signals in sensory cortices with signals in frontal, parietal, and subcortical regions 

typically associated with salience attribution, suggesting that the coordination of several 

neural mechanisms may contribute to processing infant stimuli.

Overall, our sICA findings suggest a gradient brain functional organization and that neural 

substrates related to infant auditory and visual cues overlap and interact throughout the 

brain. These findings suggest that overlapping clusters with opposite changes in signal may 

contribute to non-representative or negative findings of BOLD signal changes in higher-

order association cortical and subcortical structures in GLM-based analyses. That is, GLM-

based analyses may reveal task-related changes in BOLD signal in regions strongly 

dominated by neural substrates relating to one sensory modality relative to other sensory 

modalities, especially when stimuli integrate visual and auditory information. This may be 

one reason why meta-analytic investigation reports implicate limited brain regions in 

parental brain functioning (16), warranting the application of sICA to these data sets.

Future Applications of sICA to the Parental Brain

Our preliminary observations suggest that there are multiple FNs related to processing of 

infant auditory and/or visual cues that are extensively distributed and overlapping, including 

in subcortical and cortical structures. Moving forward, sICA may identify FNs, and data 

may be modeled to identify how these FNs may be differently engaged by different subject 

groups (e.g., mothers and fathers versus women and men without children) during 

experimental tasks that present infant face and cry stimuli. Such an approach will be 

important theoretically with respect to understanding normative developmental changes in 

functional brain organization during the perinatal period. To date, evidence suggests 

structural brain changes in the maternal brain from pre-pregnancy to postpartum, and across 

the postpartum period (1**, 67, 68). However, we know very little regarding functional brain 

changes (especially within FNs) across this critical period of maternal and child 

development. Importantly, the application of sICA may yield more consistent findings than 

GLM-based approaches, where there is limited convergence in studies of maternal 

responsiveness to infant cues (16). Such an approach may also provide greater sensitivity in 

the examination of associations between parental brain functioning and caregiving 

behaviors.

In addition to being of theoretical interest, the application of sICA to the study of parental 

psychopathology may also be of value. Multiple studies have begun to explore whether 

neural responses to infant affective cues are affected by clinical disorders and symptoms, 

primarily in mothers. For instance, decreased BOLD responses to infant face and cry stimuli 

have been observed in mothers currently using substances as compared to non-substance-

using mothers across prefrontal and limbic regions (69). Relatively decreased sensitivity has 

been observed across multiple brain regions, including the ventral striatum and ventromedial 

prefrontal cortex, to own-infant, as compared to unknown infant, smiling faces in mothers in 

treatment for substance-use disorders (70). The impact of maternal depression on processing 

infant (and non-infant) affective cues has also been examined (71–73). Consequently, the 
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application of sICA to clinical populations of mothers and fathers could provide insight both 

into the pathophysiology of maternal psychopathology, as well as mechanistic insight into 

aberrant caregiving, which has sometimes been associated with these clinical disorders. Of 

note, individuals with addictions have been shown using sICA to differentially engage FNs 

in fMRI tasks involving the processing of rewards/losses, decision-making, and cognitive 

control (74–76), and such examinations into the function of the parental brain in individuals 

with and without addiction is needed. Furthermore, interactions between FNs may be 

modeled in future studies, as has been done in graph theoretical studies of addictions (77).

Conclusions

Increasing interest has focused on the parental brain to understand the neural basis of 

caregiving. While theoretically interesting, there is hope that neurobiological insights will 

facilitate new clinical directions for supporting parents with psychopathology to optimize 

their own, as well as their children’s, well-being. To date, the vast majority of parental brain 

studies have examined BOLD responses to infant affective stimuli with GLM-based 

analyses; however, we have considered the potential for overlapping neural substrates for 

different sensory modalities. In particular, we discuss the utility of sICA to separate mixed 

source signals from overlapping functional networks and sICA’s application to an fMRI 

dataset acquired from women while they listened to infant cries or viewed infant sad faces. 

Importantly, sICA identified a broader range of brain regions involved in the processing of 

infant cries and faces and yielded intriguing findings relating to how women may process 

these cues at a brain-based level. We propose that future studies of the parental brain, in 

clinical and non-clinical samples, will benefit from a gradient theory approach to further 

understand the prioritization of neural responses elicited by infant affective stimuli.
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Fig. 1. 
A Cry- and face-related changes in BOLD signal as revealed by GLM-based analyses. The 

colors on the T1 templates in MNI space show significant increases (red/orange) or 

decreases (blue/green) in BOLD signal for cry and face stimuli relative to baseline, and for 

cry relative to face stimuli (cry > face). The color bar indicates the t values. Only voxels 

surviving p<.01 and cluster p<.05, FWE-corrected for multiple comparisons of voxel-wise 

whole-brain analysis, are shown. The bar graph demonstrates mean beta values in three 

regions of interests (ROIs) for cry and face stimuli. The error bars represent standard errors 
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(SE) of the means. The numbers presented next to each brain image in the top row indicate 

the Z coordinates in MNI space; R=right hemisphere. Fig. 1B. Bimodal FNs oppositely 

engaged by cry and face trials. (A & B) The colors on the T1 templates in MNI space show 

spatial distributions of positive (red/orange) and negative (blue/green) clusters in each 

labeled IC. The color bar at the top of the figure indicates the t values. Only voxels surviving 

p<0.001, FDR-corrected for multiple comparisons of voxel-wise whole-brain analysis are 

shown. The bar graph demonstrates mean beta weights at cry and face trials. The p value on 

each bar graph is corrected for multiple comparisons using FDR and indicates significant 

difference of mean beta-weights for the two stimuli types. The error bars represent SEs. The 

number at the right bottom of each brain image in the top row indicates the Z coordinate in 

MNI space; R=right hemisphere. (C) Composite maps of all significant clusters in the six 

ICs. The cry panel presents all clusters showing significant positive cry-related engagement 

and negative face-related engagement. The face panel presents all clusters showing 

significant positive face-related engagement and negative cry-related engagement. The color 

bar indicates the number of overlapping ICs.
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Table 1.

Regional composition of functional networks showing differential Cry vs. Face engagement

Positive Clusters Negative Clusters

Bimodal FNs

 IC1
Lingual G., Fusiform G., MOG

a
, SPL

b
, PCC

c
, STG

d
, ACC

e
, SFG

f
, 

Medial PFC
g

Insula, IFG
h
, TPJ

i
, Precuneus

 IC27
MTG

j
, Insula, Medial PFC, OFC

k
, Cuneus Precentral G

l
, MTG

 IC31
IFG, Insula, SPL

m
, MTG, Medial PFC IPL

n
, Fusiform G.

 IC20
MOG, IOG

o
, Cuneus, Lingual G., Precuneus, PCC, Fusiform G. ITG

p
, MTG, Parahippocampal G., Precuneus, 

ACC, Medial PFC

 IC32 MTG, STG, Cuneus, Paracentral G, IPL, Caudate, Medial PFC
Midbrain, Thalamus, Precuneus, PCC, MFG

q
, 

STG, Lingual G., Fusiform G.

 IC34
IFG, MFG. SOG

r
, ITG, Paracentral G, Caudate

MOG, IPL, Insula, Putamen, STG

Unimodal, Cry-related FNs

 IC2 Precentral G, Precuneus
FEF

s
, PCC, Medial PFC

 IC9 Paracentral G, IFG, Insula, Fusiform G, Caudate Putamen, SFG, Precentral G., Postcentral G.

 IC13 TPJ, MFG, Midbrain, Caudate, MTG Middle Cingulate, Medial PFC

 IC15 Striatum, Midbrain, IFG ACC, Medial PFC

 IC16 Cuneus, IFG, IOG, SFG, Precentral G, MFG Cuneus, Medial PFC, Insula

 IC7 Fusiform G., Lingual G., ACC, TPJ, Postcentral G., STG, 
Parahippocampal G., Insula

IOG, Cuneus, SFG

Unimodal, Face-related FNs

 IC17 MFG, IFG, Precentral G., Precuneus, SPL, MOG, Fusiform G., Lingual 
G.

Fusiform G., Cuneus

 IC25 Paracentral G, Lingual G, MOG, IPL, MFG SPL, Precuneus, Insula, IFG

Abbreviations:

a
MOG: Middle occipital gyrus;

b
SPL: Superior parietal lobule;

c
PCC: Posterior cingulate;

d
STG: Superior temporal gyrus;

e
ACC: Anterior cingulate;

f
MSFG: Medial superior frontal gyrus;

g
PFC: Prefrontal cortex;
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h
IFG: Inferior frontal gyrus;

i
TPJ: Temperoparietal junction;

j
MTG: Middle Temporal Gyrus;

k
OFC: Orbitofrontal cortex;

l
G: Gyrus;

m
SPL: Superior parietal lobule;

n
IPL: Inferior parietal lobule;

o
IOG: Inferior occipital gyrus;

p
ITG: Inferior Temporal Gyrus;

q
MFG: Middle frontal gyrus;

r
SOG: Superior Occipital Gyrus;

s
FEF: Frontal eye field.
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